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Abstract- Several evolutionary approaches have been applied to global optimization problems with significant
success. Evolution strategies proved to be efficient global optimizers. However, these algorithms have several
parameters which the setting is not simple. Thus, it is crucial to investigate how to set dynamically these parameters
during the search. In this paper, a new parameter-less evolution strategy, which has only one single parameter to
set, is proposed. This algorithm is compared with the traditional evolution strategies considering a set of difficult
test problems. The results obtained indicate a promising performance of the new approach.
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1 Introduction

Several evolutionary approaches have been applied to
global optimization problems with success, namely Genetic
Algorithms [1] and Evolution Strategies [2] [3]. In the past,
Evolution Strategies (ESs) proved to be powerful global op-
timizers [4]. They use a real coding of decision variables
and the adaptation of step sizes for mutation. However, ESs
have multiple parameters that are difficult to set since they
are problem dependent. So, these algorithms require some
expertise in order to make them work conveniently. On the
other hand, in general, some previous experimentation is
needed in order to tune the algorithm parameters. More-
over, in general, interaction between parameters exists and
must be taken into account. Thus, it is relevant to search
for algorithms that have a reduced number of parameters to
set. These algorithms must took the task of setting param-
eters from the user. These parameters must be set by the
algorithm itself during the search taking into account the
features of the problem being solved.

In the proposed approach, the Parameter-less Evolution
Strategy (PLES), an effort was made in order to avoid the
difficult task of setting initial values for parameters. So, the
setting of almost all parameters required by traditional ESs
was avoided. Several adaptation rules that avoid the need
for the initial setting of parameters were implemented. On
the other hand, new operators were developed in order to
improve the performance of the adaptation rules.

In order to evaluate its performance, PLES was com-
pared with a traditional(µ/ρ + λ)-ES using a set of dif-
ficult test problems. With this preliminary experiments, it
was intended to validate the new approach in order to iden-
tify future developments of the algorithm. The preliminary
results obtained indicate a good performance of the new ap-
proach. Thus, future developments of the algorithm should
be investigated.

In section 2, a short introduction to ESs is presented.
Section 3 describes the Parameter-less Evolution Strategy
(PLES) implemented. Next, the results of the application to
several test problems are presented, as well as some compar-
isons with traditional ESs. Finally, some conclusions and

future work are addressed.

2 Global Optimization with Evolution Strate-
gies

Evolution Strategies are search procedures that mimic the
natural evolution of the species in the natural systems. In
the past, ESs were applied to the resolution of nonlinear
optimization problems without constraints. These problems
can be formulated, mathematically, as follows:

min f(x) with x ∈ Rn (1)

subject to
α ≤ x ≤ β

wherex is the vector ofn real decision variables,f(x) is the
objective function to minimize, andα andβ are the vectors
of the lower and upper bounds of the decision variables.

ESs work directly with the real representation of the pa-
rameter set, searching from an initial population (a set of
points), requiring only data based on the objective func-
tion and constraints, and not derivatives or other auxiliary
knowledge. Traditionally, two distinct types of ESs differ-
ing basically on the selection procedure are considered: the
(µ + λ)-ES and the(µ, λ)-ES.

In this nomenclature,µ andλ represent, respectively, the
parent and offspring population sizes (for many problems,
λ/µ ≈ 7 is suggested [3]). Each population member con-
sists on a tuple of two vectors: a vector of real values repre-
senting the decision variables and a vector of real standard
deviations used to adapt step sizes during the search. Thus,
each decision variablei has an associated standard devia-
tion σi. The search starts from an initial population which
individuals are, in general, generated at random. The ini-
tial standard deviationsσi can be set according to equation
(2), where∆x is a rough measure of the distance from the
optimum andn is the dimension of the problem.

σ
(0)
i

=
∆x
√

n
(2)
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Alternatively, if an approximation to the optimum is not
known, the setting given by the following equation can be
considered:

σ
(0)
i

=
βi − αi

λ
√

n
. (3)

In spite of, traditionally, the search of new points was
based on one single operator, the mutation operator, in gen-
eral, ESs benefit with the introduction of the recombination
operator. Thus, the nomenclature for ESs can now be ex-
tended, and ESs with recombination are usually referred as
(µ/ρ+λ)-ES or(µ/ρ, λ)-ES. It should be noted that one of
the most promising features of ESs is that they use adaptive
step sizes for mutation. So, these parameters of the algo-
rithm are themselves optimized during the search.

Next, the basic algorithm and the main features of ESs
are presented.

2.1 Algorithm

The basic(µ/ρ+
, λ)-ES can be described as follows:

(µ/ρ+
, λ)- Evolution Strategy

1. Initialization of the individuals of the parent population and
corresponding step sizes

(x(0)
p ; σ(0)

p ) = (x
(0)
p,1, . . . , x

(0)
p,n; σ

(0)
p,1, . . . , σ

(0)
p,n)

wherex
(0)
p,i ∼ U(αi, βi) andσ

(0)
p,i = βi−αi

λ
√

n
, for all p =

1, . . . , µ andi = 1, . . . , n.

