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A Parameter-less Evolution Strategy for Global Optimization
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Abstract- Several evolutionary approaches have been applied to global optimization problems with significant
success. Evolution strategies proved to be efficient global optimizers. However, these algorithms have several
parameters which the setting is not simple. Thus, it is crucial to investigate how to set dynamically these parameters
during the search. In this paper, a new parameter-less evolution strategy, which has only one single parameter to
set, is proposed. This algorithm is compared with the traditional evolution strategies considering a set of difficult
test problems. The results obtained indicate a promising performance of the new approach.
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1 Introduction future work are addressed.

Several evolutionary approaches have been applied %) S . . i
global optimization problems with success, namely Geneti G_'IObaI Optimization with Evolution Strate
Algorithms [1] and Evolution Strategies [2] [3]. In the past, 9!€S

Evglutlonftritﬁgms (ESs) prloveg.to befpdowgr.ful glopa:)?pévolution Strategies are search procedures that mimic the
imizers [4]. €y Use a real coding of decision varableg ., 5| evolution of the species in the natural systems. In

and the adaptation of step sizes for mutation. However, E e past, ESs were applied to the resolution of nonlinear

have multiple parameters that are d'ﬁ'CUI.t to set since theé’ timization problems without constraints. These problems
are problem dependent. So, these algorithms require so%]%

expertise in order to make them work conveniently. On thean be formulated, mathematically, as follows:

other hand, in general, some previous experimentation is min f(z) with z € R™ (1)
needed in order to tune the algorithm parameters. More-

over, in general, interaction between parameters exists aggbject to

must be taken into account. Thus, it is relevant to search a<z<p

for algorithms that have a reduced number of parameters to

set. These algorithms must took the task of setting paraferez is the vector o real decision variableg(z) is the

eters from the user. These parameters must be set by fHi€ctive function to minimize, and and; are the vectors

algorithm itself during the search taking into account th&@' the lower and upper bounds of the decision variables.
ESs work directly with the real representation of the pa-

features of the problem being solved. . L :
In the proposed approach, the Parameter-less EvolutiGMeter seét, searching from an initial population (a set of

Strategy (PLES), an effort was made in order to avoid thBOintS)' feq“i””g only data base_d on the objective f_u_nc-
difficult task of setting initial values for parameters. So, thdlon and constraints, and not derivatives or other auxiliary
setting of almost all parameters required by traditional ES$'0Wledge. Traditionally, two distinct types of ESs differ-
was avoided. Several adaptation rules that avoid the neggg basically on the selection procedure are considered: the
for the initial setting of parameters were implemented. O + )‘)_'ES and theyi, A)-ES. .
the other hand, new operators were developed in order to In this nomenc_latureu and)_\ repfesem’ respectively, the
improve the performance of the adaptation rules. parent an_d offspring population sizes (fOT many problems,
In order to evaluate its performance, PLES was conft/# = 7 is suggested [3]). Each population member con-
pared with a traditionaly/p + A)-ES using a set of dif- sists on a tuple of two vectors: a vector of real values repre-
ficult test problems. With this preliminary experiments, jsenting the decision variables and a vector of real standard

was intended to validate the new approach in order to idef€Viations used to adapt step sizes during the search. Thus,

tify future developments of the algorithm. The preliminarffaCh decision variablehas an associated standard devia-

results obtained indicate a good performance of the new afi2n ¢ The search starts from an initial population which

proach. Thus, future developments of the algorithm shoufgdividuals are, in general, generated at random. The ini-
be investigated tial standard deviations; can be set according to equation

In section 2, a short introduction to ESs is presented?): WhereAz is a rough measure of the distance from the
Section 3 describes the Parameter-less Evolution Strate@gtimum and is the dimension of the problem.
(PLES) implemented. Next, the results of the application to 0 Az
several test problems are presented, as well as some compar- ;= Jn (2)
isons with traditional ESs. Finally, some conclusions and =



Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 623

Alternatively, if an approximation to the optimum is not forg=1,...,n0+ X
known, the setting given by the following equation can be Sort all (&5";55), so thatf(&{") < f@*) for all
considered: 5 a,b=1,...,u+ A\
afm ey 3) 7. Replace the individuals of the parent population
an

In spite of, traditionally, the search of new points was (@ VoY) = (@75 637
based on one single operator, the mutation operator, in gen- forp=1.... .o
eral, ESs benefit with the introduction of the recombination b kot 1 ’

operator. Thus, the nomenclature for ESs can now be ex- o '

tended, and ESs with recombination are usually referred as 8- If stopping criterion is not true then retumn to step 3.eels
(1/p+N)-ESor(u/p, \)-ES. It should be noted that one of end.

