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Abstract: It is widely known that bandwidth limitations degrade parallel systems’ performance. This paper 
presents a mapping methodology for coarse-grain reconfigurable arrays which alleviates the bandwidth bottleneck 
by exploiting the processing elements interconnection network for transferring values with data reuse 
opportunities. A novel mapping algorithm is also proposed that uses a resource-aware modulo scheduling 
technique. From the application of the proposed mapping approach, significant improvements in performance 
were achieved while we have also quantified these improvements in respect to crucial architecture parameters 
such as the memory latency and the register file size. For this reason, our methodology targets on a parametric 
architecture template which can model a large number of existing architectures of this kind. 
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1. Introduction 
Coarse-grain reconfigurable architectures have been 

proposed for accelerating loops in several scientific 
domains' in embedded systems. These architectures 
combine the high performance of ASICs with the 
flexibility of microprocessors. Coarse-grain 
reconfigurable architectures consist of a large number 
of Processing Elements (PEs) connected with a 
configurable interconnect network. This work focuses 
on architectures where the PEs are organized in a 2-
Dimensional (2D) array and they are connected with 
mesh-like reconfigurable networks [1] and [2]. In this 
paper, these architectures are called Coarse-Grain 
Reconfigurable Arrays (CGRAs). This type of 
reconfigurable architecture is increasingly gaining 
interest because it is simple to be constructed and it can 
be scaled up, since more PEs can be added to the mesh-
like interconnect. Also, their coarse granularity greatly 
reduces the delay, power and configuration time 
relative to an FPGA device at the expense of flexibility.  

It is widely known that parallel operation execution 
in parallel systems generates a respective increase in 
memory accesses. Since the memory interface provides 
a limited access bandwidth, the applications 
performance cannot be that high as the parallel system 
capabilities promise. This problem is known as the 
memory bandwidth bottleneck [3] and restraints the 
exploitation of the inherent parallelism. Thus, a 
mapping methodology to CGRAs for reducing the 
memory bandwidth is required.  

This paper presents a memory-aware mapping 
methodology for CGRAs that attempts to minimize the 
data memory bandwidth requirements by exploiting 
applications’ data reuse opportunities and the 

architecture’s foreground memory. The high 
bandwidth Distributed Foreground Memory (DFM) 
which is constituted from the PEs’ register files and 
the interconnections among them is exploited for the 
purpose of relieving the external memories from the 
data transfer burden. In this way more operations 
which require memory accesses can be run in parallel. 
Additionally, accessing data from the foreground 
memory is generally faster than accessing data from 
the external memory. Hence, by increasing parallelism 
and reducing the average memory access time, the 
performance is increased. A novel mapping algorithm 
is also proposed that uses a modulo scheduling 
technique in which the binding, routing, and 
scheduling phases are considered together and they are 
steered by a set of costs. The experimental results 
showed that performance can be improved a lot from 
our mapping approach. Moreover, the experimental 
results quantified the impact of the architecture’s 
parameters (memory latency and register file size) on 
performance and Instructions Per Cycle (IPC) for a 
representative set of DSP applications. 

The rest of the paper is organized as follows: 
section II describes the related work, while section III 
presents the considered architecture template. Section 
IV describes the proposed mapping methodology while 
Section V our mapping algorithm. Section VI describes 
the mapping costs. The experimental results are 
presented in section VII. Finally, conclusions are 
outlined in section VIII.     

2. Related Work 
Although several CGRA architectures have been 

proposed in the past few years [1]-[2], only a few 
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methodologies ([4]-[7]) have been proposed for 
tackling the memory bandwidth bottleneck. None of 
these have illustrated how the architecture parameters 
affect the performance improvements. Furthermore, 
they haven’t considered the case where the foreground 
storage size is limited. Our methodology encounters as 
well the case where the foreground storage size is 
limited using variable spilling. 

In [4] a CGRA architecture was presented. For 
reducing the average memory access time, the mapping 
methodology uses a global register file for storing 
frequently reused data values. However, the single bus 
(rDPA bus) which transfers data from the global 
register file to the PEs does not increase the available 
bandwidth as it is the case when the DFM is exploited. 

The PACT-XPP [2] is a hierarchical array of 
coarse-grain Processing Array Elements. A series of 
vertical and horizontal buses establish communication 
among the PEs while for storing the intermediate data 
values shared memory banks exist on the left and the 
right side of each array’s row. To reduce the number of 
memory accesses, the compiler [5] only reads one 
element per iteration and generates shift registers to 
store the data reuse values when array references inside 
loops read subsequent element positions.  