2. Letk = 0

3. Recombination of the individuals of the parent population

(ex(k)
p ; eσ(k)

p ) = (x
(k)
u1,1, . . . , x

(k)
un,n; σ

(k)
u1,1, . . . , σ

(k)
un,n)

whereui ∼ U(1, ρ) andui integer, for allp = 1, . . . , µ
andi = 1, . . . , n.

4. Step size adaptation

Non-isotropic adaptation

(bx(k)
p ; bσ(k)

p ) = (ex(k)
p,1, . . . , ex(k)

p,n; eσ(k)
p,1ez1ez, . . . , eσ(k)

p,neznez)

wherezi ∼ N(0, ∆σ2), z ∼ N(0, ∆σ‘2), for all p =
1, . . . , µ andi = 1, . . . , n.

5. Mutation of the individuals of the parent population

(x
(k)
d ; σ

(k)
d ) = (bx(k)

u,1+zd,1, . . . , bx(k)
u,n+zd,n; bσ(k)

u,1, . . . , bσ(k)
u,n)

wherezd,i ∼ N(0, bσ(k)
u,i ),

u =

�
µ if d = µ, 2µ, . . . , Kµ with K integer
d//µ otherwise

(// states for the rest of integer division), for alld =
1, . . . , λ andi = 1, . . . , n.

6. Selection

If (,)-selection then

(x̌(k)
q ; σ̌(k)

q ) = (x(k)
q ; σ(k)

q )

for q = 1, . . . , λ

Sort all (x̌(k)
q ; σ̌

(k)
q ), so thatf(x̌

(k)
a ) ≤ f(x̌

(k)
b ) for all

a, b = 1, . . . , λ.

If (+)-selection then

(x̌(k)
q ; σ̌(k)

q ) =

(
(x

(k)
q ; σ

(k)
q ) if 1 ≤ q ≤ µ

(x
(k)
q−µ; σ

(k)
q−µ) if µ + 1 ≤ q ≤ µ + λ

for q = 1, . . . , µ + λ

Sort all (x̌(k)
q ; σ̌

(k)
q ), so thatf(x̌

(k)
a ) ≤ f(x̌

(k)
b ) for all

a, b = 1, . . . , µ + λ.

7. Replace the individuals of the parent population

(x(k+1)
p ; σ(k+1)

p ) = (x̌(k)
p ; σ̌(k)

p )

for p = 1, . . . , µ.

k = k + 1.

8. If stopping criterion is not true then return to step 3. else
end.

Thus, in a(µ/ρ + λ)-ES, at a given generation, there areµ
parents, andλ offspring are generated by recombination and mu-
tation. Basically, the recombination operator consists on, before
mutation, to recombine a set of chosen parents to find a new solu-
tion. On other hand, mutation creates new points by adding ran-
dom normal distributed quantities. Next, theµ + λ individuals
are sorted according to their objective function values. Finally,
the bestµ of all the µ + λ members become the parents of the
next generation (i.e., the selection takes place between the µ + λ
members). The(µ/ρ, λ)-ES is similar differing, basically, on the
selection procedure that is restricted to the offspring population,
i.e., the selection takes place between theλ offspring.

2.2 Recombination

Basically, the recombination operator consists on, beforemuta-
tion, to recombine a set of chosen parents to find a new solution.
A given numberρ (1 ≤ ρ ≤ µ) of parents are randomly chosen
for recombination. Whenρ = 1 then there is no recombination.
Two types of recombination are, mainly, considered: intermediate
and discrete recombination. Since, in this work, the recombination
implemented was the discrete recombination, only this recombina-
tion will be described in detail. In the discrete recombination, each
component of the offspring is chosen from one of theρ parents at
random. Thus, forρ chosen parents (randomly selected from pop-
ulation), the offspringxp is given by

xp = (xu1,1, . . . , xun,n)

with u1 ∈ {1, . . . , ρ}, . . . , un ∈ {1, . . . , ρ} andp = 1, . . . , µ.
In discrete recombination, the integer uniform random valuesui,
for i = 1, . . . , n, allow the selection of which of theρ parents
will give the value of decision variablei. This procedure allows
different combinations of the values of the decision variables from
existing solutions in the population. Standard deviationsare simi-
larly recombined.