the most promising features of ESs is that they use adaptive Thus, in a(u/p + A)-ES, at a given generation, there are
step sizes for mutation. So, these parameters of the algerents, and offspring are generated by recombination and mu-
rithm are themselves optimized during the search. tation. Basically, the recombination operator consistshaiore

Next, the basic algorithm and the main features of Esrgutation, to recombine a set of chosen parents to find a new sol
are pres:ented tion. On other hand, mutation creates new points by adding ra

dom normal distributed quantities. Next, thet+ A individuals

i are sorted according to their objective function valuesnaRy,

2.1 Algorithm the besty of all the ;. + A members become the parents of the

The basi((,u/p,*)\)-ES can be described as follows: next generation (i.e., the se_lecFiO.n tak_es place bet_wecep th A
(11/pF \)- Evolution Strategy memb_ers). Théw/p, A)-E_S is smylar differing, baS|_caIIy, on the

selection procedure that is restricted to the offspringutetion,

1. Initialization of the individuals of the parent poputatiand  ; o the selection takes place between ttaffspring.

corresponding step sizes

@;0) = 2,20, al) 2.2 Recombination
Basically, the recombination operator consists on, befouta-
o 4 ) _ Bi—oy _ F ' _ > on, .
Wherexm U(as, ;) and Tpi T ANUm for all p = tion, to recombine a set of chosen parents to find a new solutio

L...,pandi=1,...,n A given numberp (1 < p < u) of parents are randomly chosen

2. Letk=0 for recombination. Whep = 1 then there is no recombination.

3. Recombination of the individuals of the parent poputatio TWO types of recombination are, mainly, considered: inttiate
and discrete recombination. Since, in this work, the rednation

@58 = @P e e e ) implemented was the discrete recombination, only thismésna-

h du i ‘ . tion will be described in detail. In the discrete recombimateach

w greuzi ~ U(1,p) andu; integer, forallp = 1,..., 4 component of the offspring is chosen from one of phgarents at
andi =1,...,n.

random. Thus, fop chosen parents (randomly selected from pop-
4. Step size adaptation ulation), the offspring, is given by
Non-isotropic adaptation

k). (k) *) k) ~(k) *) Tp = (mm,lv .. ~:$umn)
@6 = (z ,...,f]f;&' ezlez,...,E’fez"ez) )

por Pt P - withus € {1,...,p},...,un € {1,...,p}andp = 1,..., .
wherez; ~ N(0,Ac?), z ~ N(0,Ac*?), forall p = In discrete recombination, the integer uniform random eslu,
1,...,pandi=1,... n. fori = 1,...,n, allow the selection of which of the parents

will give the value of decision variable This procedure allows
different combinations of the values of the decision vddalfrom
@;70) = @ Hzan, .. B0t zam; 60, ..., 5L),)  existing solutions in the population. Standard deviatiaressimi-
larly recombined.

5. Mutation of the individuals of the parent population

wherezq; ~ N(0,5%)),

" { U if d=pu,2u,...,Kuwith K integer 2.3 Step size adaptation
| d//p otherwise

(// states for the rest of integer division), for all =

1,...,2andi=1,...,n.

During the search, the step sizes for mutation are adapted. S
eral self-adaptation schemes are possible. One possitsilito
actualize the standard deviations (for each decision variable)

6. Selection according to the equation [3]:

If (,)-selection then

k+1 k) z; =z
o) ot = oFetie @
wherez; ~ N(0,Ac?), z ~ N(0,Ac?) andAc and Ao* are
parameters of the algorithm. In the experiments conductdy o
this non-isotropic adaptation rule was considered, ottiaptation
rules are described by Back [5].

forg=1,..., X

Sort all (2{;5{"), so thatf(&{") < f(&¥) for all
a,b=1,..., )\

If (+)-selection then

k k f
(fw).&ék))_{(xé);aé)) if 1<g<up

@55, i pr1<g<pt A



2.4 Mutation

Usually, the random numbets*) are generated according to a
Gaussian or Normal distribution. Besides, it is convenidatt
small changes occur frequently, but large ones only rar8ly,
two requirements arise together for the generation of thdom
numbersz(*):

« the expected value of the componen{¥’ of z(*) must be

equal to zero, i.eE(sz)) =0fori=1,...,n,and
o the variances? must be small, foi = 1,...,n.

