Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006

Advances in c-based parallel design of MP-SOCs

MARTTI FORSELL
Platform Architectures Team
VTT Technical Research Center of Finland
Box 1100, FI-90571 Oulu, Finland

Abstract: As the main stream of system-on-a-chip (SOC) architectures is gradually switching from single proces-
sor to multiprocessor (MP) constellations, availability of easy-to-use/migrate parallel design methodologies are
becoming more and more important. C-based design methodologies provide potentially easy migration path in
SOC design, but they have traditionally lacked general purpose and easy-to-use tools for exploiting parallelism.
However, recent advances in c-based design of MP-SOC:s, like introduction of the e-language—a simple paral-
lel extension of ¢ for a class of emulated shared memory MP-SOCs—and related design methodology promise
to overcome these problems. In this paper we describe latest advances in e-based design, including an initial
implementation of e for concurrent memory access-ready architectures, fast mode providing a significant boost
in parallel construct performance for simple e-programs, and support for active memory operations that drops
the lower bound of the execution time of certain logarithmic algorithms to the constant execution time class.

Key-words: Parallel computing, parallel languages, optimization, PRAM model, CRCW, active memory

1 Introduction

Systems-on-a-chip (SOC) are among the key com-
ponents of current and future electronic devices. Their
variability and small size benefit especially feature
driven smart phone, communicator, personal digital
assistant, and mobile computer markets in which pro-
grammability, low power usage, and fast time-to-mar-
ket are crucial in addition to adequate performance.
These requirements together with demand for more
performance and changes in forthcoming silicon tech-
nology limiting the practical maximum clock rate of a
chip and making global point-to-point connections
infeasible [ITRS05] are pushing the main stream of
SOC architectures gradually away from single proces-
sor constellations towards something that can be called
multicore or multiprocessor (MP) constellations
[Taylor02, Sankaralingam03]. As a result of this, cur-
rent sequential computing-based design methodolo-
gies [Balarin97, Chang99] need to be replaced with
easy-to-use/migrate methodologies allowing efficient
exploitation of parallel functionality on parallel MP-
SOC hardware.

C-based design methodologies provide easy migra-
tion path in SOC design, but they have traditionally
lacked general purpose and easy-to-use tools for
exploiting parallelism even if special hardware design
oriented languages e.g. SystemC or parallel libraries
e.g. MPI or OpenMP are counted. However, recent

advances in c-based design of MP-SOCs, like intro-
duction of e-language—a simple parallel extension of
c for a class of emulated shared memory MP-SOC
architectures [Forsell04]—and related design method-
ology [Forsell05d] promise to overcome these prob-
lems by supporting high-level c-like access to fine-
grained thread-level parallelism (TLP) and synchro-
nous shared memory abstraction making program and
data partitioning and synchronization simple.
Unfortunately, the initial implementation of the e-lan-
guage introduced quite high parallel construct execu-
tion time overheads and was limited to exclusive read
exclusive write (EREW) memory access model only
[Forsell04b]. In this paper we describe latest advances
in e-based design, including an implementation of e
for concurrent read concurrent write (CRCW) archi-
tectures, special fast mode providing a significant
boost in parallel construct performance for simple e-
programs containing a limited number of constructs
and barrier synchronizations, and support for active
memory operations that drops the lower bound of the
execution time of certain logarithmic algorithms to the
constant execution time class.

The rest of this article is organized so that in section
2 the e-language and a class of target MP-SOC archi-
tectures are described. In section 3 we list advances in
e-based parallel design methodology for the target
MP-SOCs and give examples of applying them to sim-

614

ple parallel problems. A brief performance and code
size evaluation of the described techniques is given in
section 4. Finally, in section 5 we give our conclu-
sions.

2 E-language and target MP-SOC
architectures

In order to support both easy-to-use and efficient
design of functionality for MP-SOCs, a c-like high-
level parallel programming language e and correspon-
ding class of advanced MP-SOC architectures have
been introduced [Forsell04, Forsell02].

