
Automatic HDL Generation for ASIC Designs
JOUNI RIIHIMÄKI

Nokia
PO Box 88, FI-33721, Tampere, FINLAND

Abstract: - Documentation of a complex design is essential for the reuse and for the verification. Spreadsheet
applications, such as MS-Excel, are often used to design and document certain parts of system-on-chip
designs. For example interrupt and DMA connections are easy to describe in a table format. To facilitate the
implementation, the actual HDL code can be automatically generated from the spreadsheet documentation.
The benefit of this approach is that the HDL implementation is always in tact with the documentation and vice
versa. The quality of design and documentation is also usually better when the manual coding is not needed.
In addition, h-files and compilation scripts needed later in the flow can be generated along with the HDL
code, which facilitates the use of the design.

This paper presents an approach and a tool to generate VHDL code and h-files from MS-Excel
spreadsheet. The approach is presented with two examples: interrupt and DMA connections. The results show
that the method dramatically reduces the time needed to the subsystem implementation.

Key-Words: - computer-aided design, code generation, quality, system-design.

1 Introduction
System design at high abstraction levels is often
done utilizing tools that are not actually aimed for
HW design, such as MS-Office products PowerPoint
or Excel. They are used even if dedicated
approaches for high-level design are available
[1][2][3]. However, those tools are not yet widely
used in commercial ASIC design since the quality of
the generated code is not mature enough and/or the
tools and their outcome cannot be seamlessly used
with the utilized back-end flow.

Issues such as interrupt connections, DMA
request connections, test connections, or I/O pin
multiplexing are easy to define and document in a
spreadsheet form. The details relating to such
connections often change during the design cycle,
especially if the design consists of several
processors and DMA controllers, and if the I/O pin
multiplexing is used to select a great number of
functional signals. The implementation of those
issues is, after all, straightforward task, but manual
work and many iterations increase the risk of human
error either to the design or to the documentation.

When the documentation gives an
unambiguous description of the signal connections
and multiplexer controls, the implementation of this
part of the design can be automated. An automatic
code generation from spreadsheet makes the design
flow more smoothly, and it reduces number of bugs
in the design dramatically. In addition, the
documentation and implementation are
automatically in tact with each other.

The code generation also improves the
productivity since the designer can concentrate to
the design work instead of error-prone manual
coding. Once the code generation tool is available,
the time required to generate the code can be
neglected and the saved time can be used, for
example, to the system work or to the verification.

The short implementation time also encourage
innovation by enabling easy exploration to find out
optimal solution. In addition, the automating code
generation eliminated the temptation to use existing
code in compromised solutions as discussed in [4].
However, often the generated code is not as optimal
as hand made and, therefore, it is not suitable for
timing or area critical parts of the design

In addition, the required h-files and
compilation and synthesis scripts can be generated at
the same time, which makes the SW developing less
cumbersome since also the h-files are up-to-date.
The compilation and synthesis scripts, in turn,
improve the usability of the design.

In future, when the designs will contain even
more functionalities, and thus more interrupts, DMA
requests, and I/O signals, the approach will save
even more time during the design process.

In this paper, we present a method to describe a
system in MS-Excel and a tool to generate HDL
description from that description. This paper is
organized as follows: Chapter 2 describes the related
works and Chapter 3 presents the implementation of
the generation tool. The use of the tool is presented
with two test cases as discussed in Chapters 4. After

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 108

*.CSV

MS-
Excel

*.vhdl

*.h

scripts /
Makefile(s)

ASIC Flow

SW Design

Feedback

Conversion tool
Parse input file

VHDL
generation

C Code
generation

*.CSV

MS-
Excel

*.CSV

MS-
Excel

*.vhdl

*.h

scripts /
Makefile(s)

ASIC Flow

SW Design

Feedback

Conversion tool
Parse input file

VHDL
generation

C Code
generation

that, the results are shortly discussed and the paper
in concluded in Chapter 5.

2 Related Research
Automatic code generation offers several benefits as
discussed in [4]. Even if the author handles the code
generation from the SW point of view, the same
aspects exists also in hardware implementation. The
benefits of the automatic code generation are: the
quality of the code is improved, the design time is
reduced, and less verification effort is needed. For
example code generated by Mathworks product is
used in Nasa’s X-43A Scramjet [5].

Approaches that use code generation in
architectural exploration to try-out several different
HW architectures are presented in [1] and [2]. In
addition to [4], there exist many papers, which
present code generation for different purposes and
for different environments [6] and [7].

