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Abstract:-Financial markets and tax services require continuous information on the 
economic health of corporations. Data of financial indices and accounting statements 
include valuable elements that advanced methods of artificial intelligence can 
implement to provide analyses of high precision. Hybrid systems of neural networks 
with genetic algorithms optimization are able to support efficiently decisions on 
portfolio management, corporate management, and financial accounting. 
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Introduction   
Financial evaluation of corporations, detects 
their economic health enforcing users of 
financial data, such as investors, financial 
experts, the government. Corporate financial 
evaluation and bankruptcy prediction 
achieved significant results through 
advanced methods of artificial intelligence, 
data mining, finance, and operations 
research, [1] whilst new effective tools are 
always in demand. Data mining the past 20 
years consists a new domain of Artificial 
Intelligence, and it is supported extensively. 
Data mining seeks to discover valid, hidden 
information in vast data sets, implementing 
i) Artificial Neural Networks, ii) Decision 
Trees, iii) Genetic Algorithms, iv) Methods 
of Nearest Neighbourhood. 
 
 
Hybrid Algorithms 
Hybrid algorithms compare genetic 
algorithms with the most successful 
optimization methods to a problem, ensuring 
their correct application. Genetic algorithms, 
despite their vigorous, are not always 
effective in optimization, [2], [3] used non-
linear coding, specializing operations of 
genetic algorithms to combinations with 
search models based on genetic search 

models. [4] describing a parallel genetic 
algorithm, concluded that, whilst an initial 
population is created, each individual each 
individual elaborates a local ascension and 
after each descendant is created it activates a 
local ascension as well. Researchers diverse 
their conclusions on hybridization matter. 
Addition of ascensions or hybridization with 
other optimisation methods, learning is 
added in the process of evolution. Coding of 
acquired information, in chromosomes 
indicates a form of Lamarck search. 
Optimized chromosomes by local ascension 
or other methods are put on the total 
population, and there are allowed to 
compete aiming to obtain reproduction 
opportunities.   
 
 
Neural networks with genetic 
optimization 
NeuroSolutions 4.3 environment provides a 
complete platform of Neural Networks (NN) 
that varies from simple Multi Layer 
Perceptrons-MLP, to very complex hybrid 
networks with time bias. Software of 
NeuroSolutiuons 4.3 simulates NN where 
overall dynamics of networks and training 
dynamics are divided to local interactive 
rules. This software follows the principle of 
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local interaction rules among simple neural 
components, which is followed on biological 
neural networks. The object–oriented form 
of NeuroSolutions specifies operations of 
elements and their interactions instead of 
implementing functions strictly, in the ways 
of ordinary programming offering a 
powerful environment which simulates non-
linear diversification. An NN is described by 
a set of dynamic equations, and an 
additional set of dynamic equations for 
training to satisfy the adjustment ability. 
There are many different NN architectures 
with unique characteristics such as Hopfield 
networks [5] that differ significantly in 
topology from Multi Layer Perceptron–
MLP, [6] since MLP implement feedforward 
technique and Hopfields have a recurrent, 
both use the additive model, [7]. Additive 
model of [8], is described by the dynamics 
of sets of pairs in the first order non linear 
differential equations of the form: 
dxi(t)/dt =    Gi(xi(t), e(t), w, x*(t)) (1) where 
xi(t) є Rn are vectors of state, Gi: Rn→R a 
dynamic chart, e(t) external input, w internal 
system parameters and x*(t) є Rn a desired 
trajectory of system condition. A neural 
model with distributed set of mapping 
equations Gi (x) is preferred for the 
conditional vector of system. In the additive 
model it is: dxi(t)/dt  =   -τi xi(t) + σ[Σ xij 
xj(t)] + ei(t) (2), where τi the constant time of 
i processing element, σ: R → R the transfer 
function of input-output,  presented in the 
following figure 1:  
 
 
 
 
 
 
 
 
Figure 1. The processing in a neuron 
Source: NeuroDimensions Inc. 
 
