
Optimized Mapping for enchancing the operation parallelism in Coarse-Grained
Reconfigurable Arrays

GREGORY DIMITROULAKOS 1, MICHALIS D. GALANIS2, COSTAS E. GOUTIS3

VLSI Design Laboratory, Electrical & Computer Eng. Dept., University of Patras, Greece

Abstract: It is widely known that bandwidth limitations degrade parallel systems’ performance. This paper
presents a mapping methodology for coarse-grain reconfigurable arrays which alleviates the bandwidth bottleneck
by exploiting the processing elements interconnection network for transferring values with data reuse
opportunities. A novel mapping algorithm is also proposed that uses a resource-aware modulo scheduling
technique. From the application of the proposed mapping approach, significant improvements in performance
were achieved while we have also quantified these improvements in respect to crucial architecture parameters
such as the memory latency and the register file size. For this reason, our methodology targets on a parametric
architecture template which can model a large number of existing architectures of this kind.

Key-Words: - Reconfigurable embedded systems, Coarse-grain reconfigurable array, operation parallelism,
mapping, scheduling, data bandwidth optimization.

1. Introduction
Coarse-grain reconfigurable architectures have been

proposed for accelerating loops in several scientific
domains' in embedded systems. These architectures
combine the high performance of ASICs with the
flexibility of microprocessors. Coarse-grain
reconfigurable architectures consist of a large number
of Processing Elements (PEs) connected with a
configurable interconnect network. This work focuses
on architectures where the PEs are organized in a 2-
Dimensional (2D) array and they are connected with
mesh-like reconfigurable networks [1] and [2]. In this
paper, these architectures are called Coarse-Grain
Reconfigurable Arrays (CGRAs). This type of
reconfigurable architecture is increasingly gaining
interest because it is simple to be constructed and it can
be scaled up, since more PEs can be added to the mesh-
like interconnect. Also, their coarse granularity greatly
reduces the delay, power and configuration time
relative to an FPGA device at the expense of flexibility.

It is widely known that parallel operation execution
in parallel systems generates a respective increase in
memory accesses. Since the memory interface provides
a limited access bandwidth, the applications
performance cannot be that high as the parallel system
capabilities promise. This problem is known as the
memory bandwidth bottleneck [3] and restraints the
exploitation of the inherent parallelism. Thus, a
mapping methodology to CGRAs for reducing the
memory bandwidth is required.

This paper presents a memory-aware mapping
methodology for CGRAs that attempts to minimize the
data memory bandwidth requirements by exploiting
applications’ data reuse opportunities and the

architecture’s foreground memory. The high
bandwidth Distributed Foreground Memory (DFM)
which is constituted from the PEs’ register files and
the interconnections among them is exploited for the
purpose of relieving the external memories from the
data transfer burden. In this way more operations
which require memory accesses can be run in parallel.
Additionally, accessing data from the foreground
memory is generally faster than accessing data from
the external memory. Hence, by increasing parallelism
and reducing the average memory access time, the
performance is increased. A novel mapping algorithm
is also proposed that uses a modulo scheduling
technique in which the binding, routing, and
scheduling phases are considered together and they are
steered by a set of costs. The experimental results
showed that performance can be improved a lot from
our mapping approach. Moreover, the experimental
results quantified the impact of the architecture’s
parameters (memory latency and register file size) on
performance and Instructions Per Cycle (IPC) for a
representative set of DSP applications.

The rest of the paper is organized as follows:
section II describes the related work, while section III
presents the considered architecture template. Section
IV describes the proposed mapping methodology while
Section V our mapping algorithm. Section VI describes
the mapping costs. The experimental results are
presented in section VII. Finally, conclusions are
outlined in section VIII.

2. Related Work
Although several CGRA architectures have been

proposed in the past few years [1]-[2], only a few

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 660

methodologies ([4]-[7]) have been proposed for
tackling the memory bandwidth bottleneck. None of
these have illustrated how the architecture parameters
affect the performance improvements. Furthermore,
they haven’t considered the case where the foreground
storage size is limited. Our methodology encounters as
well the case where the foreground storage size is
limited using variable spilling.