2.3 Step size adaptation

During the search, the step sizes for mutation are adapted. Sev-
eral self-adaptation schemes are possible. One possibility is to
actualize the standard deviationsσi (for each decision variable)
according to the equation [3]:

σ
(k+1)
i = σ

(k)
i eziez (4)

wherezi ∼ N(0, ∆σ2), z ∼ N(0, ∆σ‘2) and∆σ and∆σ‘ are
parameters of the algorithm. In the experiments conducted only
this non-isotropic adaptation rule was considered, other adaptation
rules are described by Bäck [5].
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2.4 Mutation

Usually, the random numbersz(k) are generated according to a
Gaussian or Normal distribution. Besides, it is convenientthat
small changes occur frequently, but large ones only rarely.So,
two requirements arise together for the generation of the random
numbersz(k):

• the expected value of the componentsz
(k)
i of z(k) must be

equal to zero, i.e.,E(z
(k)
i ) = 0 for i = 1, . . . , n, and

• the variancesσ2
i must be small, fori = 1, . . . , n.

In this sense, the random numbersz
(k)
i can be generated ac-

cording to a Normal distribution with mean zero and varianceσ2
i :

z
(k)
i ∼ N(0, σ2

i ) (5)

So, mutation consists on adding random numbers with mean
zero and varianceσ2

i to the vector of decision variables, i.e.,xd =
xu + z.

3 The Parameter-less Evolution Strategy

In general, evolutionary algorithms have multiple parameters that
are difficult to set since they are problem dependent. So, these
algorithms require some expertise in order to make them work
conveniently. On the other hand, in general, some previous ex-
perimentation is needed in order to tune the algorithm parameters.
Although the inclusion in ESs of some adaptation rules for some
parameters, there are always some parameters that are required to
set. Moreover, in general, interaction between parametersis an im-
portant issue that must be taken into account. Thus, it is relevant
to search for algorithms that have a reduced number of parameters
to set.

In the proposed approach, the so-called Parameter-less Evolu-
tion Strategy, an effort was made in order to avoid the difficult task
of setting initial values for parameters. So, the setting ofalmost
all parameters required by traditional ESs was avoided. Actually,
PLES requires the initial setting of one single parameter, the par-
ent population size (µ). The algorithm includes several adaptation
rules that avoid the need for initial values of parameters. On the
other, the recombination and mutation operators were also sub-
stantially modified in order to allow the implementation of partic-
ular adaptation rules.

The adaptation rule for standard deviations is based on the suc-
cess of the parents to generate better offspring. This rule implies
the sampling of the search space taking into account the distances
between the parents and the generated offspring. Thus, in PLES,
the number of offspring corresponds to the number of possible
combinations of two parents, i.e.:

λ =

 
µ

2

!
=

µ!

2!(µ − 2)!
.

Each generation,λ offspring are generated by recombination
and mutation of all pairs of two parents. This scheme allows the
use of the distance between parents and offspring to estimate or
adapt the standard deviations. It should be noted that the recombi-
nation and mutation operators were also modified in order to col-
lect this information. On the contrary to traditional ESs inwhich
recombination and mutation are applied at distinct steps ofthe al-
gorithm, in PLES, these operators are applied conjointly.

3.1 Algorithm

The basic PLES algorithm can be described as follows:

Parameter-less Evolution Strategy

1. Initialization of the individuals of the parent population and
corresponding step sizes

(x(0)
p ; σ(0)

p ) = (x
(0)
p,1, . . . , x

(0)
p,n; σ

(0)
p,1, . . . , σ

(0)
p,n)

wherex
(0)
p,i ∼ U(αi, βi) andσ

(0)
p,i = βi − αi, for all p =

1, . . . , µ andi = 1, . . . , n.

2. Letk = 0

3. Recombination and mutation of the individuals of the par-
ent population

(ex(k)
d ; eσ(k)

d ) = (x
(k)
c,1 , . . . , x(k)

c,n; σ
(k)
c,1 , . . . , σ(k)

c,n)

where x
(k)
c,i = (x

(k)
a,i + x

(k)
b,i )/2 + zd,i with

zd,i ∼ N(0,
q

(σ
(k)
a,i )

2 + (σ
(k)
b,i )2/2) and σ

(k)
c,i =q

(σ
(k)
a,i )

2 + (σ
(k)
b,i )2/2 (a and b correspond to a com-

bination of two progenitors), for alld = 1, . . . , λ and
i = 1, . . . , n.

4. Step size adaptation

Success based adaptation

ComputeDda,i = ex(k)
d,i − x

(k)
a,i andDdb,i = ex(k)

d,i − x
(k)
b,i

with i = 1, . . . , n

if f(ex(k)
d ) < f(x

(k)
a ) then

(x(k)
a ; σ(k)

a ) = (x
(k)
a,1, . . . , x

(k)
a,n; |Dda,1|, . . . , |Dda,n|)

if f(ex(k)
d ) < f(x

(k)
b ) then

(x
(k)
b ; σ

(k)
b ) = (x

(k)
b,1 , . . . , x

(k)
b,n; |Ddb,1|, . . . , |Ddb,n|)

for all d = 1, . . . , λ andi = 1, . . . , n.