Activation of node i depend only from 
present input, a characteristic which is 
undesired for a significant variety of 
problems such as: classification of time 
varied signals (speech, control, prediction). 
Additive model is altered if multiplications 
are replaced by convolutions of time as:  
dxi(t)/dt = -τixi(t) +σ [ Σ ∫ wij(τ) xj(τ-t)dτ] + 

ei(t) (3), which is called  [9] convolutions 
pattern, allowing activations of neural 
network to depend from pattern’s past 
conditions and the input signal. Convolution 
is a linear operation, and neural activations 
are stored on a generic linear filter, with an 
undesired increasing number of coefficients. 
Convolutions model can be converted by 
constant forms of the first order, [9], as on 
Gamma Neural Network: dxi(t)/dt = -τixi(t) 
+σ [ Σ ∫ wij(τ) xj(τ-t)dτ] + ei(t) (4). A quite 
big K can approach the convolution pattern 
according to demands. Each topology is 
defined by a choice of specific forms on 
weights matrix. Training dynamics on n-
dimensional dynamic system of (4) includes 
translation equations to network topologies, 
[10]. When the aim is a desired answer, a 
measure of error can be given by the 
difference between desired and real output. 
A typical measure is L2 rule (Mean Square 
Error) and gradient slope minimizes it, while 
network coefficients are updated in: 
  →            → 

wk+1 = wk – η ∂Ε/∂w (5) where E is the 
operational error, and n training proportion. 
Error is a function of networks production, 
which is directly connected to networks 
topology. Desired signal can be a coefficient 
(stationary point) or time variant 
(trajectory). Thus there are two potentials: 
either the network is a feedforward and 
stationary desired signal with inputs whilst 
slope calculations are time dependent, or the 
network is recurrent, or desired signal is 
time variant and slope calculation is time-
dependent. The initial level in object-
oriented formulation of NN is the 
characterization of a set in elements that 
deploy neural functions and regulate rules in 
local interaction. The elementary part in NN 
is the processing element PE, which is an 
abstraction of biological neuron, [11]. A PE 
receives input signals that are passed by 
other PEs’ and then provides each signal 
with a weight wi, accumulating all of them. 
The next step implements a transfer 
function, which is usually non-linear to 
produce the outcome of the PE which will 
move forth towards other PEs’. Hence a NN 
is a connected lattice of PEs. Local 
interaction in PE (neuron) is determined by 
the Axon category:→       →    →
                              y =f(x, w)  (6)  
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where x є Rn the input signal, w є Rn weights 
for Axon activity, y є Rn an output signal 
(mapping). Synapses receive Axons’ activity 
implementing another mapping as a linear 
weighted accumulation transferring the 
outcome to other Axon. Thus a Synapse is 
the connecting element in the lattice of 
neurons, and it is represented with a labelled 
arrow in diagrams. Linear mapping which is 
necessary on the accumulation models 
during representation of regularized 
interaction is defined by the synapse 
category as: 
→       →    → 
y =f(x, w) (7), where y є Rn, x є Rn are the 
Axon’s activity vectors, w є Rn*m a set of 
weights for the synapse category, f: R2n → 
Rm a random mapping. All neural networks 
in NeuroSolutions belong either to Axon’s 
or to Synapse categories.  
 
 
Static Neural Networks  
MLP is a feedforward network, which 
follows th additive pattern and the equation 
in discrete time that determines its topology 
for each neuron is: 
           ⎧ei                               l = 0 
   xi

l =  ⎨       nl-1                      (8) for PE on level l 

                  ⎩σ [Σ wkj
l xj

l-1] l ≠ 0 
This equation includes two mappings: a 
linear map between neighbour layers, 
represented by W matrix, and a non-linear 
map, represented by non linearity σ(.). 
These two mappings are between inserted 
activity, and activity stored in the layer. The 
form of maps fits exactly to those 
determined by Axon and Synapse, as: f(x) = 
σ (x) (9) where σ (x) = 1/(1+ e-x), 
   →              →

f(x) = W x (10), and W ∈ R m x n are a fully 
colonized matrix of weights that provides all 
elementary dynamics required to create any 
MLP. Elementary dynamics given by the 
previous equation is necessary to imitate all 
topologies inside the additive neural pattern.  
 