In [4] a CGRA architecture was presented. For
reducing the average memory access time, the mapping
methodology uses a global register file for storing
frequently reused data values. However, the single bus
(rDPA bus) which transfers data from the global
register file to the PEs does not increase the available
bandwidth as it is the case when the DFM is exploited.

The PACT-XPP [2] is a hierarchical array of
coarse-grain Processing Array Elements. A series of
vertical and horizontal buses establish communication
among the PEs while for storing the intermediate data
values shared memory banks exist on the left and the
right side of each array’s row. To reduce the number of
memory accesses, the compiler [5] only reads one
element per iteration and generates shift registers to
store the data reuse values when array references inside
loops read subsequent element positions.

In [6] a generic template for a wide range of
CGRAs was presented. A three-level mapping
algorithm is used to generate loop pipelines fit into the
CGRA. First, on the PE-level mapping stage,
microoperation trees are mapped to single PEs without
the need of reconfiguration. Then the PE-level
mappings are grouped together on line-level in such a
way, that the number of required memory accesses not
exceed the capacity of the memory interface belonging
to the line. On the plane-level phase, the line-level
mappings are put into the 2D array.

In [7] we had proposed a list scheduling technique
to reduce the data transfer bottleneck by using the
DFM. The current work achieves better improvements
with the proposed modulo scheduling technique.
Hence, we consider our current work as an enhanced
version of our previous work.

3. Generic Architecture Template
In this section, the generic reconfigurable

architecture template to which our methodology targets
is presented. It is parametric and it is based on
characteristics found in the majority of CGRAs ([1]
and [2]) so as for our methodology to be retargetable
and representative for most CGRA architectures. It
consists of 4 basic parts (Fig.1): the PEs organized in a
2D interconnect network, the configuration memory

and the memory interface which includes the buses,
scratch-pad memory and the main data memory.

In this template, each PE contains one Functional
Unit (FU), which it can be configured to perform word-
level operations, identical to the ones supported by the
operators of the C language (ALU, shifts e.t.c.). For
storing intermediate values and values fetched from
memory, a register file exists inside a PE. Each register
file is a rotating one for realizing the register renaming
mechanism which is necessary for modulo scheduling.
Moreover, each FU accepts input data that can come
from three different sources: a) from the same PE, b)
from another PE and c) from the memory buses. The
output of each FU can be routed to other PEs through
the register file. Also, a context cache inside each PE
stores context words that determine, for each PE, how
the FU, the storage unit and the communication with
neighbouring PEs is configured.

Configuration
memory

Main data
memory

Scratch Pad M
em

ory

PE

Figure 1. CGRA architecture template

The CGRA’s memory interface consists of a
scratch-pad memory , the memory buses and the main
memory module as shown in Fig. 1. The PEs residing
in a row, share a common bus connection to the
scratch-pad memory (Fig.1). This also happens in
popular CGRA architectures like [8]. The scratch-pad
memory is located between the array of the PEs and the
main memory, and provides the array with the required
data bandwidth. Finally, the configuration memory of
the CGRA stores the whole configuration for setting up
the CGRA for executing the application’s loops. The
context caches inside PEs are used for the fast
reconfiguration of the CGRA.

4. Mapping Methodology
Fig.2 shows the structure of the developed

mapping methodology for CGRAs. The input is the
application’s description in C language. The first
methodology step concerns the application of source
level code transformations for increasing the locality
of memory references as described in [3]. In this way,
for a given size of DFM more data reused values can
exploit it instead of using the buses. Afterwards, the

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 661

loop normalization transformation [9] is utilized for
normalizing the candidate loops. Also, loop unrolling
is performed for increasing the ILP in the mapping
phase. Since the unlimited unrolling can lead to
resource congestion situations a feedback in our
methodology script refers to the exploration performed
for finding the best value of the unroll factor in terms
of the ILP.

