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Abstract: - A sliding mode stabilizer design for enhancement of the dynamic stability of a wind turbine 
generator supplying an infinite bus is presented. The dynamic compensation observer technique is applied to 
design the hyperplane in a sliding mode control. The salient feature of this technique is that only output 
information can be used as a feedback signal of a controller. In addition, this technique provides a systematic 
approach to obtain the control design specification, a robustness against system parameter variations as well as 
various loading conditions, and an enhancement of system dynamic performance against disturbances. 
Simulation study reveals that the proposed controller is not only able to damp power oscillations due to wind 
gust disturbances, but also very robust against various loading conditions and variations of system parameters. 
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1   Introduction 
The development of wind energy technology is 
growing rapidly throughout the world. As the oil 
price keeps increasing and the power demand also 
continues to rise, wind energy seems to become a 
new aspect to solve these problems. Wind energy 
provides many advantages to power system as it is a 
clean energy and it does not require a major redesign 
of the existing power system. However, the 
fluctuating nature of wind as well as the new 
generator types that are used in wind turbines, are 
the challenges that power system engineers 
encounters [1].  
     One of the areas that has been paid attentions by 
many researchers is the dynamic stability of the 
wind turbine generators [2-3]. The important aspect 
of the dynamic performance of the wind turbine 
generator is its effect on the dynamic stability of the 
system to which it is connected. The wind power 
generation unit should not contribute the dynamic 
instability of the power system. To improve system 
dynamic stability, many control theories have been 
adopted to design of power system stabilizers for a 
wind turbine system such as a proportional integral 
controller [4], a variable-structure stabilizer [5], etc. 
Among these schemes, a sliding mode control is one 
of advanced design methods. It offers the 
satisfactory attenuation performance against 
disturbance as well as the high robustness to a power 
system under various operating conditions and 
system uncertainties [6-7]. Nevertheless, the sliding 

mode controller is constructed by a state feedback 
control scheme. Accordingly, it is not easy to 
implement in practical system. Besides, the 
difficulty of switching gain setting in a hyperplane 
design is also an inevitable problem. To overcome 
these problems, a new technique for sliding mode 
control design is highly expected.  
     With the system where only output information 
of system is available, a hyperplane design based on 
a dynamic compensation observer [7] is applied to 
design a sliding mode stabilizer for a wind turbine 
generator in this paper. The main feature of this 
technique is that only output information can be 
used as a feedback signal of a controller. 
Additionally, the system robustness against various 
uncertainties such as system parameter variations, 
generating and loading conditions etc., can be 
guaranteed. Simulation studies in a single wind 
turbine generator infinite bus system insist that the 
proposed sliding mode control is not merely capable 
of damping low frequency oscillations, but also very 
robust to system uncertainties.  
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Fig.1 Single wind turbine generator infinite bus. 
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Fig.2 Block diagram of a linearized power system model with a dynamic compensation controller. 
 

 
Fig.3 Block diagram of a pitch change regulation. 

 
A wind turbine generator connected to an infinite bus 
[5] as shown in Fig.1 is used as a studied system. 
The linearized model of power system can be 
depicted in Fig.2. The block diagram of a pitch 
change regulation is shown in Fig. 3. Nomenclatures 
are given by 

δ - Rotor angle 
ω - Electrical speed 

mT - Mechanical input torque 

ex - Transmission line impedance 
       D - Damping constant of the generator 

M - Inertia constant of the generator 
AT - Time constant of the amplifier 

fdE - Field voltage 
'
qE - Transient EMF in q -axis 

FK - Stabilizer gain 

EK - Exciter gain 

ET - Time constant of the exciter  
 AK - Amplifier gain 

FT - Time constant of the stabilizer loop 
'

doT - Open circuit field time constant 
V - Wind speed 
θ - Blade pitch angle 

m
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     The state equation of a linearized system in Fig. 2 
can be expressed as 
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3 Design of Sliding Mode Stabilizer 

using Dynamic Compensation 
Observer 

The design of a sliding mode stabilizer based on a 
dynamic compensation observer [7] is divided into 2 
main parts; the system matrix partition and the 
hyperplane gains design. As demonstrated in Fig. 2, 
the speed deviation ∆ω which is an output signal 
from the system is used as a feedback signal of the 
sliding mode stabilizer and a reduced-order observer, 
to generate a control signal u . This signal is used to 
stabilize the system. 

 
 

3.1 The partition of system matrix 
The state equations (1) and (2) are expressed as 
 
                            x Ax Bu= +      (3) 
                            y Cx=        (4) 
 
where, n nA R ×∈  is a system matrix, n mB R ×∈ is an 
input matrix, p nC R ×∈ is an output matrix, nx R∈  is 
the state variables, mu R∈ is a control signal and 

pRy∈  is an output signal with m p n≤ < .  
      From (3), the system matrix A  is split into the 
following 
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Define r to be a dimension of 0
11A and 0r > . Then, 
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The pair 11 122( , )A A is controllable and the triple 

11 122 1( , , )A A C is stabilizable with respect to output 
feedback. As a result, the original systems (3) and 
(4) are reduced to the fictitious systems as  

 
                              11 122x A x A u= +              (10) 
                              1y C x=                            (11) 
 
The systems (10) and (11) are used to design sliding 
mode control. The signal y is an actual output 
feedback from the system which will be used as an 
input for the controller and the observer as depicted 
in Fig.2. 
 