Non-isotropic adaptation

(bx(k)
p ; bσ(k)

p ) = (ex(k)
p,1, . . . , ex(k)

p,n; eσ(k)
p,1ez1ez, . . . , eσ(k)

p,neznez)

wherezi ∼ N(0, 1), z ∼ N(0, 1), for all p = 1, . . . , µ
andi = 1, . . . , n.

5. Selection

(x̌(k)
q ; σ̌(k)

q ) =

(
(x

(k)
q ; σ

(k)
q ) if 1 ≤ q ≤ µ

(bx(k)
q−µ; bσ(k)

q−µ) if µ + 1 ≤ q ≤ µ + λ

for q = 1, . . . , µ + λ

Sort all (x̌(k)
q ; σ̌

(k)
q ), so thatf(x̌

(k)
a ) ≤ f(x̌

(k)
b ) for all

a, b = 1, . . . , µ + λ.

6. Replace the individuals of the parent population

(x(k+1)
p ; σ(k+1)

p ) = (x̌(k)
p ; σ̌(k)

p )

for p = 1, . . . , µ.

k = k + 1.

7. If stopping criterion is not true then return to step 3. else
end.

As in traditional ESs, in PLES, at a given generation, there
areµ parents, andλ offspring are generated by recombination and
mutation. However, the recombination and mutation operators act
jointly. Thus, all parents are recombined and mutated in order to
generate new offspring. Theµ+λ individuals are sorted according
to their objective function values. Finally, the bestµ of all the
µ + λ members become the parents of the next generation. Thus,
in PLES, the selection is similar to the (µ/ρ + λ)-ES selection.
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3.2 Recombination and Mutation

Each generation,λ offspring are generated by recombination and
mutation of all pairs of two parents. Each combination of two
parents generates an offspring. Thus, the offspringxd, generated
from parentsxa andxb by recombination and mutation, is given
by:

xd = (xc,1, . . . , xc,n)

wherexc,i =
xa,i+xb,i

2
+ zd,i with zd,i ∼ N(0,

q
σ2

a,i
+σ2

b,i

2
), for

all d = 1, . . . , λ andi = 1, . . . , n.
The new offspring inherits from parentsa andb the following

standard deviations:

σd,i =

q
σ2

a,i + σ2
b,i

2

wherei = 1, . . . , n. The application of these operators in a single
phase allows the implementation of a step size adaptation rule that
takes into account the success of the parents in generating new
better offspring.

3.3 Step size adaptation

During the search, the step sizes for mutation are adapted. The step
sizes are adapted in two phases: firstly, the adaptation is based on
the success of the parents to generate offspring; secondly,a non-
isotropic adaptation rule is applied.

The success based adaption consists on, after the generation
of an offspring from the recombination of two parents, to actualize
the standard deviations of the parents. If the offspring is better than
a parent (or both parents) then the standard deviations of the parent
(or parents) is (are) actualized according to the distancesbetween
the parents and the offspring. Thus, for each decision variable i,
the distances between each parent and the offspring are computed.
This success based rule can be expressed by:�

σa,i = |Dda,i| if f(xd) < f(xa)
σb,i = |Ddb,i| if f(xd) < f(xb)

whereDda,i = xd,i − xa,i andDdb,i = xd,i − xb,i, for all d =
1, . . . , λ andi = 1, . . . , n.

A non-isotropic adaptation scheme is also applied in order to
actualize the standard deviationsσi (for each decision variable)
according to the equation:

σ
(k+1)
i = σ

(k)
i eziez (6)

wherezi ∼ N(0, 1), z ∼ N(0, 1).

4 Results

In this section the results obtained by the PLES and a(µ/ρ + λ)-
ES are presented. The parameters of the algorithms, implemented
in C language, were kept constant for all problems (no effortwas
made in finding the best parameter setting for each problem).The
algorithms were executed in a PC with a Pentium(R) 4 (2.00 GHz)
CPU and 256 MB of RAM (running the Windows ME operating
system). The Table 1 presents the parameters considered forthe
(µ/ρ+λ)-ES. The parent population size (µ) considered for PLES
was 10 individuals.

4.1 Test Problems and Performance Evaluation Criteria

The 25 test problems considered are summarized in Table 3. These
problems were collected by Suganthan and are available at the web

Parameter Value
Parents population size (µ ) 10
Offspring population size (λ) 100
Number of recombinants (ρ) 10
Selection type +
∆σ 1/

√

(2n)

∆σ‘ 1/
√

(2
√

(n))