2.1 E-language

The e-language [Forsell04] is an experimental TLP
programming language created especially for emulat-
ed shared memory MP-SOCs providing general pur-
pose functionality, but it can be used also for multichip
synchronous shared memory architectures conforming
the IPSM framework [Forsell97]. The syntax of e-lan-
guage is an extension of the syntax of the familiar c-
language. E-language supports parallely recursive and
synchronous multiple instruction stream multiple data
stream (MIMD) programming and it is intended to
work with various parallel random access machine
(PRAM) models [KellerO1], but current implementa-
tions include the EREW PRAM and ideal CRCW
PRAM models only. (The EREW PRAM model
allows a single reference per a shared memory location
only while the CRCW PRAM allows arbitrary concur-
rent read concurrent write access to any location.)

Variables in the e-language can be shared among a
group of threads or they can be private to a thread.
Using shared variables as modal parameters or result
value of a function is not supported in the current
implementation of e. If an actual parameter is a shared
variable, private copies of value or reference will be
used in the function execution.

In order to support high-level TLP expressions with
the MIMD paradigm, threads form hierarchical groups
that are automatically numbered from 0 to the number
of threads-1 as new groups are created (alternatively, a
programmer can use static thread numbering). In the
beginning of a program there exists a single group
containing all threads. A group can be divided into
subgroups so that in each thread of the group is
assigned into one of the subgroups. A subgroup may be
split into further subgroups, but the existence of each
level of subgroups ends as control returns back to the

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006

corresponding parent group. As a subgroup is created,
dynamic thread identification variables are updated to
reflect the new situation and as the subgroups join
back to the parent group in the end of the statement the
old values of these variables are restored.

Emulated shared memory architectures and the
IPSM framework guarantee synchronous execution of
instructions at machine instruction level. In the e-lan-
guage synchronicity and/or automatic subgroup cre-
ation through control structures having private
enter/exit conditions can be maintained with special
versions of control structures supporting automatic
synchronization at the end of the structure, supporting
automatic subgroup creation, or both automatic syn-
chronization and subgroup creation (see Figure 1).
There are two control modes in e: In the first control
mode, called synchronous area, all threads belonging
to the current group execute the same portion of code
synchronously. Asynchronous control structures, i.e.
those with private enter/exit conditions but without
synchronization, can be used only at the leaf level of
group hierarchy. Entering to an asynchronous area, the
second control mode, happens by using an asynchro-
nous control structure and returning back to the syn-
chronous area happens by an explicit group-wide bar-
rier synchronization assuming all threads of the group
will reach the barrier.

Structure Calling Create Synch
Area subgroups at the end

if (¢) s; Both - no
if (c) s1; else s2; Both - no
while (c) s; Both - no
do s while (c); Both - no
for (s1;s2;83) s; Both - no
if_ (c,9); Both - yes
if_else_ (c,s1,s2); Both - yes
while_ (c,s); Both - yes
do_while_ (sc); Both - yes
for_ (s1,s2,83.s); Both - yes
_if (c,8); Synch 1 no
_if_else (c,s1,82); Synch 2 no
_while (c,s); Synch 1 no
_do_while (s,c); Synch 1 no
_for (s1,52,83,3); Synch 1 no
if (c.,9); Synch 1 yes
_if_else_ (c,s1,82); Synch 2 yes
while (c,s); Synch 1 yes
_do_while_ (s,c); Synch 1 yes
for (s1,s2,53,5); Synch 1 yes

Figure 1. The control structures of E-language.

615

A typical design flow for implementing required
functionality on a MP-SOC with e-language consists
of eight parts (see Figure 2).