In this sense, the random numbetfé“) can be generated ac-
cording to a Normal distribution with mean zero and variange

2~ N(0,07) )
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Parameter-less Evolution Strategy

1. Initialization of the individuals of the parent poputatiand
corresponding step sizes

(x<0)' o @) = @, ..., 26 o)

p 3 p, 1 Tpn;Opiy---,0pn
wherez!") ~ Ul(ai, f; ) ando(’) = B — ay, forall p =
1,...,uandz—1,.

2. Letk =0

3. Recombination and mutation of the individuals of the par-
ent population

@58 = @M, aB e, ek

k) k

So, mutation consists on adding random numbers with mean  where z*) = %2 + xbl)/z + zq; with

zero and variance? to the vector of decision variables, i.e4 =
Ty + 2.

3 The Parameter-less Evolution Strategy

In general, evolutionary algorithms have multiple pararethat
are difficult to set since they are problem dependent. Saethe

zai o~ N(O,/(@)2+ (@0%)2/2) and o) =

,/(0563)2 + (ab’i )2/2 (a and b correspond to a com-

bination of two progenitors), for alf = 1,...,\ and
1=1,...,n

4. Step size adaptation

algorithms require some expertise in order to make them work ~ Success based adaptation

conveniently. On the other hand, in general, some previsus e ComputeDg,,; = xfff - x ’“ andDdb i = mfikz) - xé’?
perimentation is needed in order to tune the algorithm paters. withi=1,.
Although the inclusion in ESs of some adaptation rules foneso if f@;’“)) < f(xg’“)) then
parameters, there are always some parameters that areerbtpui
set. Moreover, in general, interaction between paramitersim- @508y = @M, ... 28 | Daanl, . - |Daanl)
portant issue that must be taken into account. Thus, it evael
to search for algorithms that have a reduced number of paeasne if f(@) < f(zP) then
to set.

In the proposed approach, the so-called Parameter-leds-Evo (x (k), Uék)) (wl(,kl), ... ,xb n, |[Dabal,- -5 |Dabnl)
tion Strategy, an effort was made in order to avoid the diffimsk
of setting initial values for parameters. So, the settinglofost foralld=1,..., andi=1,...,n
all parameters required by traditional ESs was avoidedualyt Non-isotropic adaptation
PLES requires the initial setting of one single parameter,dar- S0, 5(6)y _ (=(8) k) ~(k) 2y (k) on
ent population sizey). The algorithm includes several adaptation (@730 7) = (Tps - Tpmi O 1€ €75 Tpnee”)

rules that avoid the need for initial values of parameters. ti@
other, the recombination and mutation operators were albe s
stantially modified in order to allow the implementation aific-
ular adaptation rules.

The adaptation rule for standard deviations is based oruitie s
cess of the parents to generate better offspring. This mdiés
the sampling of the search space taking into account tharaies
between the parents and the generated offspring. Thus,ESPL
the number of offspring corresponds to the number of passib
combinations of two parents, i.e.:

A U
A= (2) T2l —2)!

Each generation) offspring are generated by recombination
and mutation of all pairs of two parents. This scheme alldves t
use of the distance between parents and offspring to estiorat
adapt the standard deviations. It should be noted that tuemiei-
nation and mutation operators were also modified in ordepko c
lect this information. On the contrary to traditional ESsaihich
recombination and mutation are applied at distinct stephe#tl-
gorithm, in PLES, these operators are applied conjointly.

3.1 Algorithm

The basic PLES algorithm can be described as follows:

wherez; ~ N(0,1), z ~ N(0,1), forallp = 1,...,p
andi=1,...,n
5. Selection
k k f

@P, 50 = (mék);aé L) if 1<q<up

o @2,:502) i p+l<g<p+A
forg=1,...,u+ X
Sort all (&5";55), so thatf(&{") < f@*) for all
a,b=1,..., 0+ A

6. Replace the individuals of the parent population

k+1 k+1 (k). < (k
(m;+);aé+))=(l’;);a§,))

forp=1,...,pu.
k=k+1.

7. If stopping criterion is not true then return to step 3.eels
end.

As in traditional ESs, in PLES, at a given generation, there
arep parents, and offspring are generated by recombination and
mutation. However, the recombination and mutation opesaiot
jointly. Thus, all parents are recombined and mutated iriotd
generate new offspring. Thet )\ individuals are sorted according
to their objective function values. Finally, the bestof all the
1+ A members become the parents of the next generation. Thus,
in PLES, the selection is similar to the (o0 + \)-ES selection.



Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 625

3.2 Recombination and Mutation Parameter Value
. . o Parents population siz 10
Each generation) offspring are generated by recombination and Offsprin P g ulation sigg)() 100
mutation of all pairs of two parents. Each combination of two N pb 9 FfJ P bi 10
parents generates an offspring. Thus, the offspringgenerated um (_':'r of recombinantg}
from parentsz, andz; by recombination and mutation, is given Selection type +
by: Ao 1/4/(2n)
Tq = (1:0717-..71:6,71) AO" 1/\/Z2\/(n))
2 2
a,itZp,i . 9a,i Ji . .
wherez.,; = “H57% 4 zg; With 24, ~ N (0, *="5—=%),for  Table 1: The(;1/p+ \)-ES parameters considered in exper-
The new offspring inherits from parentsandb the following
standard deviations: Unimodal Functions:
F1: Shifted Sphere Function
/gg .+ ngi F2: Shifted Schwefel's Problem 1.2
o4 = +———- F3: Shifted Rotated High Conditioned Elliptic Function
2 F4: Shifted Schwefel’'s Problem 1.2 with Noise in Fitness
wherei = 1,. .., n. The application of these operators in a single |_F>: Schwefel’s Problem 2.6 with Global Optimum on Bounds

. . : Multimodal Functions:
phase allows the implementation of a step size adaptatleritrat F6: Shifted Rosenbrock’s Function

takes into account the success of the parents in generaéing n | 7. shifted Rotated Griewank's Function without Bounds

better offspring. F8: Shifted Rotated Ackley’s Function
with Global Optimum on Bounds
3.3 Step size adaptation F9: Shifted Rastrigin’s Function
F10: Shifted Rotated Rastrigin’s Function
During the search, the step sizes for mutation are adaptesisf€p F11: Shifted Rotated Weierstrass Function
sizes are adapted in two phases: firstly, the adaptatiorsisdben F12: Schwefel's Problem 2.13
the success of the parents to generate offspring; secandign- F13: Expanded Extended Griewank's

plus Rosenbrock’s Function (F8F2)

isotropic adaptation rule is applled. _ . | F14: Shifted Rotated Expanded Scaffer's F6
The success based adaption consists on, after the generatiq r15: Hybrid Composition Function
of an offspring from the recombination of two parents, taiatize F16: Rotated Hybrid Composition Function
the standard deviations of the parents. If the offspringttdn than F17: Rotated Hybrid Composition Function with Noise in Eits
a parent (or both parents) then the standard deviatione gfatrent F18: Rotated Hybrid Composition Function

F19: Rotated Hybrid Composition Function

with a Narrow Basin for the Global Optimum
F20: Rotated Hybrid Composition Function

with the Global Optimum on the Bounds

(or parents) is (are) actualized according to the distabhetseen
the parents and the offspring. Thus, for each decision bigria
the distances between each parent and the offspring areutedip

This success based rule can be expressed by: F21: Rotated Hybrid Composition Function
F22: Rotated Hybrid Composition Function
Cayi = |Daayi| i f(za) < f(za) with High Condition Number Matrix
obi = |Davs| 1f f(za) < f(zp) F23: Non-Continuous Rotated Hybrid Composition Function
F24: Rotated Hybrid Composition Function
whereDgy,,; = ®a,; — Ta,s AN Dy, = q,i — xp,5, for all d = F25: Rotated Hybrid Composition Function without Bounds
1,...,2andi=1,...,n.
A non-isotropic adaptation scheme is also applied in order t Table 3: Test Problems

actualize the standard deviations (for each decision variable)

according to the equation: ) .
site address: http://www.ntu.edu.sg/home/EPNSugans Jéti of

U§k+1> — Uzgk)GZiez (6) difficult test problems intends to constitute a standartisteite for

global optimization, including problems with very disttn@roper-

wherez; ~ N(0,1), z ~ N(0,1). ties. In this paper only the results for the problems conBidel0
decision variables are included (each problem was solvezhbly