Dynamic Neural Networks 
A static neural network expands with short 
term memory mechanisms in vast 
applications, consisting the general additive 
pattern which replaces multiplications in a 
convolution operation. Aiming to apply 
memory elements Soma is given control of 

an Axon, adding a third dimension on the 
spatial lattice figure. Third dimension comes 
from temporary pairing in time levels. Order 
of calculations can be faced geometrically 
on a PEs’ lattice according to the rules that 
the lattice can be in three dimensions with 
two spatial axes (x and y) lying within the 
plane of the paper, and one temporal axis 
going into the page. The present time is at 
the top of the stack of planes, and each 
following plane is delayed by one sample. 
The standard local interaction defined by the 
Axon class will remain the same with an 
added restriction that its nonlinear mapping 
be instantaneous. This can be represented 
for each processing element as the mapping: 
yi(t) = f(xi(t), wi) (11) where i index runs 
over the number of processing elements of 
the Axon. The Soma class may have 
temporally coupled the Axon to other PEs in 
the lattice, but the Axon itself will have no 
access to them. The Synapse class  

Σ                  xi(t)                      f(xi, wi)              yi(t) 

 
Figure 2. Mapping of Processing 
Element of Axon class, ND Inc. 
 
 
will take activity presented by one of the 
coupled PEs for an Axon, apply its linear 
mapping and present the result to an Axon in 
the present temporal plane as, y(t) = f(x((t-
d), w) (12), d is a delay that represents 
which temporal plane the Synapse attaches 
to. Each Processing Element of the Synapse 
will produce the mapping yi = f(xj(t-d), wij) 
(13). 
 

xj(t)              z-d                                                  f(xj(t-d), wij)                    yi(t) 

Figure 3. Mapping for PE of Synapse 
class, Source: NeuroDimensions Inc. 
 
Axon and Synapse are both subclasses of 
Soma. Since Soma performed temporal 
coupling of the Axon, it can provide 
Synapse with access to coupled sites. 
Temporal coupling performed by Soma is 
inherent to all network elements and it is 
hidden from each one of them. Axon and 
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Synapse have no explicit understanding of 
time. Axon performs a mapping from a node 
on the lattice to that same node. 
 
 
Description of Neural architectures  
In this research 10 different architectures of 
neural networks were used: 1)Principal 
Component Analysis networks-PCA, 2) 
Recurrent networks, 3)Time Lag Recurrent 
Network – TLRN, 4) Support Vector 
Machine – SVM, 5) Kohonen Shelf 
Organizing Maps-SOFIM, 6) Jordan Elman 
networks, 7) Multi Layer Perceptrons – 
MLP, 8) Generalized Feed Forward – GFF, 
9) Modular networks, 10) Radial Basis 
Function Network – RBFN. Network 
GRNN/probabilistic PNN did not operate, 
whilst RBFN was very slow and was 
rejected.  
Data came by 1411 companies from the loan 
department of a Greek commercial bank, 
with the following 16 financial indices: 1) 
EBIT/ Total Assets, 2) Net Income/ Net 
Worth, 3) Sales/ Total Assets, 4) Gross 
Profit/Total Assets, 5) Net Income/ Working 
Capital, 6)Net Worth/ Total Liabilities 
7)Total Liabilities/ Total assets, 8) Long 
Term Liabilities/ (Long Term Liabilities + 
Net Worth), 9)Quick Assets/ Current 
Liabilities, 10)(Quick Assets-Inventories)/ 
Current Liabilities, 11)Floating Assets/ 
Current Liabilities, 12)Current Liabilities/ 
Net Worth, 13) Cash Flow/ Total Assets, 
14)Total Liabilities/ Working Capital, 
15)Working Capital/ Total Assets, 16) 
Inventories/ Quick Assets. A 17th index had 
initial classification, by bank executives, test 
set was 50% of overall data, and training set 
50% as well. 
 
