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Abstract: This paper explores estimates for the best possible water level predictions for test 
stations in the shallow waters of the Gulf of Mexico. The predictions are made by Artificial 
Neural Networks (ANNs) and Statistical Modeling. Namely, here we use the theory of stochastic 
processes and spectral analysis to evaluate the best possible quality of forecasts by using the 
stochastic properties of the inputs as well as the given goodness criteria of predictions.  As a 
result of such investigation we can outline limitations of the ANN predictions of water levels in 
the bays and estuaries of the Texas coast. 
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1 Introduction 
Tides are the result of astronomical 
forces and tide tables reflect only these 
forces, not meteorological influences 
such as weather. In deep coastal waters, 
the tide tables are sufficiently accurate, 
but in shallow coastal waters the 
meteorological components of the water 
levels can not be ignored. The 
importance of accurate forecasts is 
stressed by NOAA emphasis on its 
PORTS project: “The Physical 
Oceanographic Real-Time System 
(PORTS®) is a program of the National 
Ocean Service that supports safe and 
cost-efficient navigation by providing 
ship masters and pilots with accurate 
real-time information to avoid 
groundings and collisions.  
 
Since about 1990, the Texas Coastal 
Observation Network (TCOON), housed in 
the Conrad Blucher institute within the 
College of Science and Technology at Texas 
A&M University–Corpus Christi 
(TAMUCC) has collected and archived data 
on water levels, wind strength and wind 

direction for a network of gauging stations 
along the Gulf of Mexico coastline in Texas. 
These data are available in real time on web 
at http://lighthouse.tamucc.edu/~pquery. For 
the last five years, researchers at more or 
less closely affiliated with Texas A&M 
University – Corpus Christi have worked on 
using these data to generate 12-hour or 24-
hour water level predictions for these 
stations.  
 A. Sadovski [1] has used regression and 
statistical models to obtain forecasts. 
P. Tissot with P. Michaud, D. Cox and S. 
Duff have worked with Artificial Neural 
Network (ANN) models [2]. The quality of a 
water level forecast is measured by several 
criteria devised by the National Ocean 
Service: they define the tolerance level of a 
forecast as 15 cm and define any prediction 
that differs by more than 30cm from the 
actual water level as an outlier. Their 
assessment criteria are: the root mean square 
error (RMSE), the Central Frequency (i.e. 
the percentage of time the forecasts are 
within 0.15 m  of the measured water level), 
the positive outlier frequency (POF) and the 
Negative Outlier Frequency (NOF) as well 
as the maximum duration of a positive 
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outlier (MDPO) and the maximum duration 
of a negative outlier (MDNO).  
The successes of the different models are 
detailed in [3]. One feature was common to 
all models: some stations were easier to 
predict than others. Easy stations included 
Bob Hall Pier and Port Aransas on the Bay 
side of the barrier island outside Corpus 
Christi Bay, whereas for Pleasure Pier 
outside the Barrier Island shielding Houston 
Bay the predictions were less successful and 

forecasts for Morgans Point in the Houston 
Ship Channel proved to be the biggest 
enigma for all models. 
The following central quality for forecasts 
with different models are taken from [3], 
which used models trained on one year of 
data prior to 2000 and tested on the three 
consecutive years 2000-2002, before 
averaging the values over the tree test years. 
 

Table 1.  Models performances for the study’s stations tested on 2000-2002.   