For creating the code’s Intermediate
Representation (IR) we have utilized the front-end of
the SUIF2 compiler infrastructure [10]. We have used
existing and we have developed new SUIF2 passes for
performing analysis and transformations on the
application’s loops. More specifically, data-flow
analysis is used to identify live-in and live-out
variables and data dependence analysis to determine
the data dependencies and data reuse opportunities.
Also, transformations like dead code elimination,
common sub-expression elimination and if-conversion
transformations have also been utilized. Moreover, to
create the Data Dependence Graph (DDG) we
represent the application’s loop in static single
assignment form to minimize the Anti- and Output
dependences. The considered analysis and
transformations flow are enclosed in the dashed line of
Fig.2.

Source Level
Trafos for
Enhancing

Locality

Loop
Normalization

SUIF 2

Analysis & Trafos

C Input

SUIF2 MIR

DDRG

Mapping to CGRACGRA
Description

Configuration
of the CGRA

Loop Unrolling

Figure 2. Mapping Methodology

Finally, the DDG of the loop body produced by
the SUIF compiler is the first input to the mapping
algorithm, with the extra information concerning the
data reuse among operations. We call this graph Data
Dependence Reuse Graph (DDRG). The second input
to the mapping phase is the CGRA description which

is described in terms of a graph, called CGRA Graph.
By taking these two inputs, the modulo scheduling
algorithm produces the configuration to the CGRA.

4.1 Mapping Algorithm
The proposed modulo scheduling algorithm is

based on the two stage hierarchical reduction
technique described in [11], which can be applied to
VLIW processors. This approach was changed
properly so as to be applied efficiently in a CGRA
architecture. Moreover, the scheduling, register
allocation and spilling phase are performed in a single
step as it was done for the first time in modulo
scheduling (for VLIWs processors) in [12].
Additionally, for the variable spilling a similar
approach as in [12] was followed.

As shown in Fig.3, the first input to the mapping
algorithm is the DDRG. The DDRG is generally a
cyclic directed graph G(V, E, ER), where: V is the set
of DDRG nodes representing the operations of the
loop body. Each DDRG node is annotated with the
type of operation, its priority and the memory
operations it requires. E is the set of data edges
showing data dependencies among the operations.
Each dependence edge E is annotated with the type of
dependence as well as with the dependence distance
[9]. Finally, ER are non-directional edges showing
when data reuse exists among the DDRG nodes. The
ER edges are further annotated with the names of
variables that are common to the operations that
connect and the data reuse dependence distance. The
data reuse dependence distance equals the number of
iterations between subsequent uses of the common
variable.

The CGRA graph is the second input to the
mapping phase. The CGRA graph is an undirected
graph, GA(V, EI) where V is the set of CGRA‘s PEs
and EI the interconnections among them. The
CGRA’s description includes also parameters, like the
PEs’ register file size, the memory buses to which
each PE is connected, the bus bandwidth, the scratch-
pad’s memory access times and the CGRA’s resource
reservation record. The latter one records the
reservations performed and has the structure of a
modulo reservation table [13].

The algorithm firstly identifies the dependence
cycles and it condenses them to a single node building
the condensed DDRG which is acyclic. Next, the
priorities of the operations in the condensed DDRG
are estimated. The priority of an operation equals its
height [14]. However in case where two operations

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 662

have the same height the operation with the smallest
value of mobility [14] is considered first in the
scheduling phase. Afterwards, the initiation interval is
calculated as II = max(IIdep,IIrec) [13], where IIdep is the
initiation interval imposed by the dependence
constraints while IIrec is the initiation interval imposed

by the resource constraints. Subsequently, the data
mapping is initialized. At this point the algorithm
places the live-in and live-out variables in the scratch-
pad memory while the computations’ intermediate
variables are assumed to be stored at the PE where
they will be generated.

DDRG

Estimate Initiation
Interval II

Find Ready To
Execute Operations

Adequate resources
found

Storage
Congestion

NO

Increase Initiation
Interval II

Spill Variable

YES

Restart
Scheduler

Resource
Congestion

Or
Dependence

Violation

YES

Exctract CGRA
Configuration

Build Condensed DDRG

Assign Priorities

NO

Calculate Costs

Identify efficient
place decistion

Scheduler
Initialization Phase

Perform Initial Data
Mapping

Are there
any

dependence
cycles
ready?

YES

NO

Schedule dependence
cycle with the highest

priority
Schedule regular

operation with the
highest priority

NO

NO
Does the
regular

operation
belong to a
dependence

cycle ?