 
Results 
NeuroSolutions 4.3 was deployed with many 
different network topologies. Initially Multi 
Layer Perceptrons – MLP were 
implemented because of their capacity to 
resolve linear and non-linear problems, a 
characteristic that enforces their popularity. 
Genetic Algorithms were chosen to be used 
in each intermediate step of solutions that 
neural networks produced, because they 
offered the optimal choice of solution genes 
in neural network, consuming significant 

time periods. The method of data 
representation on each genetic session of 
offspring was on-line, because it provides 
always the optimal solution in each 
generation, although sometimes it is exposed 
to the higher risk of falling in local 
minima/maxima. Batch representation was 
rejected because confusion matrix changes 
on each new chromosome, without adjusting 
instantly, whilst it has lower risk of getting 
trapped in local minima/maxima. Radial 
Basis Function Networks-RBFN, with 1 
hidden layer, 500 epochs and genetic 
optimization was very slow, while 
Generalized Feed Forward-GFF, networks 
performed in a very fast convergence. 
CANFIS networks couldnot be used, as they 
implemented fuzzy logic, whilst RBFN with 
0 hidden layers were extremely fast. RBFN 
network with 1 hidden layer, 400 epochs and 
genetic optimization had a slower 
convergence, compared to Recurrent 
network. On the other hand RBFN was more 
reliable in use, while Recurrent collapsed 7 
times. Support Vector Machine-SVM 
networks with 300 epochs produced the 
confusion matrix fastly from the very 
beginning. In all neural networks 500 
epochs were chosen for each generation of 
solutions that Genetic Algorithms used to, 
aiming to give the necessary time for 
convergence in the optimal offspring set, 
without wasting surplus time when the 
optimal set of solutions was found in each 
repeat. In the following table 1, are 
presented the optimal results of each 
different neural network. Neural networks 
are presented in groups of the same 
architecture, but with different topologies, 
where in each topology hidden layers. The 
10 different neural network architectures 
used, were examined thoroughly in different 
topologies, to evaluate their performance 
with the same data set of 1411 companies 
and the training set 50% of overall data. In 
each architecture of neural networks we 
implied initially 1 hidden layer and after 
convergence and results, we increased the 
number of hidden layers, noticing that while 
a change in the number of hidden layers the 
results such as confusion matrix, MSE 
varied significantly. This is expected since 
neural networks’ performance is a ‘black 
box’ to users and neural nets cannot produce 
the same output, given the same input. We 
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noticed that as the number of hidden layers 
was different in the same architecture, 
results in the confusion matrix were 
different for each topology in the same 
architecture. Results provided by two 
different architectures, Multi Layer 
Perceptron – MLP and Radial Basis 
Function Network – RBFN in equivalent 
confusion matrix in all the topologies, with 
the apostrophe of non-convergence, since 
the confusion matrix classified all 
companies of mark 0 to 0 but also classified 
all companies of mark 1 to 0, which is a 
failure to verify initial classifications by 
bank executives. Analytically the 

performance of each optimal neural 
network’s architecture, is in the table1.  
 At first Recurrent neural network 
produced successful results. Optimal 
Recurrent network were deployed with 3 
hidden layers, with an MSE were very low: 
0.116 with 3 layers, providing adequate 
classification results for companies of mark 
1 (in distress) 66.66%in one case (3 layers). 
Convergence time vas 5 hours 55’ (3 layers) 
and. Although their performance was of 
adequate convergence, acceptably low in 
speed, and with very low statistical error 
(MSE), Recurrent networks could not 
approach the effectiveness of SVM 
networks. 

