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Abstract:- In a large distributed system such as the Grid, ensuring data integrity is of particular importance. Since
in a same network honest users and possible malicious entities live together, the risks of unauthorized alterations of
data and information cannot be ignored. This concern on dataintegrity has two faces. On the one hand, insurance
has to be given that data has not been altered by unauthorizedhands. This is called integrity of passive data. On
the other hand, users may want to have the guarantee that the jobs they submit on the Grid are executed in the
right way with the proper input data, and result on reliable output data. This second flavor of integrity is called
integrity of active data. In this paper, we consider these integrity concerns, identify the needs when considering
privacy aspects of passive data and a Grid’s adapted framework for integrity of active data.
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1 Introduction

A Grid is a (widely) distributed system composed of re-
sources of many computing systems. It is usually used
to resolve scientific or technical problems that require a
large amount of resources. Grids perform heavy compu-
tations on large amount of data, by breaking them down
into many smaller pieces, or provide the ability to pro-
cess many computations in parallel. Therefore, a Grid
is a parallel and distributed system that allows to share
and aggregate geographically distributed resources.

Since a Grid is usually a huge system, a lot of dif-
ferent users are using its resources. Some of these
users may be malicious entities. Therefore, the risks of
unauthorized alterations of data and information that are
stored or processed on Grid resources, or even that are
traveling on the Grid’s network, cannot be disregarded.

Large amount of data are stored on Grid’s resources.
These data are used as input for distributed executions
and/or are the results of these executions. It is crucial
that these data are not illegitimately altered. Therefore,
we have to ensure the integrity of these data. We are
dealing here with theintegrity of passive data. On an-
other hand, the users need to have the guarantee that the
asked executions are correctly processed. The jobs sub-
mitted on a Grid have to be executed in the right way
with the proper input data. And in consequence, the re-
sulting output data have to be reliable. This is also a
kind of integrity that we callintegrity of active data.

2 Integrity of passive data

When considering the context of the Grid, passive data
may refer to data resulting from experiments and simu-
lations. These data are generally organized in databases
accessible to Grid users. Grid users want to get the as-
surance that the consulted data has not been altered by
unauthorized hands. Usually, hashing functions and/or
digital signatures are used to ensure data integrity. For
example, keyed hash functions (MAC) may be used on
database contents when the corresponding secret keys
are securely shared. However, the secret key manage-
ment in a large distributed system like a Grid is not
straightforward. Digital signature schemes can be used
to guarantee the integrity of data whose owner is known
(to allow the public key-based signature verification).
However, using digital signatures in a classical way are
not an appropriate tool when we deal with the integrity
of anonymous data. For example, we may consider a
medical database accessible to patients and their physi-
cians in which the patients’ privacy is ensured by replac-
ing their name by a code number. Therefore, a patient
cannot sign his own data in order to guarantee their au-
thenticity without breaking its privacy at the time of the
signature verification. Even, if a physician signs these
data, the patient’s identity could be possibly established
by considering the set of patients of the related physi-
cian. On the basis of this situation, we propose, in the
next subsection, a protocol that ensures the integrity of
a database while preserving the privacy of the related
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entities concerned by the stored information.

2.1 Integrity and privacy

When looking at privacy concerns in addition to the in-
tegrity service, we may consider that each entity autho-
rized to access to an information and possibly to change
it must be able to sign the new version of this informa-
tion in such a way that its identity has to be indistin-
guishable from the identities of all the user entitled to
access the database in writing.

Group signature schemes [3] allow each entity that
belongs to a group to sign an information in such a way
that at the time of a signature’s verification it appears
that the signature comes from the group without indicat-
ing which member of the group actually generated the
signature. Moreover, in case of problem (when an au-
thorized entity makes an dishonest modification of the
database for example) group signature schemes allow a
designated group authority to reveal the identity of the
signer.

Another kind of group signatures is ring signatures
[8], that have the advantage, in comparison to classical
group signatures, to allow a member of a group to sign
an information knowing only its own signature secret
key and the verification public key of all the other mem-
bers of the group. Therefore, there is no group setup nor
any need for a group manager.