YES

YES

Perform
Backtracking

Are there
any

variables
to spill?

Are there
any

operations
left

unscheduled
?

Are all the
dependence

cycle’s
operations
scheduled?

Schedule
operation

Figure 3. Mapping Algorithm

After the scheduler’s initialization phase (Fig.3),
the mapping algorithm iterates for scheduling all
operations one by one, scheduling each time, from the
ready to execute operations the one which has the
highest priority. The operations are considered ready
to execute when all DDPs with zero dependence
distance are scheduled. The dependence cycles have
higher priority from the single operations since they
require more resources to be scheduled and the
initiation interval is heavily influenced by them.

Afterwards, the PE where the operation will be
executed is determined. The PE selection for executing
an operation, and the way the input operands are
fetched to the specific PE will be referred to hereafter
as a Place Decision (PD) for that specific operation. A
set of costs which is described in section VI, is used

for identifying an efficient PD for executing each
operation.

In the next step, the actual scheduling of the
operation takes place. The scheduling of an operation
finishes normally if its execution satisfies the data
dependences and if there is no resource conflict with
the already scheduled operations. Depending on the
availability of resources different actions are
performed by the scheduler (Fig.3). In case where the
register file size inside the PEs is not adequate for
finding a valid execution time slot for an operation in
the CGRA the algorithm spills the appropriate
variables for scheduling the operation. The algorithm
spills the appropriate variables using the heuristics
applied in [12]. Then, the algorithm backtracks to the
operation which fetches the variable for introducing
the necessary store operation and resumes the

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 663

scheduling process. If there are no variables left to be
spilled, the algorithm fails for the current initiation
interval and the scheduling phase restarts with an
increased value of the initiation interval by one.
Additionally, in case where some conflict occurs in
respect to some other resource or in case where
dependences are violated, the mapping algorithm
increases the initiation interval by one and restarts the
scheduling process.

4.2 Mapping Costs
For finding an efficient PD for each operation, a

set of costs was employed. The algorithm for each
operation calculates the costs and examines its
schedulability for a possible execution to all CGRA’s
PEs and chooses the most efficient PD. The value for
each cost depends on the PE where the operation is
executed. The first one, called delay cost, refers to the
operation’s earliest possible schedule time if it is
placed for execution to a certain PE. This cost depends
both from the routing delay as well as from the
availability of resources. The second is called
interconnection cost and equals the number of
interconnections utilized for transferring the data reuse
values. The third one is called memory cost and equals
the number of memory accesses required for each
operation. Finally, we have introduced the PE
utilization factor which is defined as the ratio of the
cycles where a PE is occupied divided by the initiation
interval. In our previous work [7] we describe in detail
how the costs are calculated. Moreover, there are two
ways of accessing a variable that is present both in the
CGRA and the scratch pad memory. We follow the
procedure described in [7] to identify which of the two
ways is the most beneficial.

When the way of accessing the data reused values
is determined the selected PD for executing the
operation is the one with the minimum delay cost. If
there are multiple PDs with the same delay cost the
one that minimizes the memory cost is selected. In
case where there are identical PDs in respect to the
two aforementioned costs the one with the minimum
interconnection cost is adopted. Finally, if there are
identical PDs in respect to these three costs the one
with the minimum value of PE Utilization Factor is
chosen.

5 Experimental Results
In this section, we present the experimental results

from applying the proposed mapping methodology
steps on a representative CGRA architecture. We have
developed in C++ a prototype compiler framework

that realizes our mapping algorithm. The experimental
setup considers a 2D CGRA of 16 PEs connected in a
4x4 array. The PEs are directly connected to all other
PEs in the same row and same column, as in a
quadrant of Morphosys [8]. Each PE is assumed to
have a register file of size 16 words. There is one FU
in each PE that can execute any operation in one clock
cycle. The interconnect delay on direct connection
among the PEs is 0 cycles. Also, two buses per row are
dedicated for transferring data to the PEs from the
scratch-pad memory while, each bus can transfer one
word per cycle. Additionally, we assume that the
CGRA’s context caches have size of 16 context words.

