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Abstract. - In this paper, we address the Active Noise Cancellation (ANC) as a non-linear control problem. The
controller of system is designed, using a multi layer perceptron neural network. The neural weights are adapted
based on minimization of the measured noise at silence region. We propose a new method based on Particle Swarm
Optimization (PSO) to determine the network weights in an adaptive manner.

The modification of PSO algorithm was conducted to the noise cancellation system, in order to handle sudden
change of the input noise characteristics. In contrast to the conventional gradient descent type algorithms, the
proposed method does not require the estimation of the secondary path parameters. This not only reduces the
computational complexity of system, it also improves the stability of ANC system, especially where the secondary
path requires a non-linear model. Another advantage of the proposed system is that the adaptation algorithm needs
no change when the structure of controller is modified.
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1 Introduction

Acoustic noise cancellation is essential from the point
of view of health. Long exposures to high level of
noise causes serious health hazards to human being.
Active noise control technique (ANC) reduces noise
based on the destructive interference of propagating
acoustic waves. The basic idea of ANC is to generate
a signal (secondary noise), that is equal to a
disturbance signal (primary noise) in amplitude and
frequency, but has opposite phase. These two signals
results in the cancellation of the primary (unwanted)
noise in the silence area [1].

Figure 1 shows the block diagram of an adaptive filter
which is basis for ANC.

The acoustic noise signal x(n) generated at the source
(e.g. an engine or a shaker) propagates in primary path
with the transfer function p(z) and results noise

signal d(n) at silence area. This noise is reduced by
interfering signal y(n). The later signal is generated by
the appropriate controller output u(n) and sending it
through the secondary path with the transfer
function p,(z) .

The remaining difference noise e(n) is measured by a
sensor (error microphone), and it is used to change
filter coefficients.
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Fig 1: ANC using an adaptive filter

The digital filter C(z) calculates its output by using a
reference x(n) and adjustable filter coefficients, or
weights. The filter coefficients are updated adaptively,
aiming to minimize the mean squared error of noise at
silence area.

FIR filters are widely used in ANC systems [1] but
linear controllers may not perform well in cases where
nonlinearities are found in ANC system. The use of
neural networks (NN) for Active control of nonlinear
systems has been reported in the literature [2].The
ability of an artificial neural network to perform some
desired task using the gradient descent based back-
propagation algorithm has been reported [3]. It would
seem likely, therefore, that such an
architecture/algorithm  combination  could be
employed to perform the previously mentioned
nonlinear active control tasks, where the necural
network would be trained to derive an output signal
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which would “cancel” the unwanted noise. As with
the linear filter based systems, however,
implementation of a gradient descent algorithm in an
adaptive feed-forward active control system is not
straightforward. Referring to Fig. 1, the reason for
complication is dependency of secondary path
between the control signal and the associated error
measurement. This transfer function incorporates the
frequency response characteristics of the control
actuator(s) and error sensor(s), as well as the response
characteristics of the structural /acoustic system which
separates them, including delays due to the finite
distance between source(s) and sensor(s). It is
intuitively obvious that the existence of this transfer
function must be taken into account in adaptive
control. This is a fact which is well documented in the
literature of both adaptive signal processing [4], and
active noise and vibration control [1], and recently
restated in regard to neural network based systems.
For the (most common) linear FIR filter-based active
noise or vibration control arrangement, this leads to a
version of the (most common) gradient descent-based
least mean square (LMS) algorithm referred to as the
filtered-x LMS algorithm [1], [5] , [6]. Stability is
maintained in this adaptive algorithm by “filtering”
the reference signal, which had been used in deriving
the control signal, through an estimate of the
secondary path transfer function before it is used by
the adaptive algorithm to update the weights in the
FIR filter. There are two major problems with using
these gradient descent type algorithms for nonlinear
filters: first, the robustness of stability for this
algorithm is strictly requires an accurate and fast
estimation of the secondary path, and second
nonlinear filters that use these algorithms are often
difficult to implement because of their computational
complexity.

In this paper we propose a method based on PSO
algorithm for extracting the weights of adaptive NN in
ANC system. As the main advantage, the proposed
algorithm does not require the estimation of the
secondary path, so there is a huge complexity
reduction compared with gradient descent algorithms.
This paper will focus on the active noise control
problem for non-linear response of an unknown
primary acoustic path. The primary path exhibits non-
linear distortion when the primary noise propagating
in a duct has high sound pressure [7].
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2 Particle swarm optimization

The particle swarm optimization (PSO) algorithm [8,
9] is an evolutionary computation technique, which is
inspired by social behavior of swarms. This approach
can be used for a wide range of applications with
specific requirement [10].