In [6] a generic template for a wide range of 
CGRAs was presented. A three-level mapping 
algorithm is used to generate loop pipelines fit into the 
CGRA. First, on the PE-level mapping stage, 
microoperation trees are mapped to single PEs without 
the need of reconfiguration. Then the PE-level 
mappings are grouped together on line-level in such a 
way, that the number of required memory accesses not 
exceed the capacity of the memory interface belonging 
to the line. On the plane-level phase, the line-level 
mappings are put into the 2D array. 

In [7] we had proposed a list scheduling technique 
to reduce the data transfer bottleneck by using the 
DFM. The current work achieves better improvements 
with the proposed modulo scheduling technique. 
Hence, we consider our current work as an enhanced 
version of our previous work.  

3. Generic Architecture Template 
In this section, the generic reconfigurable 

architecture template to which our methodology targets 
is presented. It is parametric and it is based on 
characteristics found in the majority of CGRAs ([1] 
and [2]) so as for our methodology to be retargetable 
and representative for most CGRA architectures. It 
consists of 4 basic parts (Fig.1): the PEs organized in a 
2D interconnect network, the configuration memory 

and the memory interface which includes the buses, 
scratch-pad memory and the main data memory.  

In this template, each PE contains one Functional 
Unit (FU), which it can be configured to perform word-
level operations, identical to the ones supported by the 
operators of the C language (ALU, shifts e.t.c.). For 
storing intermediate values and values fetched from 
memory, a register file exists inside a PE. Each register 
file is a rotating one for realizing the register renaming 
mechanism which is necessary for modulo scheduling. 
Moreover, each FU accepts input data that can come 
from three different sources: a) from the same PE, b) 
from another PE and c) from the memory buses. The 
output of each FU can be routed to other PEs through 
the register file. Also, a context cache inside each PE 
stores context words that determine, for each PE, how 
the FU, the storage unit and the communication with 
neighbouring PEs is configured.  

Configuration 
memory

Main data 
memory

Scratch Pad M
em

ory

PE

 
Figure 1.  CGRA architecture template 

The CGRA’s memory interface consists of a 
scratch-pad memory , the memory buses and the main 
memory module as shown in Fig. 1. The PEs residing 
in a row, share a common bus connection to the 
scratch-pad memory (Fig.1). This also happens in 
popular CGRA architectures like [8]. The scratch-pad 
memory is located between the array of the PEs and the 
main memory, and provides the array with the required 
data bandwidth. Finally, the configuration memory of 
the CGRA stores the whole configuration for setting up 
the CGRA for executing the application’s loops. The 
context caches inside PEs are used for the fast 
reconfiguration of the CGRA.  

4. Mapping Methodology 
Fig.2 shows the structure of the developed 

mapping methodology for CGRAs. The input is the 
application’s description in C language. The first 
methodology step concerns the application of source 
level code transformations for increasing the locality 
of memory references as described in [3]. In this way, 
for a given size of DFM more data reused values can 
exploit it instead of using the buses. Afterwards, the 
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loop normalization transformation [9] is utilized for 
normalizing the candidate loops. Also, loop unrolling 
is performed for increasing the ILP in the mapping 
phase. Since the unlimited unrolling can lead to 
resource congestion situations a feedback in our 
methodology script refers to the exploration performed 
for finding the best value of the unroll factor in terms 
of the ILP. 

For creating the code’s Intermediate 
Representation (IR) we have utilized the front-end of 
the SUIF2 compiler infrastructure [10]. We have used 
existing and we have developed new SUIF2 passes for 
performing analysis and transformations on the 
application’s loops. More specifically, data-flow 
analysis is used to identify live-in and live-out 
variables and data dependence analysis to determine 
the data dependencies and data reuse opportunities. 
Also, transformations like dead code elimination, 
common sub-expression elimination and if-conversion 
transformations have also been utilized. Moreover, to 
create the Data Dependence Graph (DDG) we 
represent the application’s loop in static single 
assignment form to minimize the Anti- and Output 
dependences. The considered analysis and 
transformations flow are enclosed in the dashed line of 
Fig.2. 
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Figure 2.  Mapping Methodology 

Finally, the DDG of the loop body produced by 
the SUIF compiler is the first input to the mapping 
algorithm, with the extra information concerning the 
data reuse among operations. We call this graph Data 
Dependence Reuse Graph (DDRG). The second input 
to the mapping phase is the CGRA description which 

is described in terms of a graph, called CGRA Graph. 
By taking these two inputs, the modulo scheduling 
algorithm produces the configuration to the CGRA. 

