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Abstract: - The rotor circuit time constant is an important parameter for indirect field oriented control. Incorrect 
estimation of the rotor time constant also leads to incorrect flux angle calculations and can cause significant 
performance deterioration if no means for compensation or identification is applied. The magnetic saturation, the 
operating temperature and difficulties in using sensors for speed measurement are one of the sources of parameters 
variations, caused by non-linear nature of the magnetizing curve and the variations of the rotor resistance. The classical 
indirect field-oriented control is highly sensitive to the inductance values decrease when increasing the saturation level. 
To solve this problem, the extended Kalman Filter associated to the neural network (EKF-ANNs) trained off line 
algorithm are used to estimate the rotor resistance, the main inductance and the rotor speed. The proposed EKF-ANNs 
compensation has shown a good performance in both the transient and steady state operations even in the presence of 
noise, and also at either variable speed operation in the field-weakening region or in the load variation.   
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1   Introduction 
The development of high-performance motor drives is 
very important in industrial applications. Nowadays, the 
field induction motor [1]-[15] can be applied for high-
performance industrial applications where, traditionally, 
only the dc motors were used. In general, the 
requirements for high-performance motor drive system 
include the following effects: thermal, skin and 
saturation effects leading to local variations in the 
induction motor parameters. In particular, the slip 
frequency is highly affected by change of rotor time 
constant. Therefore, the variations of this parameter 
directly influence the performances in both transient and 
steady state operations. Thus, the compensation is 
necessary [2, 3] to include the inductances dependencies 
on saturation and the resistances at the present 
temperatures. In order to solve the previous problems, 
the conception of a compensation controller is of capital 

importance to achieve the decoupling between the flux 
and the torque [4, 5]. 
Artificial neural networks (ANNs) are non-linear 
methods and adaptive in nature, giving robust 
performance with parameter variation problem [6, 7]. 
Recently, some approaches have been developed for 
control using ANN controller in vector control of 
induction motors operating in linear magnetizing curve 
[6, 7, 8]. For example, [6] proposes a novel speed 
estimation method of an induction motor using neural 
network trained on line. In [7], the authors present an off 
line application of ANNs in indirect field oriented 
control system. Reference [9] proposes a novel approach 
with the induction motors using direct and indirect 
application and [8] proposes an on line ANNs diagnosis 
of induction motor faults. Another approach using the 
fuzzy logic bloc is based on a sensitivity analysis to 
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uncertainties in the rotor resistance and the mutual 
inductance of the induction motor [10].  
In most speed and controlled drive systems, closed-loop 
control is based on the measurement of speed or position 
of the motor using a shaft encoder. However, it is 
difficult to use sensors for speed measurement. Recently 
some approaches have been developed to eliminate the 
speed sensor [11, 12]. In these strategies, the motor 
speed is estimated and used as feedback signal for 
closed-loop control.   
As one of the methods for estimating the induction 
motor parameters, the extended Kalman Filter (EKF) 
technique has been investigated by some authors [11, 13, 
14, 15]. The extended Kalman filter estimators are 
designed using stochastic principles; they assume a noisy 
environment. Kalman filter theory is based on the 
assumption that all of the system noise disturbances are 
white and Gaussian probability distribution. For 
example, an extended Kalman filter approach for rotor 
time constant estimation is proposed in [13] and some 
parameter sensitivity diagrams are shown.  
 
In this paper, the authors present an improved 
conventional-based technique using artificial neural 
networks associated to the extended Kalman Filter 
(EKF-ANNs). The proposed algorithm is applied to 
compensate the saturation and the thermal effects by the 
estimation of the rotor resistance, the main inductance 
and the rotor speed in vector controlled induction motor. 
The induction motor behavior during changes in 
saturation level for various working points is discussed 
both in transient and steady state operations. 
 
 
2 Modeling of the Induction Motor  
The induction motor is considered in the synchronous 
rotating and rotor flux oriented d-q reference frame [3, 
6]. The model equations are: 
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The parameter estimation of an induction motor being 
implemented on a computer, a time-discrete model is the 

most appropriate. The discrete time varying model is 
deduced from continuous model by applying the Euler 
formula (first order). 
 
 
3   Extended Kalman Filter 
The extended Kalman filter allows simultaneous 
estimation of states and parameters. These parameters 
are considered as extra states in an augmented state 
vector. This augmented model is non-linear because of 
multiplication of states. Thus, it must be linearized along 
the state trajectory to give a linear perturbation model. 

The state noise W and measurement noise V  can be any 
combination of harmonics and Gaussian white noise 
with zero-mean and covariance 2

wσ  and 2
vσ  [11-15]. 

The discrete state induction motor model is considered 
in the synchronous rotating and rotor flux oriented d-q 
reference frame for implementing the extended Kalman 
Filter algorithm. 
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A nonlinear recursive filter based on the EKF is obtained 
by the linearization of the above system around the states 
and applying an EKF to state vector and parameters 
estimation of an induction motor as follows: 

• Prediction of state 
[ ]kkUkgk ),(),()1( ξξ =+                                                 (4) 

• Estimation of error covariance matrix 
QkAkPkAkP t +=+ )()()()1(                                          (5) 

• Kalman filter gain 
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State estimation 
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• Update of the error covariance matrix 
)1()()1()1( +−+=+ kPkKHkPkP                               (8) 

Where )k(y represents the measured current. 
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The estimation of the instantaneous angular position of 
the rotor flux space vector on indirect control by E.KF is 
shown in Fig.1.  