Similar to the other evolutionary algorithms, PSO is
initialized with a population of random solutions.
Each potential solution, call particles, flies in the D-
dimensional problem space with a velocity which is
dynamically adjusted according to the flying
experiences of its own and its colleagues. The location
of the ith particle and its velocity in tth iteration are
denoted by 3 (yand () respectively. The best

previous position (which giving the best fitness value)
of the ith particle is recorded and represented by
symbol  pbest, (personal best) and its location

represented as X peess . The index of the best pbest,

among all the particles is represented by the symbol
gbest (global best) and its location presented as Xgves: .

The particle swarm optimization concept consists of,
at each time step, changing the velocity and location
of each particle toward its Xpsesr , and Xebes
locations according to the equations (1) and (2),
respectively

V() =@v,(t=1)+ rc,(Fer . — %, (1)) + 0

r,c, ()_(,:gbest - ';C.i (t))
X, (1) =x,(t-1)+ v, (1) ()

Where ¢ is inertia weight, ¢, and ¢, are acceleration

constants, 7, and 7, are random parameter in the

range [0, 1]. The first term in equation (2) represents
the inertia of velocity at previous iteration; the second
part is the “cognition” part, which represents the
private thinking by itself; the third part is the “social”
part, which represents the cooperation among the
particles [11]. The steps of PSO algorithm is as
follows:

1- Set iteration counter t=1. Initialize a population
including “p” particles, the ith particle has random

location 3 () and random velocity y () in M

dimensional (where M is the number of filter
coefficients) space
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2- Evaluate the fitness for each particle
3- Compare the evaluated fitness of each particle with
its pbest . If current fitness is better than ppest , then

set the fitness value as the phest and its location as

the X peesr . Furthermore, if the particle fitness is

better than ghest , then set the fitness value as
gbest and its location as the Xgbes:

4- Change the velocity and location of the particle
according to the equations (2) and (3), respectively

5- t=t+1, go to step b until a stop criterion is met,
Usually a sufficiently good fitness value or exceeding
the number of iterations above predefined maximum
tmax, are used as the stop criterion

3 Adaptive PSO algorithm for ANC

The block diagram and the operation steps are shown
in Fig. 2 and 3 respectively. First we choose “P”
particles in an M-dimensional space (M denotes the
number of weights of NN) as random points (step 1 in
Fig 3). The location of each particle determines a
candidate MLP NN. The reference noise signal, x(n),
is filtered with a particle (MLP NN) at a time based
on the header equation in Fig.3 calculate the output of
MLP NN. The particles are selected rotationally after
every W samples of reference signal (Fig. 2). The

fitness of each particle (F{(s;) in Fig.2) is measured

from W samples of error signal e(k), obtained by the
microphone, in RMS sense (step 2 in Fig.3). Once all
the filters corresponding to the particles in population
are used, algorithm compares the evaluated fitness
value of each particle with its personal best ( pbest ).

If current fitness value is better than ppest , then it set
the current value as the ppest and the current location
as Xprest . Furthermore, if current is better than gbest ,
then set the current value as the gbest and the current
location as the Xgbes: (steps 3 and 4 in Fig.3).
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Fig.2 Block diagram of the single channel ANC using
PSO algorithm
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PSO Adaptive NN filter for ANC system

1. generation of particles as random points (p is
number of particles in search space) at iteration
t=0:

xi(1) =[C,(0),C,(1),.....C,(M —1)] I1<i<p
(M is number of neural network weights)

2. fitness evaluation of each particle:
2

F(s;)= 1/Wzle[ (n)
3. Compare the evaluatedn_f(';tness of each particle
with its pbest, :
If F(s,)> pbest,
(a) pbest,=F(s,)
(b) X phest  =x,(t)

4 . Compare the evaluated fitness of each particle
with  gbest :

If F(s,)> gbest
(a) gbest =F(s,)
(b) )?gbest = x[- (t)

5. Change the velocity and location of the particle
according to the equations (1) and (2)

6. go to step 2 and continue

Fig.3 operation steps of the adaptive PSO algorithms for
ANC system

After above comparison, PSO algorithm Change the
velocity and location of the particle according to the
equations (2) and (3) (step 5 in fig.3) and then go to
step 2 of algorithm for generating another iteration of
algorithm

The result of experiments using the original PSO
algorithm showed that the algorithm does not respond
properly to sudden changes in noise source
characteristics. It seems the algorithm traps in non-
optimal points based on global and personal memories
(gbest and pbest ). The result showed, particles
bounce around the gbest with low velocities. If a
sudden change in input noise parameters (frequency
or power) occurs, the algorithm failed to find global
optimum.