However, ring signatures do not offer, in case of
problem, a mechanism to reveal the identity of the en-
tity who generated a signature. In group signatures the
management of the keys is sometimes heavy. Moreover,
in our Grid’s framework it may be problematic that the
access control authority is not able to check if the iden-
tity of the entity who gained access to an information is
the same that the identity of the entity who, afterwards,
made a modification and signed it.

Therefore, we propose here a protocol that allows
genuine users to make modifications on anonymous
data in such a way that the identity of the correspond-
ing data owners as well as the identity of the user
who makes the modifications remain secret. The pro-
tocol uses a trusted third party (TTP), associated to the
database(s) in which these anonymous data is stored,
that realizes the access control and that ensures indi-
rectly the integrity of the database. When considering
our previous medical context, the data owner is a pa-
tient and the entity allowed to modify these data (the
user) is his physician.

2.1.1 The protocol

We consider data stored on Grid resources that have to
be accessible and modifiable by authorized users in an
anonymous way. We present a protocol that takes into
consideration the privacy of the entities that may be re-
lated to the stored data, while ensuring the integrity of
these data.

Since the data are stored on Grid resources managed
by a database administrator that realizes the access con-
trol, we can use this particular framework to propose a
protocol based on the existence of a trusted third party
(TTP), that may be the database administrator, in order
to issue integrity tokens. When an information is modi-
fied, the TTP delivers the corresponding integrity token,
based on its digital signature, at the place of the autho-
rized user that made the modification. Using a TTP al-
lows to be exempted from the management of a group
and from the corresponding group signature key. More-
over, the protocol allows the TTP to reveal the identity
of an authorized user that made a dishonest modification
in the database.

We use the following notations:signuser (m) means
that the user signs the hash of the messagem with his
private key;ETTP (x) is the asymmetric encryption of
the informationx with the TTP’s public key;Ek(y) is
the symmetric encryption of the informationy with the
secret keyk.

At the first step of the protocol, a user that wishes
to make a modification on an information stored in a
Grid resource provides to the corresponding database
administrator his credentials, which prove that he is
entitled to access and modify the database. We sup-
pose here that the TTP and the database administra-
tor are a unique entity. The user also sends the cur-
rent date (and time), a randomly chosen session key
k as well as his digital signature on these informa-
tion. All these information are sent to the TTP ci-
phered with the TTP’s public key. User→ TTP:
ETTP (user ′s credentials , date , k, signuser (date , k)).

If the access is granted by the TTP (thanks to
appropriate credentials and date), at the second step,
the user transmits to the TTP the ciphered descrip-
tion of the modifications that have to be made on
the database and his digital signature on this descrip-
tion. The description of the modifications are the po-
sition in the database where the modifications have to
be made and the updated data that have to replace
those that appear in the indicated position. Since the
description of the modifications (and more precisely
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the updated data) may be of important size, in or-
der to be efficient, it is ciphered symmetrically with
the secret session keyk provided at the first step of
the protocol. User→ TTP: Ek(modifications , date ,
signuser (modifications , date)).

The TTP deciphers the received message and veri-
fies (1) if the date indicated in the first and second step
are the same, (2) if the two steps were both made in a
time close to that date, (3) the user’s digital signature on
the description of the modification. If these checks are
correct, the TTP makes the expected modifications in
the database, produces its signature on the modified data
(signTTP (updated data)) and stores it in the database
and stores in a private place the evidence that proves
that the user asked for the modifications that were done:
signuser (date , k)) andsignuser (modifications , date).

Integrity is ensured due to the presence of the TTP’s
digital signature on the data. Any entity that accesses
the database is then able to check whether these stored
data were not modified in an unauthorized way. Only
the TTP’s signatures appear in the database. There-
fore, if the stored data are anonymized, no information
about the identity of the entities concerned by the data
may be inferred from the data or from the integrity to-
ken that are the digital signatures of the TTP. However,
if a modification made in the database is litigious, the
TTP may be asked to reveal the identity of the user
that made the given modification. If the TTP con-
siders the revelation request as legitimate, it discloses
the user’s identity, by publishingsignuser (date , k)) and
signuser (modifications , date).