 

 

 

 

 
 
 
 
 
 
 
 
 
4   EKF-ANNs Bloc 
Firstly, the whole bloc has been considered and replaced 
by a neural network [15]. Then several tests affecting the 
architecture topology are examined: 
 

• Number of neurons of the hidden layers 
• Hidden layers number 
• Inputs  number 
• Examples number 
• Training algorithm 
 

The network doesn't converge because of the particularly 
fact that a large number of parameters, is needed during 
the training process. Therefore, the F.O.C’s bloc is 
divided in to three sub-blocs neural. The structure of the 
proposed neural network is depicted in Fig.2. Each sub-
bloc has three layers. The output layer has one neuron 
corresponding to the command values. The input layer 
has three neurons and the hidden layer has five neurons. 
The sigmoid functions are used at hidden layer and the 
linear function is used at the output layer. 
 
The algorithm used for training is Levenberg-Marquardt. 
For the first sub-bloc, in torque control, the neural 
network converges to a sum-squared error below 10-7 
after only 1056 iterations. 
 
For the second sub-bloc, in voltage Vqsref control, the 
ANN converges to a sum-squared error below 10-5 after 
only 2150 iterations and the third sub-bloc in voltage 
Vdsref control as 10-7 error after only 950 iterations. 
                          
           
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2 Neural network structure 
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5   Simulation Results 
The fig.3 shows the proposed structure for parameters 
estimation by EKF associated to the FOC neural 
network. 
 
 
 
 
 
 
 
 
 
 
 
 
The parameters of the induction motor used in computer 
simulation are listed in the appendix. The PWM inverter 
considered that stator voltage equations of the induction 
motor can be omitted from the model and it can be 
assumed that the actual stator voltages are equal to the 
controlled voltages [5]. 
In the simulated test, the variation of the rotor resistance 
increases to 50% and the magnetizing inductance 
decreases to 20%. 
Fig.4 shows the rotor speed and the estimated speed of 
the Kalman filter, the motor torque and the reference 
torque, the rotor flux and the estimated flux d-q 
components, the motor and the estimated magnetizing 
inductances, the motor and the estimated rotor 
resistances (Ω) and the errors between the rated speed 
and the estimated speed of the EKF also as between the 
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Fig.1 Instantaneous angular position of the rotor flux 
space vector estimator based on the E.K.F 
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rated speed and the motor speed. Furthermore, under 
load of rated torque, the reference speed is the rated 
speed. The current and voltage random noises are 
present in the current and voltage sensors.    
At 0.75s a torque of 10 Nm is applied to the shaft. The 
ANNs controller quickly Tracks the speed to the 
reference speed within 0.25 s with a maximum speed 
drop of 7 rad/s. The time response to the reference speed 
is 0.2 s. 
The simulation results are presented in Fig.5 for 
operation in the field-weakening region of the slope 
variation command speed at the rated speed to 210 rad/s. 
The simulation results are presented in the Fig.6 for 
operation in the low speed (10 rad/s). At 0.7s a torque of 
10 Nm is applied to the shaft. These results show good 
assumption of the proposed approach. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4 Simulations results a constant flux 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 5 Simulation results-Operation in the field 
weakening region. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Simulation results at low speed (rad/s) 
 
 
 
 
 
 
 
6   Conclusion 
This paper analyses the impact of the variation of the 
main inductance, caused by the non-linear nature of the 
magnetizing curve without the cross-saturation 
phenomenon, and the variations of the rotor resistance 
on indirect vector control for induction motor sensorless 
speed. The proposed algorithm is applied to solve the 
problem of performance degradation during transients 
even in the presence of noise. 
 
A method using the extended Kalman Filter associated 
to the neural network (EKF-ANNs) trained off line 
algorithm is used to estimate the rotor resistance, the 
main inductance and the rotor speed, has been presented.  
Using the software Matlab, the simulations have been 
performed with satisfactory results. Tests on a 1.5 kW 
induction motor has proven the feasibility of the 
proposed approach. 
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Appendix: 
Induction motor parameters 
Rated voltage: 380/220V-50Hz 
Rated Power: 1.5kW 
Rated speed: 1420 tr/mn 
Rated current: 6.4/3.7 
Number of pole pair p=2 
Rs=4.85Ω; Rr=3.805Ω; Ls*=0.274H; Lr*=0.274H; 
Lm*=0.258H ; Ls0*=0.016H ; Lr0*=0.016H 
Total inertia   J=0.031 kg-m2 
Friction coefficient  f=1.136 10-3 Nm/rad/s 
 
Notations: 
s:  stator index; 
r:  rotor index; 
m: mutual index ; 
*: rated index; 
d,q: d-axis and q-axis synchronous reference frame; 
V:  voltage; 
I: current; 
Φ: flux; 
Rs, Rr : stator, rotor resistance; 
Ls* ,Lr*; Lm*: stator, rotor and main inductance rated; 
Tr=Lr / Rr: rotor time constant; 
Tr0=Lr / Rr:; leakage rotor time constant; 
Cem, Cr: electromagnetic torque and load torque; 
ωs , ωm: stator, rotor angular frequency; 
ωsl: slip frequency; 
0: leakage coefficient; 
Ω: mechanical speed; 
Ωrref :reference mechanical speed 
f: viscous friction coefficient; 
J: equivalent inertia; 
p: number of pole pairs; 
S=d/dt: differential operator; 
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