Station/Model RMSE 
[m] 

CF 
[%] 

POF 
[%] 

NOF
[%] 

MDPO 
[hrs] 

MDNO
[hrs] 

Bob Hall Pier 
Tide table 0.114 84.2 0.35 1.65 17 54 
Persistence (24 hr) 0.086 92.0 0.45 0.17 8 8 
Linear Regression (24hr) 0.224 93.2 0.33 0.17 17 16 
ANN (24 hr) 0.075 94.6 0.30 0.10 8 6 
Port Aransas 
Tide table  0.112 83.7 0.31 1.53 19 43 
Persistence (24 hr) 0.075 94.2 0.25 0.03 9 0 
Linear Regression (24hr) 0.172 94.8 1.05 0.02 24 2 
ANN (24 hr) 0.070 95.7 0.16 0.02 7 0 
Pleasure Pier   
Tide table  0.149 72.8 1.41 3.39 28 72 
Persistence (24 hr) 0.146 79.6 3.07 2.29 25 29 
Linear Regression (24hr) 0.149 83.7 2.43 1.31 26 34 
ANN (24 hr) 0.123 84.6 2.34 0.80 22 20 
Morgans Point   
Tide table  0.174 67.3 3.88 4.56 47 74 
Persistence (24 hr) 0.178 71.2 5.29 4.18 31 34 
Linear Regression (24hr) 0.110 55.6 2.86 1.33 18 22 
ANN (24 hr) 0.142 80.4 4.13 0.68 26 12 
 
 
To improve the Morgans Point forecasts 
using just past and present wind and water 
data, we tried a range of things. P. Tissot 
experimented at length to determine the 
ideal inputs and architecture of the ANNs. 
He had written the ANN program used by 
all TAMUCC researchers involved with the 
ANN prediction of water levels and he tried 
to optimize the input parameters - namely 
the number of hours of past water levels 
used, hours of past wind data used and the 
number of neurons in the hidden layer - for 
the ANNs in an order that followed his 

physical intuition into the situation, while 
trying to use ANNs of minimal complexity, 
ideally with just one neuron in the hidden 
layer.  
B. Zimmer [4] generalized this approach to 
Monte Carlo methods and generated 250 
ANNs with randomly chosen parameters 
and evaluated their performance over the six 
test years 1999-2004. The highest Central 
Frequency reached was 78.16%, the lowest 
CF 77.56%. That permits the conclusion that 
the design of the network was not the 
hindering factor. 
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B. Sterba-Boatwright used Kalman Filtering 
on the 1998 input data. This smoothed out 
the training data a little bit, but in testing the 
ANN on unfiltered data no significant 
differences in the performance were 
obtained, indeed the Central Frequency for 
the test years dropped by 0.15%.  
B. Zimmer [5] experimented with different 
training methods and training algorithms 
and assessments of the training, again with 
no significant success. 
There are still avenues of ANN design and 
training to be explored, but all researchers 
involved reached the same conclusion: the 
forecasts for Morgans Point are not limited 
by our ANN design methods but by the 
input data. 
 
2 The Problem: 
The question at hand is why different 
regression and ANN models and approaches 
cannot improve quality of predictions for 
some stations such as Morgans Point. To 
explain it we decided to use statistical factor 
analysis. We applied factor analysis to the 
water levels over the period of 48 hours with 
the interval of 2 hours. The conclusion is 
that no more than 5 factors explain over 
90% of variance for water levels for all 
TCOON stations. Then we compared the 
results of the factor analysis for shallow 
water stations with the results of factor 
analysis for deep water stations. For instance 
at the shallow water stations Bob Hall Pier 
and Morgans Point the first main component 
explains over 68% of the variation of the 
primary water levels. 
Analyzing results of factor analysis for 
different stations we have discovered the 
following: 

– In coastal shallow waters 
and estuaries the major or 
the first component is not a 
periodical component, and 
we call this component 
“weather”. Other main 
components are periodical 
and we call them 
“astronomical”. 

– In off-shore deep waters, 
the first two or three 
components are 
astronomical components, 
while weather is a less 
dominant component. 

– Our conclusion is that the 
prime factor affecting water 
levels in estuaries and 
shallow waters is weather. 

– It has been observed also, 
that linear regression 
models for different 
locations have different 
coefficients for the same 
variables. We think that this 
difference may be explained 
by the geography of the 
place where the data is 
collected. 