3 Integrity of active data

In this section, we investigate mechanisms that allow
to detect whether a job has been executed correctly or
whether its code has been modified by a malicious hand.

Usually, it is hard to prevent such modifications
since a malicious system manager is always able to
reach and act on a job that is executed on his node. Pro-
viding digitally signed information about the job to be
executed allows to check if the information about the
job were not altered during its travel on the network but
does not prevent the target node owner to execute some-
thing else.

Traditionally, the mechanisms that allow to ensure
a correct distant execution of jobs are related to fault-
tolerant distributed systems.

3.1 Terminology

Distributed systemsare made up of processes, located
on one or more sites, that communicate with one an-
other to offer services to upper layer applications [5].
The termfault is usually used to name a defect at the
lowest level of abstraction. A fault may cause an er-
ror that leads to a system failure. There are three fault
models according to the system behaviors that they in-
duce. Thecrash failure modelin which processors sim-
ply stop executing at a specific point in time; thefail-
stop modelwhere a processor crashes in such a way that
its neighbors can detect it; and, finally, thebyzantine
fault modelin which processors may behave arbitrar-
ily, even in a malevolent way. The alteration of code
enters in the category of byzantine faults. When proces-
sors can experience byzantine failures, a set of proces-
sors implementing at-fault-tolerant state machine must
have at least2t + 1 replicas and the output of the set is
the output produced by the majority of the replicas. If
processors experience only fail-stop failures, then a set
containingt + 1 replicas suffice and the output of the
set can be the outputs produced by any of its members.
A system correctness is always proved with respect to a
specific fault model.Fault-toleranceis the ability of a
system to behave in a well-defined manner once faults
occur.

3.2 Previous works

Many existing solutions to fault-tolerant distributed sys-
tems impose that (part of) the jobs are executed many
times. In case of such jobs replication, the strategy used
by the user to find good results among the set of re-
sults that he has received is calledvoting. This is done
under the assumption that, among nodes that have exe-
cuted one job, there is at least one honest node that has
returned a good result.

Server replication, also known as state machine ap-
proach has been used up now as a popular mechanism
for building fault-tolerant distributed services. A state
machine consists of state variables that represent the
different states in which the machine can be as well as
the commands allowing to change from one state to an-
other possible one. At-fault-tolerant version of a state
machine can be implemented by replicating that state
machine and running a replica on each oft processors
in a distributed system. It is assumed that replicas be-
ing run by non-faulty processors start in the same initial
state and execute the same requests in the same order, so
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each replica will perform the same operations and pro-
duce the same output [10]. Replication is also used as
a solution for improving the scalability of a distributed
service.

In [5], an overview on fundamental techniques
that implement replicated services is presented. This
work emphasizes on the relationship between replica-
tion techniques and group communication and consid-
ers that the correctness criterion is the linearizability
that gives the illusion of non-replicated servers. Two
fundamental replication techniques ensure linearizabil-
ity: (1) the primary-backup replicationwhere onepri-
mary replica plays a special role of interacting directly
with clients who address requests, whereas the other
replicas arebackupsthat interact only with the pri-
mary (in case of the primary fails, one of the back-
ups can become the primary); (2)active replication,
also called state machine approach, gives to all repli-
cas the same role without the centralized control of the
primary-backup technique. Invocations are sent to all
replicas that process the invocations. The client waits
until it receives the first response or a majority of iden-
tical responses.

In [10], Schneider presents a detailed model of the
state machine approach for implementing fault-tolerant
services. The paper discusses fault-tolerance in the
framework of the byzantine fault and fail-stop models.
System reconfiguration techniques for removing faulty
components and integrating repaired components are
also considered.

In [1], a new programming abstraction calledre-
silient objectis introduced. Each resilient object pro-
vides some services to a set of sites where it is repre-
sented by components to which requests can be issued
using remote procedure calls in the way of the primary-
backups replication system. The resulting distributed
system gives behavior indistinguishable from a single-
site instantiation of the original specification.