Table 1: The(µ/ρ+λ)-ES parameters considered in exper-
iments

Unimodal Functions:
F1: Shifted Sphere Function
F2: Shifted Schwefel’s Problem 1.2
F3: Shifted Rotated High Conditioned Elliptic Function
F4: Shifted Schwefel’s Problem 1.2 with Noise in Fitness
F5: Schwefel’s Problem 2.6 with Global Optimum on Bounds
Multimodal Functions:
F6: Shifted Rosenbrock’s Function
F7: Shifted Rotated Griewank’s Function without Bounds
F8: Shifted Rotated Ackley’s Function

with Global Optimum on Bounds
F9: Shifted Rastrigin’s Function
F10: Shifted Rotated Rastrigin’s Function
F11: Shifted Rotated Weierstrass Function
F12: Schwefel’s Problem 2.13
F13: Expanded Extended Griewank’s

plus Rosenbrock’s Function (F8F2)
F14: Shifted Rotated Expanded Scaffer’s F6
F15: Hybrid Composition Function
F16: Rotated Hybrid Composition Function
F17: Rotated Hybrid Composition Function with Noise in Fitness
F18: Rotated Hybrid Composition Function
F19: Rotated Hybrid Composition Function

with a Narrow Basin for the Global Optimum
F20: Rotated Hybrid Composition Function

with the Global Optimum on the Bounds
F21: Rotated Hybrid Composition Function
F22: Rotated Hybrid Composition Function

with High Condition Number Matrix
F23: Non-Continuous Rotated Hybrid Composition Function
F24: Rotated Hybrid Composition Function
F25: Rotated Hybrid Composition Function without Bounds

Table 3: Test Problems

site address: http://www.ntu.edu.sg/home/EPNSugan. This set of
difficult test problems intends to constitute a standard test suite for
global optimization, including problems with very distinct proper-
ties. In this paper only the results for the problems considering 10
decision variables are included (each problem was solved byeach
algorithm 25 times). Initial populations were uniformly generated
at random within the search space (except for problems 7 and 25,
for which specific initialization ranges are required). Each exe-
cution was terminated when the error (|f(x) − f(x∗)|) becomes
inferior to 10−8. The maximum number of function evaluations
(FES) allowed was 10000. In order to compare the performance
of the algorithms during the search toward the optimum, the error
was recorded for FES equal to103 and104.

4.2 Discussion

Tables 2, 4 and 5 present the error values achieved when FES was
set to103 and104. For each function, the best (1st), 7th, median
(13th), 19th, worst (25th), mean and standard deviation of the er-
ror values achieved are presented. From these tables, taking into
account the best error achieved when FES is104, it can be ob-
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FES Alg. 1 2 3 4 5 6 7 8
1st ES 1.7949E+03 4.5853E+03 1.0631E+07 9.3638E+03 7.4491E+03 1.5571E+07 1.0294E+02 2.0506E+01

PLES 9.1088E+00 5.7120E+02 9.1815E+05 4.4155E+02 7.1613E+02 7.6823E+03 4.0755E+00 2.0325E+01
7th ES 8.2397E+03 1.2766E+04 8.6963E+07 1.5645E+04 1.2194E+04 5.0154E+08 2.5575E+02 2.0677E+01

PLES 3.6238E+01 1.7565E+03 5.0438E+06 3.4986E+03 1.2012E+03 7.4683E+04 3.1421E+01 2.0660E+01
13th ES 1.1797E+04 1.8060E+04 1.5969E+08 2.2094E+04 1.5973E+04 1.0638E+09 4.1709E+02 2.0744E+01

PLES 9.0533E+01 2.6395E+03 7.7964E+06 5.9841E+03 1.8286E+03 4.9335E+05 6.8927E+01 2.0786E+01
10

3 19th ES 1.5289E+04 2.4144E+04 2.7509E+08 2.5466E+04 1.7969E+04 3.1175E+09 6.2194E+02 2.0814E+01
PLES 3.5851E+02 3.8877E+03 1.6207E+07 8.6644E+03 2.5582E+03 1.3357E+06 9.0168E+01 2.0906E+01

25th ES 3.5099E+04 5.0376E+04 4.2652E+08 5.2091E+04 2.4149E+04 2.2225E+10 9.4772E+02 2.0914E+01
PLES 9.4706E+03 1.1286E+04 2.8051E+07 1.7558E+04 6.5111E+03 1.3441E+08 3.1915E+02 2.1077E+01

mean ES 1.2605E+04 1.9882E+04 1.7786E+08 2.2299E+04 1.5581E+04 2.5262E+09 4.4833E+02 2.0738E+01
PLES 6.1405E+02 3.2330E+03 1.0545E+07 6.6159E+03 2.2423E+03 8.2295E+06 7.5778E+01 2.0762E+01

std ES 7.0079E+03 1.0686E+04 1.2536E+08 8.9026E+03 4.5958E+03 4.3882E+09 2.2861E+02 9.8407E-02
PLES 1.8803E+03 2.3321E+03 7.4163E+06 4.0028E+03 1.5144E+03 2.8481E+07 6.5894E+01 1.8862E-01

1st ES 1.7871E-06 2.5883E+01 1.6785E+05 1.8235E+02 3.2371E+02 7.4254E+00 3.3259E-01 2.0353E+01
PLES 4.0793E-09T 2.7034E-01 1.3234E+05 2.7380E+02 7.1163E-01 5.6220E-01 2.6615E-01 2.0052E+01