 
3 Primary Water Levels as a 
Stochastic Process. 
The qualitative analysis of the covariance 
function of the primary water levels at the 
Morgans Point and Bob Hall Pier as well as 
the nature of the processes (excluding 
tropical storm surges) permit us to assume 
that both primary water levels are stationary 
stochastic processes. A stochastic process 
X(t) is called a stationary process if the 
covariance function K(t,t’) of the process 
depends only on the difference τ between t 
and t’ and does not depend on t and t’, 
where 

'

'

[( ( ) )( ( ') )]( , ') t t

t t

E X t m X t mK t t
σ σ

− −
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and E[….] is the expected value, and tm

tσ are the mean and the standard deviation 
of the stochastic process X(t) at the time t.  
 
Verifying the stationarity for any set of 
measured data is nearly impossible, but we 
will make an attempt to it later in the paper. 
However, we can prove that the process 
under consideration is an ergodic process. 
By calculating running averages we can 
show that the time average is equal to the 
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ensemble average, which is supported by the 
graphs on Figures 4 and 5 for Morgans Point 
and Bob Hall Pier respectively. 
 

 
Figure 4. Mean (blue) and standard 
deviation (red) of moving averages of 1000 
observations for Morgans Point. 
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Figure 5. Mean (blue) and standard 
deviation (red) of moving averages of 1000 
observations for Bob Hall Pier. 
 
 
It is clear by looking at the data on these 
graphs that we cannot reject the hypothesis 
that the mean is zero. Indeed, the confidence 
interval around the constant mean m=0 will 

be (- 2

eα
; 2

eα
), where 2 2

e z
nα α
σ

=
 . For 

example, for level of confidence α=0.05 we 

have 2

zα
=1.96 and  n

σ

>0.05, so the 
confidence interval is (-0.1; 0.1) which 
includes all displayed values of running 
averages.  
 
Now, we know that transition functions of 
different ANN either linear or almost linear 
over interval [-1;1]. This implies that we can 
evaluate output standard deviation by using 
the following formula: If  

then 

X aY bZ= +
2 22 2

x y za bσ σ σ= + . 
 
Since all the input to ANN are ergodic and 
assumed to be stationary and since the 
operations  within the ANN are continuous  
then the output of the ANN is an ergodic 
process by proposition 4.3  in [6]. 
 
We understand that in order to achieve good 
prediction the output of the ANN should 
have (at most) the same standard deviation 
as the difference between primary water 
levels and harmonic water levels (which are 
also inputs of ANN). Detailed observation 
showed that for Morgans Point the 
covariance function K(τ) becomes 
insignificant for τ≥2, while for Bob Hall 
Pier there is significant covariance for τ up 
to the 16th hour. The above statement means 
that we deal with white noise at Morgans 
Point and not so white noise at Bob Hall 
Pier. The following table 4 provides 
standard deviations for the  primary water 
levels and the difference between primary 
water levels and harmonic water levels for 
the “bad” year 1998 and the “good” year 
2000. 
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Table 4.  Standard deviations. 
 1998 pwl 2000 pwl 1998 p-h 2000 p-h 

Morgans Point 0.262 0.226 0.211 0.165 

Bob Hall Pier 0.235 0.201 0.147 0.093 

 
Now we are to try to demonstrate that the 
input data is a stationary process. With this 
purpose it is enough to show that for 
sufficiently long different periods of time 
autocorrelation functions are almost the 
same [7]. To be more precise, we cannot 
reject null-hypothesis that these to auto-
regressions are the same. It is well known 
that addition or subtraction of a 
deterministic process to a stationary process 
is results in a new stationary process. Now 
we know that the process under 
consideration (primary water levels minus 
harmonics) is an ergodic one. Now we can 
verify our previous assumption that this 
process is a stationary process. Here we 
have to check hypothesis that for different 
and long enough realization of the process 
we have the same covariation 
(autocorrelation function). The two graphs 
on Figures 6 and 7 give us an excellent 
example that our claim is valid. To be more 
precise, for any given lag number both 
values of respective autocorrelations belong 
to the same confidence interval which 
implies that we fail to reject claim that it is 
the same covariance function.  
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Fig 6. Autocorrelation function, the first 6 
month of 1998, Bob Hall Pier 
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Fig 7. Autocorrelation function, the last 6 
month of 1998, Bob Hall Pier 