Table 1. Benchmarks’ characteristics

We have used 7 DSP applications taken from the

TI benchmark suite [15]. Their characteristics are
given in Table 1. More specifically, the second column
gives the number of operations in the application’s
loop body, the third one refers to the times that the
applications’ loops have been unrolled, the fourth one
refers to the number of iterations of the applications’
loops, while the fifth one contains a brief description
for each application. These algorithms are
characterized by high data transfer rate between the
CGRA and the memory. Moreover, a considerable
amount of data reuse opportunities exists. Thus, they
can be considered as representative testbench for
evaluating our approach. Finally, in order to delineate
the impact of the memory access latency to the
performance and operation parallelism we assume for
our measurements that the memories access latencies
are constant for each scenario.

From Fig.4 it is deduced that considerable
improvements were achieved by the application of our
scheduling technique. On average, performance is
improved by 38% if we consider all scenarios of the
memory access latency. Additionally, for the
considered set of benchmarks the improvements have
proven to be independent from the memory access
latency. Hence, applications which are characterized
by high data transfer rate and a respective amount of
data reuse opportunities exhibit the same behaviour in
performance for the different scenarios of the memory
access latency. However, as we have experimentally

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 664

investigated this is not the case for algorithms with
other characteristics. In this paper, we have omitted
such an exploration due to space limitations.

0

500

1000

1500

2000

2500

3000

3500

4000

fc
px

m
at

m
ul ff
t iir

w
av

e_
ve

r

w
av

e_
ho

r

la
ta

na
l

C
yc

le
s

0

500

1000

1500

2000

2500

3000

fc
px

m
at

m
ul ff
t iir

w
av

e_
ve

r

w
av

e_
ho

r

la
ta

na
l

C
yc

le
s M em ory L aten cy = 3 cycles M em ory L aten cy = 4 cyc les

0
10 0
20 0
30 0
40 0
50 0
60 0
70 0
80 0
90 0

1000

fc
px

m
at

m
ul ff
t

iir

w
av

e_
ve

r

w
av

e_
ho

r

la
ta

na
l

M em ory L aten cy = 1 cyc le

C
yc

le
s

0
200
400
600
800

100 0
120 0
140 0
160 0
180 0

fc
px

m
at

m
ul ff
t ii
r

w
av

e_
ve

r

w
av

e_
ho

r

la
ta

na
l

C
yc

l e
s M em ory L aten cy = 2 cycles2000

W ith out R euse E xp loitation W ith R euse E xp loitation

32 ,3%

49%

33,3%

32 ,4%

41 ,6%

32,4%

23 ,6% 32 ,%

49 ,6%

28%

24,8%

43 ,4%

65 ,6%

22,2%

33%

49,7%

31%

27,6%

43 ,7%

66%

24,1% 33,2%

49,7%

33 ,3%

29%

43,9%

66,1%

24 ,8%

Figure 4. Performance in respect to memory latency

Finally, Fig.5 illustrates the impact of the register
file size on the average value of IPC with and without
exploiting the data reuse opportunities. The average
value of IPC for small values of the register file size
when data reuse opportunities are exploited drops
faster than the case where they are not exploited. This
is explained as follows: When data reuse opportunities
are exploited more data values are stored in the DFM
and this increases the possibility of a storage
congestion state. The spilling of variables that
inevitably happens, burdens the buses with additional
memory accesses and this reduces the operation
parallelism due to bus conflicts.

0

2

4

6

8

10

12

14

2 3 4 6 8 10 12 14 16

NO REUSE

REUSE

A
ve

ra
ge

 IP
C

Local RAM Size (Storage Locations/PE)

Memory Latency = 1 cycle

0

2

4

6

8

10

12

14

2 3 4 6 8 10 12 14 16

A
ve

ra
ge

 IP
C

Local RAM Size (Storage Locations/PE)

Memory Latency = 2 cycles

NO REUSE

REUSE

0

2

4

6

8

10

12

14

2 3 4 6 8 10 12 14 16

A
ve

ra
ge

 IP
C

Local RAM Size (Storage Locations/PE)

NO REUSE

REUSE

Memory Latency = 3 cycles

0

2

4

6

8

10

12

14

2 3 4 6 8 10 12 14 16

A
ve

ra
ge

 IP
C

Local RAM Size (Storage Locations/PE)

REUSE

NO REUSE

Memory Latency = 4 cycles

Figure 5. Average IPC in respect to PEs’ register file

size
Also, for small register files sizes the data reuse

exploitation case tend to behave similarly in respect to
performance with the case where data reuse
opportunities are not exploited. This is expected since
the optimization performed by the application of our
methodology is based on the ability of the DFM to

store and route data reused values. However, as it is
shown even with a small register file significant
improvements can be achieved.