Computational Results
problems
Supportin;
1. Describe leiﬁlcl ¢ .
as algorithms ™7 algorithm Execute
theory
Parallel or Execution-ready
sequential MP-SOC HW loaded with
algorithms .) the application
Supporting
2. Implement parallel)
as programs |7 programming 8. Loader
techniques 7. Implement the
Flanguage | | Assembler HW configuration Spnmlzed
sources sources MP-SOC
assembler
3.Map to 4. Determine MP-SOC HW 6. Virtual ILP
thread groups | needed HW configuration optimizer
Mapped MP-SOC
sonTEEs 5. E-compiler assembler
and linker

Figure 2. The development flow for the e-language
on a target MP-SOC architecture.

1. Describe computational problems as algorithms. In
this part a designer describes computational problems
forming the application as parallel or sequential algo-
rithms. If a problem is solved with one or more paral-
lel algorithms, it needs to be divided into subtasks exe-
cutable with parallel threads. At this point one may
also want to make the degree of subtasks adjustable so
that the same algorithm can be used with other MP-
SOC configurations, e.g. having different number of
threads. All this happens according to the theory of
parallel algorithms and with the help of available algo-
rithm libraries [Jaja92, KellerO1].

2. Implement algorithms as programs. In this part a
designer implements the obtained parallel and sequen-
tial algorithms as parallel and sequential e-language
and assembler programs. It includes locating data
requiring interaction between multiple subtasks into
the shared memory, managing the degree of parallel
access, taking care of synchronization of subtasks over
task-private control structures, and managing parallel
I/O. There exists a rich set of parallel programming
techniques supporting this kind of activity [KellerO1].
3. Map tasks to thread groups. In this part a designer
maps tasks to thread groups according to performance
requirements, and adds synchronization primitives and
program intercommunication data areas where neces-
sary. Threads can be selected from the set of available

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006

threads in an arbitrary way. In the PRAM model
threads do not interfere with each other unless they are
ordered to do so via the shared memory. The result of
this part should be a single parallel program consisting
of one or more files written in e and/or assembler.

4. Determine the needed hardware. In this part a
designer determines the needed hardware including
the number of threads, the number and type of func-
tional units (FU) per processor, the amount of shared
and private memory needed, unless the underlying
MP-SOC is fixed by the used platform. The appropri-
ate number of FUs and threads for each task can be
determined with the help of parallel algorithm theory,
test execution and simple calculations.

5. Compile and link. In this part the obtained program
files are compiled with e and assembler compiler and
linked together. This part may also include applying
required standard c-based optimizations to the source
files.

6. Optimize virtual instruction-level parallelism. In
this part the compiler output is further optimized for
the instruction-level parallel (ILP) computing model
of the MP-SOC. This happens by applying the the vir-
tual ILP optimization algorithm [Forsell03]. Inclusion
of scheduled assembler is also possible at this point to
support hand optimization.

7. Implement the hardware configuration. In this part
the MP-SOC hardware is implemented according to
the requirements obtained from part 4 unless the hard-
ware is already fixed by the platform in use.

8. Load the code to the MP-SOC. In this part the opti-
mized program is loaded to the target MP-SOC. The
program loader takes care of placing instructions to
instruction memory and variables to appropriate data
memory subspaces. In addition it binds e-language
primitives, e.g. synchronization and group creation
and maintenance, to corresponding run time library
routines.

An experimental parallel computing learning set,
ParLe, for configurable shared memory MP-SOCs and
corresponding ideal PRAM has been implemented
[ForsellO5c]. The learning set consists of an experi-
mental optimizing compiler for e and assembler, link-
er, loader, simulator with a graphical user interface and
statistical tools, and sample e/assembler code. Using
the set, a student/designer can easily write simple par-
allel programs, compile and load them into a config-
urable MP-SOC platform, debug/execute them, gather
statistics and explore the performance, utilization, and

616

obtain gate count estimations with different architec-
tural parameters. The learning set runs on Mac OS X
systems, supports currently only EREW MP-SOCs
and is available for non-profit educational purposes.