4.1 Mapping Algorithm 
The proposed modulo scheduling algorithm is 

based on the two stage hierarchical reduction 
technique described in [11], which can be applied to 
VLIW processors. This approach was changed 
properly so as to be applied efficiently in a CGRA 
architecture. Moreover, the scheduling, register 
allocation and spilling phase are performed in a single 
step as it was done for the first time in modulo 
scheduling (for VLIWs processors) in [12]. 
Additionally, for the variable spilling a similar 
approach as in [12] was followed. 

As shown in Fig.3, the first input to the mapping 
algorithm is the DDRG. The DDRG is generally a 
cyclic directed graph G(V, E, ER), where: V is the set 
of DDRG nodes representing the operations of the 
loop body. Each DDRG node is annotated with the 
type of operation, its priority and the memory 
operations it requires. E is the set of data edges 
showing data dependencies among the operations. 
Each dependence edge E is annotated with the type of 
dependence as well as with the dependence distance 
[9]. Finally, ER are non-directional edges showing 
when data reuse exists among the DDRG nodes. The 
ER edges are further annotated with the names of 
variables that are common to the operations that 
connect and the data reuse dependence distance. The  
data reuse dependence distance equals the number of 
iterations between subsequent uses of the common 
variable. 

The CGRA graph is the second input to the 
mapping phase. The CGRA graph is an undirected 
graph, GA( V, EI ) where V is the set of CGRA‘s PEs 
and EI  the interconnections among them. The 
CGRA’s description includes also parameters, like the 
PEs’ register file size, the memory buses to which 
each PE is connected, the bus bandwidth, the scratch-
pad’s memory access times and the CGRA’s resource 
reservation record. The latter one records the 
reservations performed and has the structure of a 
modulo reservation table [13]. 

The algorithm firstly identifies the dependence 
cycles and it condenses them to a single node building 
the condensed DDRG which is acyclic. Next, the 
priorities of the operations in the condensed DDRG 
are estimated. The priority of an operation equals its 
height [14]. However in case where two operations 
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have the same height the operation with the smallest 
value of mobility [14] is considered first in the 
scheduling phase. Afterwards, the initiation interval is 
calculated as II = max(IIdep,IIrec) [13], where IIdep is the 
initiation interval imposed by the dependence 
constraints while IIrec is the initiation interval imposed 

by the resource constraints. Subsequently, the data 
mapping is initialized. At this point the algorithm 
places the live-in and live-out variables in the scratch-
pad memory while the computations’ intermediate 
variables are assumed to be stored at the PE where 
they will be generated. 
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Figure 3.  Mapping Algorithm 

After the scheduler’s initialization phase (Fig.3), 
the mapping algorithm iterates for scheduling all 
operations one by one, scheduling each time, from the 
ready to execute operations the one which has the 
highest priority. The operations are considered ready 
to execute when all DDPs with zero dependence 
distance are scheduled. The dependence cycles have 
higher priority from the single operations since they 
require more resources to be scheduled and the 
initiation interval is heavily influenced by them.  

Afterwards, the PE where the operation will be 
executed is determined. The PE selection for executing 
an operation, and the way the input operands are 
fetched to the specific PE will be referred to hereafter 
as a Place Decision (PD) for that specific operation. A 
set of costs which is described in section VI, is used 

for identifying an efficient PD for executing each 
operation. 

In the next step, the actual scheduling of the 
operation takes place. The scheduling of an operation 
finishes normally if its execution satisfies the data 
dependences and if there is no resource conflict with 
the already scheduled operations. Depending on the 
availability of resources different actions are 
performed by the scheduler (Fig.3). In case where the 
register file size inside the PEs is not adequate for 
finding a valid execution time slot for an operation in 
the CGRA the algorithm spills the appropriate 
variables for scheduling the operation. The algorithm 
spills the appropriate variables using the heuristics 
applied in [12]. Then, the algorithm backtracks to the 
operation which fetches the variable for introducing 
the necessary store operation and resumes the 
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scheduling process. If there are no variables left to be 
spilled, the algorithm fails for the current initiation 
interval and the scheduling phase restarts with an 
increased value of the initiation interval by one. 
Additionally, in case where some conflict occurs in 
respect to some other resource or in case where 
dependences are violated, the mapping algorithm 
increases the initiation interval by one and restarts the 
scheduling process. 