In [7], Reiter proposes protocols to facilitate the
development of high-integrity services that retain their
availability and correctness despite the malicious pene-
tration of some component servers by an attacker. These
protocols were developed to facilitate reliable commu-
nications between a given number of servers that imple-
ment the same service. The paper emphasized on the
replication of some critical services like authentication
services or certification authorities. Four main proto-
cols are developed : (1) the group membership protocol,
that supposes the existence of a group of servers that

implement a given service and provide the abstraction
of a group of operational servers. The group members
may change to reflect the perceived failure, recovery of
servers as well as the addition of new servers. The mem-
bership protocol ensures that if sufficiently many mem-
bers of a group request that a member be removed, then
that server will eventually be removed from the group;
(2) the reliable group multicast protocol, that provides
an interface through which group members can multi-
cast messages to other group members. The protocol as-
sumes that fewer than one third of servers in a group are
faulty; (3) the atomic multicast protocol, that is similar
to the reliable group multicast protocol. Moreover, it of-
fers an additional functionality that determines the order
in which messages are delivered to group servers; (4)
the outvoting protocol, that ensures that the replies de-
livered to clients are only those sent by correct servers.

In [6], Krishnamurthy et al. evoke the server repli-
cation approach in order to tolerate timing faults. Only
the first response received for a request is delivered to
the client. Thus, a timing failure occurs only if no re-
sponse was received from any of the replicas withint

time units after the request was sent.

In [2], the authors investigate the case of a state ma-
chine replication system that tolerates byzantine faults
which can be caused by malicious attacks or software
errors. This approach emphasizes on faulty replicas re-
covery by refreshing state automatically. Because of the
recovery, the system can tolerate any number of faults
over the lifetime of the system.

In [9], the framework of redundancy and voting is
presented in the area of Volunteer Computing. The
authors show how voting and redundancy systems are
inefficient to reduce the error rate in accepted results
when the ratio of faulty hosts on average of all hosts is
not small in a given system. The mechanism of spot-
checking is proposed as a solution. Spot-checking con-
sists in that the master node gives to worker nodes jobs
whose results are known in advance or can be easily
verified afterwards. The concept of credibility is also
introduced (a worker’s creditability depends, between
others, on its answers to the submitted spots-checks
or on the comparisons of results received for the same
work from different workers). The author showed how
the combination of voting, spot-checking and credibility
can be used to shrink the error rate in accepted results.

In [4], the authors introduce on the Grid the concept
of nodes’ reputation, which is not too different from the
concept of worker’s credibility introduced in [9].

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006         680



In our work, the state machine approach has been
also used in the purpose of ensuring data integrity. The
differences of our approach and the others in the frame-
work of server replication are the strategy used in tasks’
distribution on computing nodes, the voting strategy as
well as the subsequent actions like the removal of faulty
nodes and their re-integration.

The primary-backups system of [5] and [1] is not
suitable with byzantine faults since the primary may
be a malicious node. In our work, we rather use the
concept of active replications of [5] enriched with hints
that guide user’s decisions in case where all the repli-
cas answers are different. Our work considers byzantine
faults in Grid computing environment. The removal of
a faulty node is based on the faulty replies it returns on
clients’ requests. However, contrary to [10], we distin-
guish faulty replies induced by malicious actions from
these induced by involuntary failure in the system. The
group membership protocol proposed in [7] considers
fail-stop failures since it is assumed that when one of the
replica services is faulty the other replica services can
detect it and request the removal of the faulty service.
In Grid computing, the different nodes that execute the
same task ignore each other, unless they are dishonest
members of a coalition. In [6] it is only considered that
right replies are those returned in time. In our work,
we consider also faulty nodes providing a wrong result
in the required time. We cannot either proceed like in
[2] where an automatic state refreshing is considered, in
our case the re-integration of a node that was faulty is
done after a given number of successful tests.