We modified the standard algorithm to overcome the
addressed problem. As we will see, the modified PSO
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is very successful in finding optimal solutions, even
when the change in input noise is significant. The
modification of PSO algorithm is as follow.
First we used gbest in the search space, as a sentry, to
test for changes in the noise source. For this purpose,
we introduce a new coefficient, A as follow:

if F(gbest (t))=a F(gbest (t-1)=
A=0

else if F(gbest (1)) < a F(gbest (¢t -1)) =
_ F(gbest (t -1)) — F(gbest (1))

N F (gbest (t — 1))

)

A

The above strategy shows that if the fitness of gbest

(sentry particle) at the current iteration is smaller than
this parameter in the previous iteration (e.g. the input
noise properties has been changed), A will have a
value between 0 and 1, depending on the input noise
change. So by inspecting A on each iteration of
algorithm, the significant changes in input noise are
detected. The parameter & controls the process in a
way that if change in input noise is moderate, the
standard PSO being used.

After detecting a significant change in the input noise,
the particles in population must forget their own
global memories to find the new global best ( gbest ).

To follow this idea, we decrease the fitness of
particles at the rate of a big evaporation constant, once
A shows a significant change. As a direct result of
this, other particles have chance to have the fitness
bigger than the previous gbest and pbest .

We also increase the velocity of particles after
detecting significant changes in the input noise to let
them search a bigger solution space for optimal
solution. We formulated this idea as follow and
perform it, on each iteration of algorithm:

if A > 0 then

(a) gbest = gbhest x T
a

pbesti = pbesti x T
(b) o = ¢ +nA

“4)

The parameter T is evaporation constant selected
between 0 and 1 and 77is a constant set to bigger than

1. Equation (4) shows that if the noise source changes
(A >0), the fitness of ghest and pbhest evaporated at
the rate of the T and also the velocity of particles
increase by 7A only in one iteration.
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4 The experimental results

We designed an ANC system with a non-linear model
in which a MLP neural network used as the adaptive
controller.

The neural network weights are updated using the
proposed PSO algorithm.

We simulated the noise cancellation process in the
above system and compared it with the results when
the filtered-x back-propagation (FX-BP) determines
the neural network weights.

In this simulation we modeled the input noise as
mixture of two components: a 200Hz sinusoidal signal
and a Gaussian white noise. This synthetic signal can
model properly the acoustic noise in industrial
environments.

Figs 4(a) and 5(a) show the process of noise
cancellation at the silence area for FX-BP and the
proposed method respectively.

The results are represented in frequency domain in
Figs 4(b) and 5(b). Before analyzing this results, we
need to explain that although the input noise has a
main component at 200Hz, when it pass through the
non-linear primary path, the second harmonic of
signal at 400Hz is also generated.

Figs 4(b) and 5(b) show that the proposed method
better cancel the noise component at 400Hz, than FX-
BP method.

The noise cancellation difference at this frequency is
about 10dB.

The results of cancellation at primary component
200Hz, is quiet similar for two methods.

A major superiority of the proposed algorithm to FX-
BP is robustness of the algorithm when the input noise
characteristics change significantly. As shown in Fig 6
where the input noise power was increased 12.5 times,
FX-BP algorithm fails to converge after the input
noise power increased (Fig 6(a)) where the proposed
method successfully converge to the new optimum
solution (Fig6 (b)).

5 Computational complexity of the

proposed algorithm

For the proposed algorithm, the number of addition
and multiplication for each updating of every
nonlinear filter coefficients (weights) are represented
in Table 1. L is the number of filter coefficients
(weights) and P is the number of particles in PSO
population. This is very low computational
complexity in compared with the gradient descent
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algorithms. In order to prove our claim, the volterra
and bilinear filters coefficients (weights) that is
presented in [12] are compared in Table 2. Our
method owes it simplicity to the fact that we don’t
change the filter coefficients (weights) for each input
samples; instead we update the coefficients The low
computational complexity of our algorithm is a major
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Fig. 4(a) Error signal for ANC system using FX BP algorithm
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Per
calculations | Number Number of Number of
of multiplications input
additions samples
equation 1 4LP 2LP WP
equation 2 Lp 0 WP
Total S5LP 2LP WP

Table 1. Computational complexity of PSO algorithm for
updating each nonlinear filter coefficients

Number Per
Algorithm/filter | of Number of | number
I, multiplication | of input
addition
samples
PSO/volterra 1600 640 250
FX-LMS/ 2080 4225 1
Volterra
PSO/bilinear 1600 640 250
FX-LMS/ 4289 4356 1
blinear

Table 2. Comparing computational complexity of PSO
with FX-LMS algorithm for volterra and bilinear filters
(L=64, P=5, W=50)

This makes the real time implementation possible.

6 Conclusions

A new adaptive PSO algorithm has been presented for
active noise control applications. The main advantage
of this type of algorithm is that it does not require
estimation of the secondary path estimation. Proposed
algorithm has smaller computational complexity
compared with gradient descent algorithms. Besides,
the convergence speed depends on the number of
particles, so small population produce fast
convergence but even less than the convergence speed
of the FX-BP algorithm.

An advantage associated with the PSO is that various

filter structures can be used with no change to the
adaptation algorithm, which allows quick selection of
appropriate filter structure for the problem in hand.
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