7th ES 1.3839E-02 4.5342E+02 7.6943E+05 3.8105E+03 2.3440E+03 5.2294E+01 7.9958E-01 2.0452E+01
PLES 7.8396E-09T 3.1583E+00 4.5552E+05 3.3190E+03 6.7570E+01 7.7440E+00 1.7361E+00 2.0307E+01

13th ES 3.8002E-01 1.0044E+03 3.2908E+06 7.2496E+03 4.3654E+03 4.0633E+02 1.2580E+00 2.0546E+01
PLES 8.5419E-09T 6.7311E+00 7.8938E+05 5.3960E+03 4.0588E+02 8.8934E+01 2.3759E+00 2.0497E+01

10
4 19th ES 2.6012E+00 2.3194E+03 6.2816E+06 1.2039E+04 5.6344E+03 2.6639E+03 2.2078E+00 2.0606E+01

PLES 9.4716E-09T 2.3352E+01 1.7016E+06 8.5893E+03 1.6028E+03 3.3158E+02 5.9660E+00 2.0801E+01
25th ES 2.5015E+03 1.3137E+04 6.9077E+07 2.1715E+04 1.3608E+04 1.4355E+05 5.1871E+00 2.0648E+01

PLES 9.9332E-09T 1.0480E+02 4.6729E+06 1.7484E+04 5.4705E+03 5.5121E+03 1.7863E+01 2.1040E+01
mean ES 1.4741E+02 2.2683E+03 6.7116E+06 8.3023E+03 4.5769E+03 9.3256E+03 1.7570E+00 2.0528E+01

PLES 8.4020E-09T 2.0175E+01 1.1660E+06 6.0358E+03 9.3334E+02 8.8821E+02 4.1339E+00 2.0519E+01
std ES 5.1400E+02 3.3490E+03 1.3654E+07 5.5439E+03 3.6313E+03 2.9937E+04 1.3817E+00 8.9628E-02

PLES 1.4061E-09T 2.7234E+01 1.1043E+06 3.8616E+03 1.2361E+03 1.7524E+03 4.3759E+00 2.9356E-01

Table 2: Error values achieved for problems 1 to 8 (n = 10)

served that PLES performed better than(µ/ρ + λ)-ES in almost
all problems, except for problems 4, 13, 14, 22 and 25. It should
be noted that, in some of these problems, PLES performed better
than (µ/ρ + λ)-ES initially (when FES is103) but (µ/ρ + λ)-
ES outperformed PLES and achieved an inferior error value for
greater values of FES. This fact can be explained by the premature
loss of diversity that possibly occurs in population due to the step
size adaptation rule implemented in PLES. On the other hand,it is
clear the lower FES required be PLES to obtain the same accuracy
levels of(µ/ρ + λ)-ES.

5 Conclusion and Future Work

In this paper, a new Parameter-less Evolution Strategy for global
optimization was presented. This approach incorporates the main
features of traditional single objective Evolution Strategies, like
real representation of the decision variables and self-adaptation of
step sizes, but the initial values for parameters are set by the algo-
rithm itself.

One of the main advantages of this algorithm is that relievesthe
user from having to set the initial values of the parameters.Usu-
ally, this setting requires some previous experimentationin order
to choose the better values for the problem being solved. This ex-
perimentation is often time consuming and must take into account
the interactions between parameters. Thus, since this taskis diffi-
cult, it is important to reduce the number of parameters to set and
simplify the usage of algorithms.

The proposed step size adaptation rule takes into account the
success of parents to generate offspring. The distances between
parents and offsprings are used to estimate suited step sizes. This
rule combined with the one-phase recombination/mutation oper-
ator allows the achievement of performance of PLES superiorto
(µ/ρ + λ)-ES on some of the test problems considered. However,
more experimentation should be carried out in order to identify the
strengths and drawbacks of the new approach. Generally, taking

into account the results obtained, with the PLES the probability of
to observe poor performance in a problem due to poor parameter
settings is reduced.

Future work will concentrate on the study of the adaptation step
size rule and the development of a recombination operator based
on more than two parents. Moreover, since the non-isotropicstep
size rule may be extend to incorporate correlations betweendeci-
sion variables, some investigation will be carried in this subject.
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FES Alg. 9 10 11 12 13 14 15 16
1st ES 2.7057E+01 5.4136E+01 8.3729E+00 2.1072E+04 1.1915E+02 3.5590E+00 2.9790E+02 2.5069E+02

PLES 7.5067E+00 2.1358E+01 5.2205E+00 7.4932E+02 2.8158E+00 3.2407E+00 1.9347E+02 1.2240E+02
7th ES 4.1113E+01 9.7312E+01 1.0585E+01 3.3877E+04 7.1901E+02 4.0491E+00 5.9457E+02 3.7744E+02