3.2 Design of compensator variables and  
      hyperplane gains 
The design of dynamic compensator variables and 
hyperplane gains can be explained as follows: 
 
1) Specify a new damping ratio (ζ ) and a new real 
part of the eigenvalue corresponding to the power 
oscillation mode. 
2) Define a gain matrix 0 ( ) ( )n p r p mL R − − × −∈  so 
that 0 0 0

22 21A L A+ is stable.  Select 0
1L p= where 1p is 

a ( )n p r− − vector representing the desired poles 
of 0 0 0

22 21A L A+ .  The values of 1p  is usually real 
negative values. Define 2p as a ( )n m r− −  vector 

representing the desired poles of 11 122 1 2[ ]A A K K− . 
The values of 2p  may be real negative numbers. 
Adjust 2p to obtain 1 2[ ]K K by using a pole 
placement method.  
3) Define the reduced-order observer [8] for the 
system in (10) and (11) as  
 

                1 2z Hz D y D u= + +          (12) 
 
The compensator variables in (12) are obtained from 
 

           0 0 0
22 21H A L A= +      (13) 

                     0 0 0 0 0
1 122 22 22 21( )m mD A L A A L A L= + − +   (14) 

0
2 1221 1222D A L A= +       (15) 

 
The state feedback law is provided by 
 

0
1 2 1( ) Cu K z K K L y K z Ky= − − − = − −    (16) 

 
where the hyperplane gains K and CK are given by 
 

0
2 1K K K L= −       (17) 

                 1CK K=           (18) 
 
 
4   Simulation Study 
Based on system parameters [5], the operating point 
selected for the dynamic compensation design 
is ( , ) (1.0, 0.3)P Q = − pu. The system matrix A  and 
the input matrix B are given as 
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     From section 3.1, 8, 1, 2n m p= = =  and 5r =  
are obtained. The eigenvalues corresponding to the 
electromechanical oscillation mode are 
0.0735 1.91i± which are unstable. In order to acquire 
system stability, the new real part and the new 
damping ratio of these eigenvalues are specified at 

0.9−  and 0.57 , respectively. As a result, the 
matrices 11A  and 122A are calculated as 
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     To reach the desired specifications above, the 
value 1p is adjusted to be 75−  and 1 2[ ]K K are 
determined as [ ]0.0005 50− − , respectively. The 
hyperplane gains are calculated as 
 

50.0375K = − and 0.0005CK = −  (21) 
 
     According to equation (11), the actual output 
signal y is as follow 

                       [ ]0 1
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δ
ω

ω
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     Consequently, the eigenvalues and damping 
ratios of the system with and without stabilizer are 
given in Table 1. The designed specifications are 
met.  
 

Table 1 System eigenvalues  
 
Without stabilizer 

 
With sliding mode 
      stabilizer 

 
    0.0735 1.91i±  
      ( 0.038= −ζ ) 
 

 
    0.941 1.34i− ±  
        ( 0.57=ζ ) 

 
     In order to examine the performance of the 
dynamic compensation controller, the system shown 
in Fig.1 was disturbed by the pseudo-typical wind 
gust of the form 

 
2(1 cos )gust

tV G
T

= −
π   (23) 

 
where 0 ,t T< < 4T = and 7.5%G = . Fig. 4 shows 
the wind gust which is simulated to the system under 
three various conditions. Besides, the effect of wind 
turbine system the designed sliding mode stabilizer 
is compared to that of the Variable Structure 
Stabilizer (VSS) [5]. 
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Fig.4 Wind gust disturbance. 

 
      
4.1 At the normal operating point 
The power system operates at 1.0P =  pu, 0.3Q = −  
pu, the field time constant ' 1.942doT = sec,and the 
transmission line 0.3eX =  pu. The speed deviation 
responses of the system with and without controllers 
are illustrated in Fig.5. The response without 
controller is unstable whereas the response of the 
system with both VSS and sliding mode stabilizer is 
well damped. 
 
4.2 With the changes in reactive power and field 
time constant 
In this situation, reactive power and field time 
constant are reduced to be 0.15Q = − pu, ' 1doT =  sec, 
respectively. The responses of generator speed 
deviation are shown in Fig.6. It can be seen that the 
amplitude of the response with the sliding mode 
stabilizer is lower than that with the VSS. The VSS 
is sensitive to these parameter variations. 

 
4.3 At light loading with a decreased field time 
constant 
Under this condition, real power, reactive power, and 
field time constant are set at 0.1P =  pu 0.6Q = −  pu  
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Fig.5 Speed deviation response at operating point. 
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Fig.6 Speed deviation response with decreases in 

reactive power and field time constant.  
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Fig.7 Speed deviation response at light loading. 

 
 
and ' 1.2doT =  sec, respectively. As demonstrated in 
Fig.7, it is clear that the speed deviation response by 
VSS controller is poorly damped, the oscillation is 
much severe than that of the sliding mode stabilizer. 
The VSS controller is very sensitive to system 
parameter variations. On the other hand, the 
proposed sliding mode stabilizer is very robust to 
this operating condition. It is able to damp speed 

oscillation significantly and rapidly. These 
simulation results confirm that the robustness of the 
proposed sliding mode stabilizer is much superior to 
that of the VSS [5]. 

 
5   Conclusion 
In this paper, the dynamic compensation observer 
technique has been applied to design a sliding mode 
stabilizer for the wind turbine system. The main 
advantage of this method is that only output 
information is required as a feedback signal of the 
controller. Moreover, this technique provides a 
systematic design to achieve the design 
specification, robustness against system parameter 
variations, and an enhancement of system dynamic 
performance. Simulation results against the variety 
of loading conditions and system parameters under 
the wind gust disturbance indicate that the sliding 
mode stabilizer provides higher effectiveness and 
superior robustness than the variable structure 
stabilizer. 
     In the future work, the effectiveness of the 
proposed stabilizer will be investigated under more 
severe, continuous and random wind gusts, various 
system parameter variations etc. 
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