2.2 Target MP-SOC architectures

In this section we will define a class of emulated
shared memory MP-SOC architectures providing a
strong model of computing capable for synchronous
concurrent memory access, e.g. by realizing CRCW
PRAM with a fixed number of physical threads, denot-
ed here as 7. An MP-SOC belonging to the class is
composed of P T -threaded multithreaded processors,
a number of memory modules, and high-capacity
interconnection network (see Figure 3). It is evident
that at least Eclipse, a general purpose MP-SOC archi-
tecture being developed at VTT [Forsell02,
Forsell05a], belongs to the defined class.

minininimnimnEinnninninnEnnnnninininiE

OOooOOOOoOOoOoOooOoooooooooooOogd™

OO OO00000000O00 000000000000

OO OO OO O O O T I O T O T T T

Figure 3. High-level block diagram of a sparse mesh-
based MP-SOC architecture. (P=processor core,
M=embedded memory/data memory module,
rni=resource network interface, [=instruction memory
module, I/0=1/O device and S=switch.)

The strong model of computing provides an uni-
form shared data memory with single step memory
access latency and machine instruction level synchro-
nous execution. All the threads are executing the same
program, but may branch independently within the
program. The model allows arbitrary concurrent reads
and writes to memory locations. For a concurrent read
all threads participating the access give the same
results. In the case of a concurrent write, the data of an
arbitrary thread participating the write will be written

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006

to the target location. The programming model of e
and architecture defined computing model are linked
together so that proceeding a full cycle in the pipeline
corresponds typically to a single PRAM step. During a
step, each thread of each processor of the MP-SOC
executes, one by one, an instruction, which may
include at most one shared memory reference.

In order to implement the synchronous shared mem-
ory abstraction on a MP-SOC, the communication net-
work needs to connect processors to distributed mem-
ory modules so that high throughput and acceptable
latency can be achieved for arbitrary communication
patterns. We assume also that architectures support a
small number of multioperations and arbitrary ordered
multiprefix operations that can be used e.g. to add data
words provided by a group of threads in constant time
within a memory location, and to implement arbitrary
and flexible barrier synchronizations between threads
[ForsellO5b]. Active memory realization adds an
active memory unit consisting of a simple ALU and
fetcher to each memory module.

3 Advances in e-language design

Latest advances in e-language design include an
implementation of e for CRCW-ready architectures,
special fast mode, and support for active memory
operations.

3.1 Support for concurrent read and concur-
rent write

We have created an initial e implementation for
CRCW-ready architectures by rewriting e-language
construct support code for the CRCW model: We
transformed complex limited active memory based
concurrent accesses on a top of the EREW model to
real CRCW accesses, reduced the number of implicit
support variables by eliminating the internally used
subgroup concept, modified the thread group frames
used in subgroup creation accordingly, and rewrote the
run time library eRunLib to reflect better the CRCW
functionality.

Consider adding a number to elements of an array in
parallel. In the case of the EREW model one must
make thread-wise copies of the number before adding
while in the case of the CRCW model one may just
add the number to each element in parallel (see Figure
4).

617

Proceedings of the 6th WSEAS International Conference on Simulation,

inta_; /I A shared variable
int b_[size]; // A shared array of integers
int tmp_[size]; // Thread-wise copies of a_

/| EREW version:
int i;
/I Spread a_ to tmp_ with a logarithmic algorithm
if_ (_thread_id==0 , tmp_[0]=a_;);
for (i=1; i<_number_of_threads; i<<=1)

if _ (_thread_id-i>=0 ,

tmp_[_thread_id]=tmp_[_thread_id-i];);

b_[_thread_id]+=tmp_[_thread_id]

// CRCW version:
b_[_thread_id]+=a_;

Figure 4. Add a_ to elements of b_ in parallel.