4 Results algorithm 25 times). Initial populations were uniformlyrgegated

at random within the search space (except for problems 7 &nd 2
In this section the results obtained by the PLES afid/@ + ))-  for which specific initialization ranges are required). Eaxe-
ES are presented. The parameters of the algorithms, impteche cution was terminated when the err¢f (z) — f(z+)|) becomes
in C language, were kept constant for all problems (no effag  inferior to 10~°. The maximum number of function evaluations
made in finding the best parameter setting for each probléhg. (FES) allowed was 10000. In order to compare the performance
algorithms were executed in a PC with a Pentium(R) 4 (2.00)GH2f the algorithms during the search toward the optimum, there
CPU and 256 MB of RAM (running the Windows ME operating was recorded for FES equal 16 and10*.
system). The Table 1 presents the parameters considerdioefor
(1/p+))-ES. The parent population size)(considered for PLES 4.2 Discussion

was 10 individuals.
Tables 2, 4 and 5 present the error values achieved when FES wa

set to10® and10*. For each function, the best (1st), 7th, median
(13th), 19th, worst (25th), mean and standard deviatiomefetr-
The 25 test problems considered are summarized in Tableg&eTh ror values achieved are presented. From these tablesg tiakn
problems were collected by Suganthan and are available ateh ~ account the best error achieved when FES($, it can be ob-

4.1 Test Problems and Performance Evaluation Criteria
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FES Alg. 1 2 3 4 5 6 7 8
Ist | ES | 1.7949E+03| 4.5853E+03 1.0631E+07 9.3638E+03| 7.4491E+03 1.5571E+07 1.0294E+02 2.0506E+01
PLES| 9.1088E+00| 5.7120E+02 9.1815E+05| 4.4155E+02| 7.1613E+02 7.6823E+03| 4.0755E+00| 2.0325E+01
7th ES | 8.2397E+03| 1.2766E+04 8.6963E+07| 1.5645E+04 1.2194E+04| 5.0154E+0g 2.5575E+02 2.0677E+01|
PLES| 3.6238E+01| 1.7565E+03 5.0438E+06| 3.4986E+03| 1.2012E+03 7.4683E+04f 3.1421E+01| 2.0660E+01
13th | ES | 1.1797E+04| 1.8060E+04 1.5969E+08 2.2094E+04] 1.5973E+04 1.0638E+09 4.1709E+02 2.0744E+01]
PLES| 9.0533E+01| 2.6395E+03 7.7964E+06| 5.9841E+03 1.8286E+03| 4.9335E+05| 6.8927E+01| 2.0786E+01|
103 [ 19th | ES | 1.5289E+04| 2.4144E+04 2.7509E+08 2.5466E+04 1.7969E+04 3.1175E+09 6.2194E+02| 2.0814E+01
PLES| 3.5851E+02| 3.8877E+03 1.6207E+07| 8.6644E+03 2.5582E+03 1.3357E+06| 9.0168E+01| 2.0906E+01|
25th | ES | 3.5099E+04| 5.0376E+04 4.2652E+08| 5.2091E+04 2.4149E+04 2.2225E+10 9.4772E+02| 2.0914E+01
PLES| 9.4706E+03| 1.1286E+04 2.8051E+07| 1.7558E+04| 6.5111E+03 1.3441E+08| 3.1915E+02| 2.1077E+01|
mean| ES | 1.2605E+04| 1.9882E+04 1.7786E+08 2.2299E+04f 1.5581E+04 2.5262E+09 4.4833E+02 2.0738E+01]
PLES| 6.1405E+02| 3.2330E+03 1.0545E+07| 6.6159E+03 2.2423E+03| 8.2295E+06| 7.5778E+01| 2.0762E+01|
std ES | 7.0079E+03[ 1.0686E+04 1.2536E+08 8.9026E+03 4.5958E+03 4.3882E+09 2.2861E+02 9.8407E-02
PLES| 1.8803E+03| 2.3321E+03 7.4163E+06| 4.0028E+03| 1.5144E+03 2.8481E+07| 6.5894E+01 1.8862E-01
Ist | ES | 1.7871E-06 | 2.5883E+01| 1.6785E+05 1.8235E+02| 3.2371E+02 7.4254E+0Q 3.3259E-01| 2.0353E+01
PLES| 4.0793E-09T| 2.7034E-01| 1.3234E+05| 2.7380E+02 7.1163E-01| 5.6220E-01| 2.6615E-01| 2.0052E+01
7th ES | 1.3839E-02[ 4.5342E+02 7.6943E+05 3.8105E+03 2.3440E+03 5.2294E+01] 7.9958E-01| 2.0452E+01|
PLES| 7.8396E-09T| 3.1583E+00 4.5552E+05| 3.3190E+03| 6.7570E+01] 7.7440E+00| 1.7361E+00 2.0307E+01
13th | ES | 3.8002E-01 | 1.0044E+03 3.2908E+06 7.2496E+03 4.3654E+03 4.0633E+02 1.2580E+00Q| 2.0546E+01
PLES| 8.5419E-09T| 6.7311E+0Q 7.8938E+05| 5.3960E+03| 4.0588E+02| 8.8934E+01| 2.3759E+0Q 2.0497E+01
104 [ 19th | ES | 2.6012E+00]| 2.3194E+03 6.2816E+06 1.2039E+04 5.6344E+03 2.6639E+03 2.2078E+00| 2.0606E+01
PLES| 9.4716E-09T| 2.3352E+01] 1.7016E+06| 8.5893E+03| 1.6028E+03| 3.3158E+02 5.9660E+00 2.0801E+01|
25th | ES | 2.5015E+03| 1.3137E+04 6.9077E+07| 2.1715E+04 1.3608E+04 1.4355E+05 5.1871E+00| 2.0648E+01
PLES| 9.9332E-09T| 1.0480E+02 4.6729E+06| 1.7484E+04 5.4705E+03 5.5121E+03| 1.7863E+01] 2.1040E+01|
mean| ES | 1.4741E+02| 2.2683E+03 6.7116E+06 8.3023E+03 4.5769E+03 9.3256E+03 1.7570E+00| 2.0528E+01
PLES| 8.4020E-09T| 2.0175E+01] 1.1660E+06| 6.0358E+03| 9.3334E+02 8.8821E+02 4.1339E+00 2.0519E+01
std ES | 5.1400E+02| 3.3490E+03 1.3654E+07| 5.5439E+03| 3.6313E+03 2.9937E+04 1.3817E+00| 8.9628E-02
PLES| 1.4061E-09T| 2.7234E+01 1.1043E+06| 3.8616E+03| 1.2361E+03 1.7524E+03| 4.3759E+00 2.9356E-01