PLES 1.9733E+01 2.7741E+01 8.6920E+00 5.4597E+03 5.7107E+00 4.0123E+00 4.3607E+02 1.5615E+02
13th ES 5.3037E+01 1.2001E+02 1.1564E+01 5.9259E+04 5.9269E+03 4.2013E+00 7.9756E+02 5.4425E+02

PLES 2.2108E+01 3.6522E+01 1.0305E+01 8.9372E+03 1.1359E+01 4.2040E+00 5.1719E+02 1.8247E+02
10

3 19th ES 6.5459E+01 1.3385E+02 1.2434E+01 9.0079E+04 2.2900E+04 4.3105E+00 9.2507E+02 6.1169E+02
PLES 2.8346E+01 4.4073E+01 1.1447E+01 1.8608E+04 1.8956E+01 4.4791E+00 5.6763E+02 2.1207E+02

25th ES 1.0832E+02 1.9204E+02 1.3654E+01 2.5920E+05 9.6909E+04 4.5187E+00 1.2791E+03 8.9532E+02
PLES 6.6595E+01 5.4128E+01 1.4147E+01 6.0309E+04 2.7360E+02 4.6975E+00 6.1238E+02 2.3645E+02

mean ES 5.6229E+01 1.1842E+02 1.1464E+01 7.3634E+04 1.7175E+04 4.1490E+00 7.4828E+02 5.3178E+02
PLES 2.6284E+01 3.6699E+01 9.9390E+00 1.3773E+04 3.0083E+01 4.1802E+00 4.7751E+02 1.8163E+02

std ES 2.0323E+01 3.5049E+01 1.4101E+00 5.3413E+04 2.5349E+04 2.4737E-01 2.5661E+02 1.6404E+02
PLES 1.1958E+01 1.0306E+01 2.1465E+00 1.2994E+04 5.7279E+01 3.3922E-01 1.2424E+02 3.3074E+01

1st ES 1.6914E+01 2.9849E+01 5.1131E+00 3.2862E+01 6.9759E-01 2.6333E+00 2.6209E+02 2.2160E+02
PLES 3.9798E+00 1.1940E+01 4.5567E+00 1.2109E+01 8.6153E-01 3.2407E+00 1.2129E+02 9.7223E+01

7th ES 2.8854E+01 8.1724E+01 7.9372E+00 2.4425E+03 2.4600E+00 3.5326E+00 4.4027E+02 3.2551E+02
PLES 1.2259E+01 1.6914E+01 8.1411E+00 1.9924E+02 2.4970E+00 3.9792E+00 2.9810E+02 1.2610E+02

13th ES 3.6813E+01 1.0248E+02 9.1460E+00 4.4323E+03 3.7439E+00 3.8637E+00 5.2672E+02 4.2561E+02
PLES 1.5919E+01 2.2884E+01 9.4840E+00 1.9340E+03 4.2277E+00 4.0758E+00 4.2669E+02 1.3641E+02

10
4 19th ES 5.2733E+01 1.2337E+02 9.9777E+00 1.1396E+04 6.5318E+00 4.0127E+00 7.2433E+02 5.0851E+02

PLES 1.9899E+01 3.2834E+01 1.1447E+01 4.3828E+03 8.2262E+00 4.4688E+00 4.5424E+02 1.6652E+02
25th ES 1.0546E+02 1.8307E+02 1.1917E+01 4.6248E+04 1.0236E+02 4.3405E+00 9.6233E+02 7.4317E+02

PLES 4.2783E+01 4.8753E+01 1.4147E+01 1.6493E+04 7.8681E+01 4.6975E+00 5.2299E+02 2.0510E+02
mean ES 4.4853E+01 1.0304E+02 9.0910E+00 8.7686E+03 1.0852E+01 3.7017E+00 5.8319E+02 4.3871E+02

PLES 1.6728E+01 2.5630E+01 9.5264E+00 4.1466E+03 9.0290E+00 4.1392E+00 3.7977E+02 1.4671E+02
std ES 2.3113E+01 3.5427E+01 1.7754E+00 1.0182E+04 2.2368E+01 4.2005E-01 2.2561E+02 1.3786E+02

PLES 7.7682E+00 1.0305E+01 2.3612E+00 5.2894E+03 1.5951E+01 3.5645E-01 1.0553E+02 2.9549E+01

Table 4: Error values achieved for problems 9 to 16 (n = 10)

FES Alg. 17 18 19 20 21 22 23 24 25
1st ES 2.8553E+02 1.1067E+03 1.1065E+03 1.0789E+03 1.2987E+03 1.0406E+03 1.3113E+03 1.3257E+03 4.5353E+02

PLES 1.3854E+02 8.3929E+02 7.9570E+02 7.9570E+02 6.0682E+02 7.8899E+02 5.5947E+02 2.2092E+02 4.5296E+02
7th ES 4.1902E+02 1.1938E+03 1.2279E+03 1.2348E+03 1.3970E+03 1.1422E+03 1.4071E+03 1.3791E+03 5.1444E+02