3.2 Support for active memory operations

Active memory operations can be used to boost the
performance of MP-SOCs so that certain algorithms
that have a logarithmic lower bound of execution time
will execute in constant time [Forsell05¢]. The under-
lying class of architecture supports now active memo-
ry operations for all memory locations, not just a small
part of it. We added four primitives to e-language to
support this kind of active memory operations:

Perform a two instruction
arbitrary multiprefix opera-
tion OP for components ¢ in
memory location m. The
results are returned in p.
fast_prefix(p,OPm,c) Perform a single instruction
multiprefix operation OP for
at most O(square root 7) com-
ponents ¢ in memory location
m. The results are returned in
p.

Perform a two instruction
arbitrary multioperation OP
for components ¢ in memory
location m.

Perform a single instruction
multioperation OP for at most
O(square root 7) components
¢ in memory location m.

prefix(p,M,m,c)

multi(OP.m,c)

fast_ multi(OP.m,c)

Consider calculating the sum of elements of an
array in parallel. In the case of the EREW model one
must use a logarithmic algorithm to obtain the sum
while in the case of the active memory functionality

Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006

one may just call multioperation primitive multi utiliz-
ing the BMADD and EMADD instructions imple-
menting summation in constant time (see Figure 5).

/I A shared variable
/I A shared array of integers

int sum_;
int a_[size];

/I EREW version—logarithmic algorithm for sum
for_ (i=1 , i< _number_of threads , i<<=1 ,
if (_thread_id-i>=0)
a_[_thread_id] += a_|[_thread_id-i];);
sum_=a_[_number_of threads-1]

/I Active memory version
//—just call the constant time sum primitive:
multiMADD ,&sum_,a_[_thread_id]);

Figure 5. Sum the elements of a_ into sum__ in paral-
lel.

3.3 Fast mode

The initial e-language implementation introduced a
quite high execution time overheads to parallel primi-
tives [Forsell04b]. The switch from EREW to CRCW
has dropped those overheads, but still they may limit
the applicability of e-language in certain high perform-
ance requirements applications. In order to further cut
those overheads we have implemented a special fast
mode for simple non-structural e-programs that pro-
vides higher performance but limited feature set. The
fast mode restrictions include:

* Overlapping execution of e-language constructs
employing subgroup creation or barrier synchro-
nization by multiple thread groups is not allowed

» Shared variables local to functions are not sup-
ported

* Subgroup specific thread numbering will not be
passed automatically across the subroutine borders

* The number of simultaneously active barriers is
limited by the underlying MP-SOC architecture

The fast mode can be applied to e-language pro-
grams simply with a compiler option -fast. To extend
the applicability of the fast mode a programmer may
chose explicit numbering of fast mode primitives.
Finally, a programmer can explicitly access some fast
mode specific features, like fast barrier synchroniza-
tion, from ordinary e-programs.

Consider a portion of code from constant time sort-
ing algorithm containing a rank function call in which

618

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 619

1000 c4
B C16
100 C64
- " F4
o HF16
=
§ 10 F64
@» W C4+
1 C16+
064+
F4+
0.1 F16+
0,70 F64+
< 0,60
% 0,50
B 040 X |
8 |
o 0,30
T 020
D
— 0,10
0,00
barrier fft max mmul sort sum MEAN

Figure 8. Relative performance (top) and code size (bottom) of MP-SOC configurations with respect to corre-
sponding E4, E16, and E64 EREW configurations.

the called function uses subgroup relative thread num- tion, fast fourier transform, maximum find, matrix
bering. It can be transformed to fast mode compliant multiplication, integer sort, and sum of an array) to
code by inlining the function or by passing the thread thread groups, compiled, optimized (-O2 -ilp) and
numbers as parameters (see Figure 6). loaded them to 15 MP-SOC configurations having 4,