served that PLES performed better tharyp + A\)-ES in almost

Table 2: Error values achieved for problems 1 t@8< 10)

into account the results obtained, with the PLES the prdibhabf
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all problems, except for problems 4, 13, 14, 22 and 25. It khouto observe poor performance in a problem due to poor paramete
be noted that, in some of these problems, PLES performedrbetsettings is reduced.

than (u/p + X)-ES initially (when FES is10%) but (iz/p + X)-
ES outperformed PLES and achieved an inferior error value fasize rule and the development of a recombination operateeca
greater values of FES. This fact can be explained by the greena on more than two parents. Moreover, since the non-isotrsigig

loss of diversity that possibly occurs in population duehie $tep
size adaptation rule implemented in PLES. On the other haiwd,

Future work will concentrate on the study of the adaptatiep s

clear the lower FES required be PLES to obtain the same agcura
levels of (u/p + A)-ES.

5 Conclusion and Future Work

In this paper, a new Parameter-less Evolution Strategy Itidrad)
optimization was presented. This approach incorporagsnidin
features of traditional single objective Evolution Stogs, like
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FES

Alg. 9

10

11

12

13

14

15

16

103 | 19th

1st

ES | 2.7057
PLES| 7.5067

E+01) 5.4136E+01
E+00| 2.1358E+01]

8.3729E+00
5.2205E+00

2.1072E+04
7.4932E+02

1.1915E+02,
2.8158E+00

3.5590E+00
3.2407E+00Q

2.9790E+02
1.9347E+02

2.5069E+02,
1.2240E+02

7th

ES |4.1113
PLES| 1.9733

E+01] 9.7312E+01|
E+01) 2.7741E+01]

1.0585E+01
8.6920E+00

3.3877E+04
5.4597E+03]

7.1901E+02,
5.7107E+00Q

4.0491E+00Q
4.0123E+00

5.9457E+02
4.3607E+02

3.7744E+02
1.5615E+02

13th

ES |5.3037
PLES| 2.2108

E+01] 1.2001E+02
E+01f 3.6522E+01]

1.1564E+01
1.0305E+01

5.9259E+04
8.9372E+03

5.9269E+03
1.1359E+01

4.2013E+00
4.2040E+00Q

7.9756E+02
5.1719E+02

5.4425E+02
1.8247E+02

ES | 6.5459
PLES| 2.8346

E+01] 1.3385E+02
E+01| 4.4073E+01]

1.2434E+01
1.1447E+01

9.0079E+04
1.8608E+04

2.2900E+04
1.8956E+01

4.3105E+00
4.4791E+00Q

9.2507E+02
5.6763E+02

6.1169E+02,
2.1207E+02

25th

ES | 1.0832
PLES| 6.6595

E+02 1.9204E+02
E+01] 5.4128E+01]

1.3654E+01
1.4147E+01]