6 Conclusions
It is deduced that our mapping approach achieved

to improve the performance along with the operation’s
parallelism by exploiting the data reuse opportunities
for reducing the memory fetches. Additionally we
have tried to quantify these improvements in respect to
important architecture characteristics such as the
memory latency, and the register file size.

References
[1] R. Hartenstein, “A decade of reconfigurable
computing: A visionary retrospective”, in Proc. of
ACM/IEEE DATE ’01, pp. 642-649, 2001.
[2] Pact Corporation “The XPP white Paper”,
Technical report, www.pactcorp.com, 2005.
[3] F. Catthoor et al., “Data Accesses and Storage
Management for Embedded Programmable
Processors”, Kluwer Academic Publishers, 2002.
[4] Reiner W. Hartenstein and Rainer Kress, “A
Datapath Systhesis System for the reconfigurable
datapath architecture”, ASP-DAC,Sep 1995
[5] Joao M.P Cardose and Markus Weinhardt,”XPP-
VC: A Compiler with temporal partitioning for the
PACT-XPP architecture”,FPL 02
[6] J. Lee, K. Choi and Nikil D. Dutt “Compilation
Approach for Coarse-Grained Reconfigurable
Architectures”, in IEEE Design & Test of Computers,
vol. 20, no. 1, pp. 26-33, Jan.-Feb., 2003.
[7] G. Dimitroulakos, M.D Galanis, C.E. Goutis,
“Alleviating the Data Memory Bottleneck in coarse
grained reconfigurable arrays”, Proc. IEEE ASAP
Conf. July 2005 pp 161-168
[8] H. Singh et al., “MorphoSys: An Integrated
Reconfigurable System for Data-Parallel and
Communication-Intensive Applications”, in IEEE
Trans. on Computers, vol. 49, no. 5, pp. 465-481, May
2000.
[9] K. Kennedy and R. Allen, “Optimizing Compilers
for modern architectures”, Morgan Kauffman
Publishers, 2002.
[10] SUIF2 compiler,
http://suif.stanford.edu/suif/suif2/, 2006.
[11] M.S. Lam, “Software pipelining: An effective
scheduling techniquefor VLIW machines”,in Proc of
SIGPLAN 88,pp 318-328.
[12] Javier Zalamea, Josep Llosa, Eduard Ayguade
and Mateo Valero, “Register Constrained Modulo
Scheduling”, in IEEE Trans. on Par. and Distr. Syst.,
Vol 15, No 5, May 2004, pp 417-430
[13] B.R. Rau, ”Iterative Modulo Scheduling: An
algorithm for software pipelining loops”, Proc. 27th
Ann. Int'l Symp. Microarchitecture, pp. 63-74, San
Jose, Calif., Dec. 1994.
[14] G. De Micheli, “Synthesis and Optimization of
Digital Circuits”, McGraw-Hill, International
Editions, 1994.
[15] Texas Instruments Inc., www.ti.com, 2006.

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 665

http://www.pactcorp.com/
http://suif.stanford.edu/suif/suif2/
http://doi.ieeecomputersociety.org/10.1109/MICRO.1994.717412
http://doi.ieeecomputersociety.org/10.1109/MICRO.1994.717412
http://doi.ieeecomputersociety.org/10.1109/MICRO.1994.717412
http://www.ti.com/

	1. Introduction
	2. Related Work
	3. Generic Architecture Template
	4. Mapping Methodology
	4.1 Mapping Algorithm
	4.2 Mapping Costs
	5 Experimental Results
	
	6 Conclusions
	References