16 and 64 five FU 512-threaded processors (see

. Figure 7), and executed them with the [IPSMSim sim-
int src_[N]; // Array to be sorted
int tgt_[N]; // Rank for each element ulator [Forsell05c].
Flexible mode code: . .
void rank() // Parallel rank function Configuration P Model Fast Active
{ inti=_thread_id >> logn; mode memory
int j = _thread_id & (N-1); E4 4 EREW no no
fast_multiMADD,&tgt_[j],src_[i]<src_[j]); } El16 16 EREW no no
// Calling code E64 64 EREW no no
if_ (_thread_id<N2 , rank()); C4 4 CRCW no no
if_ (_thread_id<N , Cl6 16 CRCW no no
src_|[-tgt_[_thread_id]]=src_[_thread_id];); Co4 64 CRCW no no
F4 4 CRCW yes no
// Fast mode code: F16 16 CRCW yes no
int i = _thread_id >> logn; F64 64 CRCW yes no
int j = _thread_id & (N-1); C4+ 4 CRCW no yes
if_ (_thread_id<N2 , Cl6+ 16 CRCW no yes
fast_multiMADD , &tgt_[j],src_[il<src_[j]);); C64+ 64 CRCW no yes
if_ (_thread_id<N , F4+ 4 CRCW yes yes
src_[-target_[_thread_id]]=src_[_thread_id];); Fl6+ 16 CRCW yes yes
F64+ 64 CRCW yes yes

Figure 6. Sort src_ in parallel.

Figure 7. MP-SOC configurations used in experi-
4 Evaluation ments.

In order to illustrate the improvements achievable
with the new e features on realistic MP-SOCs we
mapped six parallel programs (barrier synchroniza-

The executable sizes including initialization and
run-time libraries showing notable 55-65% decrease in
instruction memory allocation as well as the execution

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006

1000
g 100
<
E
£ F64
:';’ 10 64+
2 mDLX
s
2 1

0,1 .
fft max mmul sort sum

Figure 9. Performance of an F64+ MP-SOC utilizing fast mode e with respect to that of a single DLX processor system

utilizing sequential c.

times excluding initialization of data showing speedup
from 50% to a whopping 7200% are illustrated in
Figure 8.

For comparison purposes, we implemented sequen-
tial c-versions of the programs, compiled them with
the c-compiler (being also the main part of the e-com-
piler) with the same optimization settings, and execut-
ed the obtained binaries on the five stage pipelined
DLX processor [Hennessy90] attached to an ideal
memory system. The obtained execution times of the
sequential versions are compared to those of fastest
parallel versions (both fast mode and active memory
support) on the 64 processor configuration in Figure 9.
The results are somewhat expected indicating that the
performance of fast mode ¢ is well comparable to that
provided by sequential ¢. The speedups for fft and sort
are lower than for the rest of the programs since they
are based on non-work optimal algorithms dropping
the theoretical speedup from O(N) to O(log N).

5 Conclusions

We have described recent advances in e-language
development, including an initial implementation of e
for CRCW-ready architectures, fast mode providing
significant boost in parallel construct performance for
simple e-programs, and support for active memory
operations. According to our evaluation speedups of
1.5, 4.3, 47 and 73 are achieved with respect to the
plain EREW versions for a set of simple parallel
benchmarks by employing initial CRCW-ready imple-
mentation of e, fast mode, active memory support, and
both fast mode and active memory support, respective-
ly. It should be noted that part of the speedup is due to
faster constant time multioperation and CRCW algo-
rithms not only the more efficient implementation of e.
The code size drops to 46% for the CRCW-ready

implementation and roughly to 35% for the rest of the
techniques. We compared the performance of fast
mode active memory supported e to that of sequential
¢ on a standard 5-stage pipelined processor. The
achieved speedups range from 5.5 to a whopping 346.
Thus, we conclude that these new advances in the e-
language open up a spectrum of new possibilities to
apply easy-to-migrate parallel c-like design to prod-
ucts employing MP-SOCs also when solutions are per-
formance and code size critical.

Our plans for future research in this area include
further improving the architecture, e-language and tool
set with better syntax, more natural support for all
kinds of parallelism, and flexibility/configurability for
certain special cases where the computation should be
arranged better to obtain higher performance.