2.5920E+05
6.0309E+04

9.6909E+04
2.7360E+02

4.5187E+00
4.6975E+00

1.2791E+03
6.1238E+02

8.9532E+02
2.3645E+02

mean

ES | 5.6229
PLES| 2.6284

E+01 1.1842E+02|
E+01{ 3.6699E+01|

1.1464E+01
9.9390E+00

7.3634E+04
1.3773E+04

1.7175E+04
3.0083E+01

4.1490E+00
4.1802E+00Q

7.4828E+02
4.7751E+02)

5.3178E+02
1.8163E+02

std

ES | 2.0323
PLES| 1.1958

E+01] 3.5049E+01
E+01{ 1.0306E+01]

1.4101E+00Q
2.1465E+00

5.3413E+04
1.2994E+04

2.5349E+04
5.7279E+01

2.4737E-01
3.3922E-01

2.5661E+02
1.2424E+02

1.6404E+02
3.3074E+01

10* | 19th

1st

ES |1.6914
PLES| 3.9798

E+01) 2.9849E+01
E+00| 1.1940E+01]

5.1131E+00Q
4.5567E+00

3.2862E+01]
1.2109E+01]

6.9759E-01
8.6153E-01

2.6333E+00
3.2407E+00Q

2.6209E+02
1.2129E+02

2.2160E+02,
9.7223E+01

7th

ES |2.8854
PLES| 1.2259

E+01] 8.1724E+01
E+01] 1.6914E+01]

7.9372E+00
8.1411E+00Q

2.4425E+03
1.9924E+02

2.4600E+00
2.4970E+00Q

3.5326E+00
3.9792E+00

4.4027E+02,
2.9810E+02

3.2551E+02
1.2610E+02

13th

ES | 3.6813
PLES| 1.5919

E+01 1.0248E+02|
E+01{ 2.2884E+01]

9.1460E+00
9.4840E+00

4.4323E+03
1.9340E+03

3.7439E+00,
4.2277E+00

3.8637E+00
4.0758E+00

5.2672E+02
4.2669E+02

4.2561E+02
1.3641E+02

ES |5.2733
PLES| 1.9899

E+01] 1.2337E+02
E+01{ 3.2834E+01]

9.9777E+00Q
1.1447E+01]

1.1396E+04
4.3828E+03

6.5318E+00
8.2262E+00

4.0127E+00]
4.4688E+00

7.2433E+02
4.5424E+02)

5.0851E+02
1.6652E+02

25th

ES | 1.0546
PLES| 4.2783

E+02 1.8307E+02
E+01{ 4.8753E+01

1.1917E+01]
1.4147E+01

4.6248E+04
1.6493E+04

1.0236E+02
7.8681E+01]

4.3405E+00
4.6975E+00

9.6233E+02
5.2299E+02

7.4317E+02
2.0510E+02

mean

ES | 4.4853
PLES| 1.6728

E+01 1.0304E+02|
E+01{ 2.5630E+01]

9.0910E+00
9.5264E+00

8.7686E+03
4.1466E+03

1.0852E+01
9.0290E+00

3.7017E+00Q
4.1392E+00

5.8319E+02
3.7977E+02

4.3871E+02
1.4671E+02

std

ES | 2.3113
PLES| 7.7682

E+01] 3.5427E+01
E+00| 1.0305E+01]

1.7754E+00
2.3612E+00

1.0182E+04
5.2894E+03

2.2368E+01]
1.5951E+01

4.2005E-01
3.5645E-01

2.2561E+02
1.0553E+02

1.3786E+02
2.9549E+01

Table 4: Error values achieved for problems 9 to 4.6 10)