3.3 Active data integrity on the Grid

The k-resilient scheme that we propose, that fits the
framework of the Grid, uses replications to achieve ac-
tive data integrity but tries to reduce this redundancy
by using spot-checkings. The degree of replication de-
pends on the credibilityc (0 ≤ c ≤ 1) that each user
gives to the Grid (the more a user is confident in the
Grid, the higherc will be and the smaller the redun-
dancy will be). The protocol considers that there is no
coalition (in order to organize the wrong execution of a
task) of more thank − 1 hosts (k-resilient).

Let us consider a user who has to launch a jobJ

composed byn tasksti: J = (t1, . . . , tn). At the first
round of execution, the resource broker launches then

tasksti. Tasks are distributed randomly over the com-
puting nodes according to the number of nodes offered
by the Grid for the job and their corresponding com-

puting power (some nodes may receive many different
tasks).

At the end of the first round, the user assumes that
np = c · n tasks have been executed correctly. Conse-
quently,n′ = n − np tasks have to be executed again.
The user does not wait the end of the first round to exe-
cute againn′ tasks. At the beginning of the first round,
the user chooses randomly then′ tasks that will have to
be replicatedk times and launches them.

For each taskti, after a delaydi the user consid-
ers that the corresponding results have to be available.
Therefore, he makes the following checks:

• if ti was planned to be executed only once and if
results are obtained for it, then the user stores the
results and considers that the host that has exe-
cutedti behaved correctly.

• if ti was planned to be executed only once and
if no results are obtained for it, then the user
launches againti k times. We assume that the
probability that a same task is assigned on the
same host for two different rounds of execution is
arbitrary small. The user considers that the node
that has executedti did not behave correctly and
contacts the TTP to record a complaint about this
node.

• if ti was executed more than once and if at most
k′ < k obtained results, acquired over all al-
ready executed rounds, are the same, then the user
launches againti k times (assuming that the prob-
ability that a same task is assigned on the same
host for two different rounds of execution is arbi-
trary small).

• if ti was executed more than once and if at least
k obtained results, acquired over all already exe-
cuted rounds, are the same, the user stores these
results, considers that the hosts that produced
these identical results behave correctly and con-
siders that all the other hosts that provided differ-
ent results for this taskti did not behave correctly.
He contacts the TTP to record a complaint about
these hosts.

We assume the use of a TTP that will manage a list,
called banned list, containing a reference to the hosts
that do not behave correctly. When a user launches a
task, the resource broker selects a node to execute it
that is not listed in the banned list. A computing node is
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said to behave incorrectly if the TTP attests that the re-
sults that the node provides, after the execution of given
tasks, are erroneous or are not made available in the ex-
pected time.

The TTP records all the complaints provided by the
users about the hosts. The TTP begins to secretly spot-
check these nodes by sendingε tasks execution requests
for which the TTP knows the correct corresponding an-
swers. The computing nodes have to ignore that they are
spot-checked (for example, the TTP may use the iden-
tity of an arbitrary Grid user and may launch tasks that
are indistinguishable from real usual tasks). If several
spot-checked nodes provide, even once, an identical in-
correct answer, they are supposed to be colluding mali-
cious nodes, and all of them are registered on the banned
list. If a checked node is not considered as a collud-
ing node, then if it answers incorrectly more than once
or does not answer, it is supposed to be an independent
malicious node or to be a node that experiences a failure
that is not yet corrected. In both cases the node is regis-
tered on the banned list. Otherwise, if the spot-checked
node answers incorrectly only once, it is supposed to be
an honest node that experienced a temporary failure. In
that case, the node is not registered in the banned list.
A node does not remain on the banned list forever, the
TTP spot-checks regularly the banned nodes and if a
node provides correct answersε times in a row, the TTP
removes it from the banned list.

Note that if a user is fully confident in the behavior
of all the hosts,c = 1, no redundancy appears in the
execution of the tasks. In contrary, if the user does not
trust any of the hosts,c = 0, all the tasks composing
his jobs will be replicated. Between these two extreme
views, the user may dynamically (since the user may
change the value ofc, for example, on the basis of the
current content of the banned list) parametrize the num-
ber of tasks that have to be replicated. Moreover, each
user can also choose an appropriate valuek depending
on the supposed maximum size of the possible coali-
tions of dishonest nodes.
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