4.2 Mapping Costs 
For finding an efficient PD for each operation, a 

set of costs  was employed. The algorithm for each 
operation calculates the costs and examines its 
schedulability for a possible execution to all CGRA’s 
PEs and chooses the most efficient PD. The value for 
each cost depends on the PE where the operation is 
executed. The first one, called delay cost, refers to the 
operation’s earliest possible schedule time if it is 
placed for execution to a certain PE. This cost depends 
both from the routing delay as well as from the 
availability of resources. The second is called 
interconnection cost and equals the number of 
interconnections utilized for transferring the data reuse 
values. The third one is called memory cost and equals 
the number of memory accesses required for each 
operation. Finally, we have introduced the PE 
utilization factor which is defined as the ratio of the 
cycles where a PE is occupied divided by the initiation 
interval. In our previous work [7] we describe in detail 
how the costs are calculated. Moreover, there are two 
ways of accessing a variable that is present both in the 
CGRA and the scratch pad memory. We follow the 
procedure described in [7] to identify which of the two 
ways is the most beneficial. 

When the way of accessing the data reused values 
is determined the selected PD for executing the 
operation is the one with the minimum delay cost. If 
there are multiple PDs with the same delay cost the 
one that minimizes the memory cost is selected. In 
case where there are identical PDs in respect to the 
two aforementioned costs the one with the minimum 
interconnection cost is adopted. Finally, if there are 
identical PDs in respect to these three costs the one 
with the minimum value of PE Utilization Factor is 
chosen. 

5 Experimental Results 
In this section, we present the experimental results 

from applying the proposed mapping methodology 
steps on a representative CGRA architecture. We have 
developed in C++ a prototype compiler framework 

that realizes our mapping algorithm. The experimental 
setup considers a 2D CGRA of 16 PEs connected in a 
4x4 array. The PEs are directly connected to all other 
PEs in the same row and same column, as in a 
quadrant of Morphosys [8]. Each PE is assumed to 
have a register file of size 16 words. There is one FU 
in each PE that can execute any operation in one clock 
cycle. The interconnect delay on direct connection 
among the PEs is 0 cycles. Also, two buses per row are 
dedicated for transferring data to the PEs from the 
scratch-pad memory while, each bus can transfer one 
word per cycle. Additionally, we assume that the 
CGRA’s context caches have size of 16 context words. 

Table 1. Benchmarks’ characteristics 

 
We have used 7 DSP applications taken from the 

TI benchmark suite [15]. Their characteristics are 
given in Table 1. More specifically, the second column 
gives the number of operations in the application’s 
loop body, the third one refers to the times that the 
applications’ loops have been unrolled, the fourth one 
refers to the number of iterations of the applications’ 
loops, while the fifth one contains a brief description 
for each application. These algorithms are 
characterized by high data transfer rate between the 
CGRA and the memory. Moreover, a considerable 
amount of data reuse opportunities exists. Thus, they 
can be considered as representative testbench for 
evaluating our approach. Finally, in order to delineate 
the impact of the memory access latency to the 
performance and operation parallelism we assume for 
our measurements that the memories access latencies 
are constant for each scenario. 

From Fig.4 it is deduced that considerable 
improvements were achieved by the application of our 
scheduling technique. On average, performance is 
improved by 38% if we consider all scenarios of the 
memory access latency. Additionally, for the 
considered set of benchmarks the improvements have 
proven to be independent from the memory access 
latency. Hence, applications which are characterized 
by high data transfer rate and a respective amount of 
data reuse opportunities exhibit the same behaviour in 
performance for the different scenarios of the memory 
access latency. However, as we have experimentally 

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006         664



investigated this is not the case for algorithms with 
other characteristics. In this paper, we have omitted 
such an exploration due to space limitations. 
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Figure 4. Performance in respect to memory latency 

Finally, Fig.5 illustrates the impact of the register 
file size on the average value of IPC with and without 
exploiting the data reuse opportunities. The average 
value of IPC for small values of the register file size 
when data reuse opportunities are exploited drops 
faster than the case where they are not exploited. This 
is explained as follows: When data reuse opportunities 
are exploited more data values are stored in the DFM 
and this increases the possibility of a storage 
congestion state. The spilling of variables that 
inevitably happens, burdens the buses with additional 
memory accesses and this reduces the operation 
parallelism due to bus conflicts.  
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Figure 5. Average IPC in respect to PEs’ register file 

size 
Also, for small register files sizes the data reuse 

exploitation case tend to behave similarly in respect to 
performance with the case where data reuse 
opportunities are not exploited. This is expected since 
the optimization performed by the application of our 
methodology is based on the ability of the DFM to 

store and route data reused values. However, as it is 
shown even with a small register file significant 
improvements can be achieved. 

6 Conclusions 
It is deduced that our mapping approach achieved 

to improve the performance along with the operation’s 
parallelism by exploiting the data reuse opportunities 
for reducing the memory fetches. Additionally we 
have tried to quantify these improvements in respect to 
important architecture characteristics such as the 
memory latency, and the register file size. 
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