FES

17

18

19

20

21

22

23

24

25

103

Ist | ES

2.8553E+02
1.3854E+07

1.1067E+03
8.3929E+07

1.1065E+03
7.9570E+02

1.0789E+03
7.9570E+07

1.2987E+03
6.0682E+07

1.0406E+03
7.8899E+07

1.3113E+03
5.5947E+07

1.3257E+03
2.2092E+07

4.5353E+07
4.5296E+02

7th | ES

4.1902E+07
1.7866E+07

1.1938E+03
9.8381E+07

1.2279E+03
9.9097E+02

1.2348E+03
9.8344E+07

1.3970E+03
1.1433E+03

1.1422E+03
8.4256E+02

1.4071E+03
1.1974E+03

1.3791E+03
2.9861E+07

5.1444E+04
4.9868E+02

13th| ES

5.0622E+04
2.0330E+07

1.2963E+03
1.0446E+03

1.3001E+03
1.0455E+03

1.3001E+03
1.0350E+03

1.4450E+03
1.2352E+03

1.2477E+03
8.8961E+02

1.4396E+03
1.2651E+03

1.4216E+03
3.8930E+07

5.7657E+07
5.4300E+07

19th| ES

7.6071E+07
2.5274E+07

1.3627E+03
1.0606E+03

1.3930E+03
1.0652E+03

1.3930E+03
1.0513E+03

1.4924E+03
1.2758E+03

1.6047E+03
9.4220E+07

1.4865E+03
1.2836E+03

1.4521E+03
5.9341E+07

7.2705E+07
1.0567E+03

25th| ES

1.1421E+03
3.3778E+02

1.5185E+03
1.1937E+03

1.6231E+03
1.1417E+03

1.6231E+03
1.1417E+03

1.5409E+03
1.2983E+03

1.9754E+03
9.9040E+07

1.5901E+03
1.3357E+03

1.5384E+03
1.3003E+03

1.3341E+03
1.3803E+03

mean ES

5.8144E+07
2.1565E+07

1.2900E+03
1.0259E+03

1.3122E+03
1.0178E+03

1.3100E+03
1.0120E+03

1.4345E+03
1.1459E+03

1.3603E+03
8.9032E+07

1.4455E+03
1.1540E+03

1.4174E+03
4.6362E+07

6.6478E+07
7.5600E+02

std | ES

2.2707E+02
5.2522E+01]

1.1529E+04
7.5220E+01

1.2561E+04
8.4824E+01

1.2987E+02
8.3478E+01

7.0248E+01
2.0769E+02

2.7670E+02
6.1677E+01]

6.9522E+01]
2.3241E+07

5.6030E+01
2.5132E+02

2.2647E+07
3.4558E+07

104

Ist | ES

2.3407E+02
1.2007E+07

1.0304E+03
8.0001E+07

7.8285E+07
7.8089E+02

7.8285E+02
7.8089E+07

1.0754E+03
5.0000E+07

3.0107E+02
7.8274E+02

1.2411E+03
5.5947E+07

2.0000E+07
2.0000E+07

4.1000E+02
4.3025E+07

7th | ES

3.1683E+07
1.6083E+07

1.0751E+03
9.8164E+07

1.0764E+03
9.8336E+02

1.0755E+03
9.7745E+07

1.2677E+03
1.0287E+03

8.8553E+07
8.2676E+02

1.2819E+03
1.1404E+03

1.2963E+03
2.0000E+07

4.1263E+07
4.4710E+07

13th| ES

4.4399E+07
1.8788E+07

1.1166E+03
1.0333E+03

1.1303E+03
1.0286E+03

1.1303E+03
1.0279E+03

1.3255E+03
1.2020E+03

1.0522E+03
8.8961E+02

1.3546E+03
1.2650E+03

1.3354E+03
2.0000E+07

4.1489E+07
4.6860E+07

19th| ES

5.5663E+07
2.1604E+07

1.1796E+03
1.0538E+03

1.1745E+03
1.0493E+03

1.1716E+03
1.0456E+03

1.3831E+03
1.2704E+03

1.1096E+03
9.4220E+07

1.4219E+03
1.2836E+03

1.3856E+03
2.0008E+07

4.1997E+02
1.0547E+03

25th| ES

9.3866E+04
3.2365E+07

1.3509E+03
1.1916E+03

1.3707E+03
1.1294E+03

1.3708E+03
1.1053E+03

1.4963E+03
1.2983E+03

1.9342E+03
9.9040E+07

1.5624E+03
1.3217E+03

1.5179E+03
1.2942E+03

4.6031E+07
1.3714E+03

mean ES

4.6353E+07
1.9592E+07

1.1476E+03
1.0148E+03

1.1277E+03
1.0019E+03

1.1281E+03
9.9894E+07

1.3209E+03
1.0794E+03

1.0203E+03
8.8049E+07

1.3539E+03
1.1141E+03

1.2125E+03
2.8238E+07

4.1841E+02
6.9232E+02

std | ES

1.7297E+07

9.4503E+01

5.1283E+01]

8.2949E+01

1.1569E+02
8.8570E+01

1.1491E+02
8.7189E+01

1.0333E+04
2.8000E+02

3.1895E+07
6.4666E+01]

8.2235E+01
2.7371E+07

3.6895E+02
2.3622E+07

1.0072E+01
3.6234E+07

Table 5: Error values achieved for problems 17 to25510)
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