Acknowledgements:

This work was supported by the grant 107177 of the
Academy of Finland.

References:

[Balarin97] F. Balarin, P. Giusto, A. Jurecska, C.
Passerone, E. Sentovich, B. Tabbara, M. Chiodo, H.
Hsieh, L. Lavagno, A. Sangiovanni-Vincentelli, K.
Suzuki, Hardware-Software Co-Design of Embedded
Systems—The POLIS Approach, Kluwer Academic
Publishers, Boston, 1997.

[Chang99] H. Chang, L. Cooke, M. Hunt, G. Martin,
A. McNelly, and L. Todd, Surviving the SOC
Revolution—A Guide to Platform-Based Design,
Kluwer Academic Press, Boston, 1999.

[Forsell97] M. Forsell, Implementation of Instruction-
Level and Thread-Level Parallelism in Computers,
Dissertations 2, Department of Computer Science,
University of Joensuu, Finland, 1997.

620

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 621

[Forsell02] M. Forsell, A Scalable High-Performance (November-December 2003), 46-51.
Computing Solution for Network on Chips, IEEE [Taylor02] M. Taylor, et. al., The Raw
Micro 22, 5 (September-October 2002), 46-55. Microprocessor: A Computational Fabric for Software
[Forsell03] M. Forsell, Using Parallel Slackness for Circuits and General Purpose Programs, IEEE Micro
Extracting ILP from Sequential Threads, In the 22,2 (March-April 2002), 25-35.
Proceedings of the SSGRR-2003s, July 28 - August 3,

2003, L’ Aquila, Italy.

[Forsell04] M. Forsell, E—A Language for Thread-

Level Parallel Programming on Synchronous Shared

Memory NOCs, WSEAS Transactions on Computers

3, 3 (July 2004), 807-812.

[Forsell04b] M.Forsell, Compiling Thread-Level

Parallel Programs with a C-Compiler, In the

Proceedings of the IV Jornadas sobre Programacion y

Lenguajes (PROLE’04), November 11-12, 2004,

Malaga, Spain, 215-226.

[Forsell0Sa] M. Forsell, Step Caches—a Novel

Approach to Concurrent Memory Access on Shared

Memory MP-SOCs, In the Proceedings of the 23th

IEEE NORCHIP Conference, November 21-22, 2005,

Oulu, Finland, 74-77.

[Forsell0Sb] M. Forsell, Realizing constant time par-

allel algorithms with active memory modules,

International Journal of Electronic Business 3, 3-4

(2005), 255-263.

[Forsell05¢c] M. Forsell, ParLe—A Parallel

Computing Learning Set for MPSoCs/NOCs, In the

Proceedings of the International Symposium on

System-on-Chip 2005, November 15-17, 2005,

Tampere, Finland, 90-95.

[Forsell0Sd] M. Forsell, Parallel Application

Development Scheme for General Purpose NOCs, In

the proceedings of the 2005 ECTI International

Conference (ECTI-CON 2005), May 12-13, 2005,

Pattaya, Thailand, 819-822.

[Hennessy90] J. Hennessy and D. Patterson,

Computer Architecture: A Quantitative Approach,

third edition, Morgan Kaufmann Publishers Inc., Palo

Alto, 1990.

[ITRSO5] International Technology Roadmap for

Semiconductors, Semiconductor Industry Assoc.,

2005; http://public.itrs.net/.

[Jaja92] J. Jaja: Introduction to Parallel Algorithms,

Addison-Wesley, Reading, 1992.

[Keller01] J. Keller, C. KeBler, and J. Traff: Practical

PRAM Programming, Wiley, New York, 2001.

[Sankaralingam03] K. Sankaralingam, R. Nagarajan,

H. Liu, C. Kim, J. Huh, D, Burger, S. Keckler and C.

Moore, Exploiting ILP. TLP, and DLP with the poly-

morphous TRIPS architecture, IEEE Micro 23, 6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