PLES 1.7866E+02 9.8381E+02 9.9097E+02 9.8344E+02 1.1433E+03 8.4256E+02 1.1974E+03 2.9861E+02 4.9868E+02
13th ES 5.0622E+02 1.2963E+03 1.3001E+03 1.3001E+03 1.4450E+03 1.2477E+03 1.4396E+03 1.4216E+03 5.7657E+02

PLES 2.0330E+02 1.0446E+03 1.0455E+03 1.0350E+03 1.2352E+03 8.8961E+02 1.2651E+03 3.8930E+02 5.4300E+02
10

3 19th ES 7.6071E+02 1.3627E+03 1.3930E+03 1.3930E+03 1.4924E+03 1.6047E+03 1.4865E+03 1.4521E+03 7.2705E+02
PLES 2.5274E+02 1.0606E+03 1.0652E+03 1.0513E+03 1.2758E+03 9.4220E+02 1.2836E+03 5.9341E+02 1.0567E+03

25th ES 1.1421E+03 1.5185E+03 1.6231E+03 1.6231E+03 1.5409E+03 1.9754E+03 1.5901E+03 1.5384E+03 1.3341E+03
PLES 3.3778E+02 1.1937E+03 1.1417E+03 1.1417E+03 1.2983E+03 9.9040E+02 1.3357E+03 1.3003E+03 1.3803E+03

mean ES 5.8144E+02 1.2900E+03 1.3122E+03 1.3100E+03 1.4345E+03 1.3603E+03 1.4455E+03 1.4174E+03 6.6478E+02
PLES 2.1565E+02 1.0259E+03 1.0178E+03 1.0120E+03 1.1459E+03 8.9032E+02 1.1540E+03 4.6362E+02 7.5600E+02

std ES 2.2707E+02 1.1529E+02 1.2561E+02 1.2987E+02 7.0248E+01 2.7670E+02 6.9522E+01 5.6030E+01 2.2647E+02
PLES 5.2522E+01 7.5220E+01 8.4824E+01 8.3478E+01 2.0769E+02 6.1677E+01 2.3241E+02 2.5132E+02 3.4558E+02

1st ES 2.3407E+02 1.0304E+03 7.8285E+02 7.8285E+02 1.0754E+03 3.0107E+02 1.2411E+03 2.0000E+02 4.1000E+02
PLES 1.2007E+02 8.0001E+02 7.8089E+02 7.8089E+02 5.0000E+02 7.8274E+02 5.5947E+02 2.0000E+02 4.3025E+02

7th ES 3.1683E+02 1.0751E+03 1.0764E+03 1.0755E+03 1.2677E+03 8.8553E+02 1.2819E+03 1.2963E+03 4.1263E+02
PLES 1.6083E+02 9.8164E+02 9.8336E+02 9.7745E+02 1.0287E+03 8.2676E+02 1.1404E+03 2.0000E+02 4.4710E+02

13th ES 4.4399E+02 1.1166E+03 1.1303E+03 1.1303E+03 1.3255E+03 1.0522E+03 1.3546E+03 1.3354E+03 4.1489E+02
PLES 1.8788E+02 1.0333E+03 1.0286E+03 1.0279E+03 1.2020E+03 8.8961E+02 1.2650E+03 2.0000E+02 4.6860E+02

10
4 19th ES 5.5663E+02 1.1796E+03 1.1745E+03 1.1716E+03 1.3831E+03 1.1096E+03 1.4219E+03 1.3856E+03 4.1997E+02

PLES 2.1604E+02 1.0538E+03 1.0493E+03 1.0456E+03 1.2704E+03 9.4220E+02 1.2836E+03 2.0008E+02 1.0547E+03
25th ES 9.3866E+02 1.3509E+03 1.3707E+03 1.3708E+03 1.4963E+03 1.9342E+03 1.5624E+03 1.5179E+03 4.6031E+02

PLES 3.2365E+02 1.1916E+03 1.1294E+03 1.1053E+03 1.2983E+03 9.9040E+02 1.3217E+03 1.2942E+03 1.3714E+03
mean ES 4.6353E+02 1.1476E+03 1.1277E+03 1.1281E+03 1.3209E+03 1.0203E+03 1.3539E+03 1.2125E+03 4.1841E+02

PLES 1.9592E+02 1.0148E+03 1.0019E+03 9.9894E+02 1.0794E+03 8.8049E+02 1.1141E+03 2.8238E+02 6.9232E+02
std ES 1.7297E+02 9.4503E+01 1.1569E+02 1.1491E+02 1.0333E+02 3.1895E+02 8.2235E+01 3.6895E+02 1.0072E+01

PLES 5.1283E+01 8.2949E+01 8.8570E+01 8.7189E+01 2.8000E+02 6.4666E+01 2.7371E+02 2.3622E+02 3.6234E+02

Table 5: Error values achieved for problems 17 to 25 (n = 10)
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