 
Table 1. Overall results in Neural Networks per architecture 

Neural Network Active Confusion Matrix Performance Time 
                  Layers 0->0 0->1 1->0 1->1 MSE NMSE r %error AIC MDL  

PCA  1 100 0 33,33 66,66 0,153 0,598 0,664 17102534 95,48 69,78 2 h 37’39
Recurent  3 100 0 33,34 66,66 0,116 0,454 0,771 11092527 940,05 764,36 5 h 25’00
TLRN  4 95,83 4,16 33,33 66,66 0,19 0,739 0,625 41161888 3109,21 2553,98  10 h 58’00
SVM 1000 epoc. 100 0 0 100 0,849 2,672 0,677 444452228 427,58 351,53 4 h 13’00
SOFM  1 100 0 0 100 0,010 0,042 0,979 4880354 1035,8 832,003 5 h 01’00
JordanElman  1 100 0 0 100 0,029 0,113 0,960 6954795,5 12,618 -6,39 2 h 01’00
MLP  1 100 0 100 0 0,375 1,457 0,542 9402632 407,53 331,13 6 h 11’00
GFF  6 100 0 33,33 66,66 0,150 0,583 0,664 1641632 7228,79 5947,21  32 h 33’00
Modular  3 100 0 0 100 0,013 0,054 0,972 9733604 654,63 519,083  12 h 09’00
RBFN  0 100 0 100  0 0,372 1,449 0,58 9400172 135,37 106,85 3 h 11’00

 

Secondly PCA networks produced 
very low MSE: 0.153 for 1 layer net. 
Thirdly GFF networks with 6 hidden 
layers required large amounts of time 
periods, while their classifications 
converged with low accuracy. Optimal 
TLRN networks with 4 levels provided 
average level of MSE, but with significant 
misclassification in confusion matrix. 
SOFM networks with 1 layer performed in 
long time periods 5 hours 1 minute, with 
very low MSE. Modular networks had 
long times of processing 12 hours 9 
minutes, three out of six networks had a 
relative convergence, whilst their 
statistical error was moderate. Jordan 
Elman networks except the best network 
of 1 layer, all the others lacked to 
converge, since only one topology out of 
the rest five had a relative convergence, 
their MSE was moderate. Finally RBFN 
networks and MLP failed completely to 
provide converged classifications, and 
they demanded significant time periods. 

Conclusions-Future Research. 
 
Excellent performance was achieved by 
Jordan/Elman net with 1 hidden layer. 
Only Support Vector Machine – SVM 
networks converged in the same confusion 
matrix, obtaining acceptable processing 
time periods to convergence with high 
MSE. Hybrids of Neural Networks with 
Genetic Algorithms for optimization on 
genes solutions produced 5 independent 
confusion matrices with correct 
classification at a level 100% that resulted 
in the same form. Hybrids of Neural 
Networks with Genetic Algorithms for 
optimization on genes solutions produced 
5 independent confusion matrices with 
correct classification at a level 100% that 
resulted in the same form. The most 
excellent hybrid Neural Network 
optimized by Genetic Algorithms was 
Jordan/Elman with 1 hidden layer, table 2, 
with a very low MSE, the second lower of 
43 networks that were deployed in this 
research, its NMSE was very low at 0.042 
and correlation coefficient r was very high 
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at 0.960, whilst the time to converge was 
the fastest of all at 2 hours and 1 minute. 
The second better network was SOFM 
with 1 hidden layer converged slower in 5 
hours and 1’ whilst it had the lowest MSE 
of all: 0.010, and the highest correlation 
coefficient at 0.979. Another hybrid neural 
network that had a quick convergence was 

Modular network with 3 hidden layers 
concluded its convergence in 2 hours 9 
minutes, the MSE was 0.013, the lowest of 
nets, and correlation coefficient r 0.972. 
Finally SVM – 1000 epochs that 
converged in 4 hours 13 minutes with a 
very high cost function at MSE of 0.849 
and the lowest correlation r at 0.677. 

 
Table 2. Networks with excellent performance 
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Network Layers epochs MSE NMSE r Time 
Jordan Elman 1 500 0.029 0.113 0.96 2 h 01’ 
SVM  1000 0.849 2.672 0.677 4 h 13’ 
SOFM 1 500 0.042 0.042 0.979 5 h 01’ 
Modular 3  500 0.013 0.054 0.972 12 h 09’ 
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