Now we can estimate the probability of the 
forecast hitting [-0.15;+0.15] interval around 
p-h where p is a primary water level and h is 
a harmonic water levels. Taking into 
consideration that approximately σ(p-h)=.21 
for Morgans Point we can estimate 
probability by using celebrated table of 
Normal Distribution. As we can see from the 
Fig.8  There is strong correlation r=0.98 
between two neighbor hours for p-h water 
levels. Predicting for 12 or 24 hours by 
using strongly correlated next to each other 
water levels will give us coefficients of 
correlation r(12)=0.785 and r(24)=0.616 
respectively. It is well known that 
coefficient of determination  gives 
proportion of deviation explained by 
correlation. The other part of the variations 
cannot be explained and has random nature. 

So we have  as the standard 
deviation for the uncertainty of the 
prediction, and we can find that s(12)= 
.0818 as well as s(24)= 0.128 

2r

2(1 )s σ= − r
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Fig.8 Autocorrelation Function for Morgans 
Point, 1998.  

Now we can apply celebrated Normal 
Distribution to find probability of hitting 
desired interval [-0.15;+0.15] for prediction 
by using well known formula  

0.15( ) 2 ( )
( )

p t
s t

= Φ
 

Here we get the following values 
p(12)=0.9328 for twelve hours prediction 
and p(24)=0.758 for twenty four hours 
forecast. It means that at the best we should 
expect success in prediction of water levels 
of 93% for half day forecast and 76% of 
successful predictions for a 24 hours 
forecast. 

The other way to make an estimation is the 
following. Suppose we work with 1998 
Morgans Point training data, and just the 
current water level (no past water levels, no 
wind) the ANN outperforms the persistent 
model with a CF of 71.2% instead of 66.5%. 
The weights and biases are  hidden neuron w 
= -  0.5440  b= 2.4949 for the output 
neuron   w = - 15.0537 and b = 13.9364. The 
transfer function for the hidden neuron is 
f(x) = 1 /( 1 + exp( -x)). With one input this 
takes the input x in the interval [-1 , 1] and 
turns it into 1 / (1 + exp( 0.5440 x - 2.4949 
)). If we graph this function on the interval [-
1,1] then we could see that it is concave 
down, but quite close to its tangent line at 
x=0, whose equation is y = -0.038301 x + 1 / 
(1 + exp( - 2.4949 )), and the maximum 
difference between  the two functions on [-

1,1] is 0.01. Now the output neuron gets to 
work, it multiplies the output of the hidden 
neuron by - 15.0537 and adds bias of 
13.9364. 
Because of  -0.038301*- 15.0537= 
0.5765822535 the standard deviation of the 
output data is only 57.66% of the standard 
deviation of the input data. For instance, for 
1998 the input data have a standard 
deviation of 0.2135, hence the output data 
will have a standard deviation of  
0.2135*0.5765822535=0.1231516112, and 
the 15 cm or 0.15 m divided by  
0.1231516112 give a z-score of 1.21801861 
with respect area 0.1112 to its right under 
the standard normal curve. So the central 
frequency in this case will be 1-
2*.1112=0.7776 or 77.7% .At the same time 
the skill set calculated a  CF of 71.2%, not 
77.7%. 

4 Conclusions: 

1. We have demonstrated that the input 
data represents an ergodic process. 

2. We have shown that primary water 
levels as well as difference between 
them and harmonic water levels are 
stationary stochastic processes. 

3. We evaluated by different means 
probability of the successful 
forecast, which is -for 24 hours from 
now – is approximately equal to 
75%. 

4. Now we some tools to evaluate 
Central Frequency of the prediction 
by analyzing stochastic properties of 
the input data.  
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