The code generator is part of many high-
abstraction level design tools. For example,
Telelogic Tau G2 UML design environment [4],
which is used in [2], can generate application C code
from the UML description. However, the HDL
generation for HW implementation is often not
supported. In [2], the HW part is generated with
another self-made extension.

3 Tool Implementation and Usage
The basic principle in the code generation is simple.
A generation tool gets the required information as an
input; it converts the input data to some other
format; and finally it gives the generated code out.
For example, a standard C language compiler gets
the input from the source code file(s), it translates
the code to the binary format of the target platform,
and the executable binary code is stored to a file.

The HDL code generation from spreadsheet
documentation, for example from an MS-Excel
description, is rather straightforward if the form of
the document is beforehand agreed and it contains
all the information required to implement the design.

The tool can be implemented with a scripting
language such a Perl or TCL. We selected Perl for
the implementation because it has been used in
earlier projects and it has a very useful hash data
type, which is missing from many other languages.
The benefit of those scripting languages is that they
are more efficient in ASCII file parsing that, for
example C/C++, and typically the design time is
shorten when a script language is used. However,
the run time is often poorer when compared to a
compiled program. Figure 1 depicts the basic

structure of the tool and also the flow how the tool is
used.

There exist several Perl libraries to read and
modify MS-Excel binary files directly instead of
converting the document to ASCII format.
Spreadsheet::ParseExcel and
Spreadsheet::WriteExcel libraries in Comprehensive
Perl Archieve Network (CPAN) [10], for example,
are freely available for that use. However, we
wanted that the tool is usable in all workstation
environments and with all MS-Office versions, and
therefore we decided not to use those libraries.

Instead of MS-Excel’s native binary format, we
are using a comma separated ASCII file format
(CSV) as an intermediate file. In CSV, the columns
of the spreadsheet are separated with commas, and
the lines are in different rows. The Excel worksheet
can be saved to CSV and therefore it increases the
portability of the tool and allows data sharing among
other tools. The MS-Excel can be used to also open
the CVS file. In addition, other spreadsheet
applications can be used view and edit it as well as
any text editor.

First in Figure 1, the design, e.g. interrupt
connections, is described in an MS-Excel worksheet,
which is saved in a CSV format. After that, a tool
implemented with Perl is used to parse the file. The
structure of the document is beforehand agreed and
therefore the information can be easily found from
the file. The tool stores all the essential information
to internal data structure, which make use of Perls
hash data structure to facilitate the data handling.
When all data is stored and all the required
dependencies are found, the HDL code is created.

In addition to the HDL code, the required h-
files used by the SW can be generated as well as the
compilation scripts. That ensures that those support
properties are also always in tact with the design,
and therefore increase the reusability.

The tool is modular and therefore it is easy to
extend to generate, for example SystemC or Verilog
code in addition to the synthesizable VHDL code. It

Figure 1. Usage of the tool.

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 109

is also easy extend to support additional information
that might be wanted to include to the spreadsheet.

The tool can also be linked together with a
utilized version control system. In that case, the
previous version of the module is checked out from
the version control system before new versions are
stored, new files are generated, and checked in. Also
the Excel file is stored to the version control system.
The creation date and the name of source file are
included to the comments of the files. In addition it
is indicated which version of the compilation scripts
should be used. This information can be later used to
identify the version of the module and find which
version of the document is used when the code is
generated.

4 Use Case: Interrupt and DMA

Connections
In a multiprocessor system-on-chip design, there can be
several interrupt controllers (one or more per processor)
to handle the interrupts from the peripheral devices.
Similarly, there can also several DMA controllers to
handle all the DMA transfers. The division can be based
on the thought use-cases, power usage scheme, or to the
processor aimed to be used with the certain DMA request.
Figure 2 shows the principles of the interrupt and
DMA request connections.

Typically all the interrupts are not needed to be
connected to all the interrupt controllers. This
reduces the connections but, on the other hand,
makes the design more challenging since the
decision which interrupts are connected to which
CPU affects to the SW design, and also to the
possible use-case scenarios. Unavailable interrupt
makes it impossible to execute certain application on
the certain CPU. Naturally, the same stands also for
the DMA request connections. Therefore it is
probable that the connections will be iterated several
times during the design cycle.

Moreover, all the IPs do not necessary follow
the same scheme in interrupts. The polarity (active
low or high) of a signal can be different and the
interrupt type can be either pulse or level. In

addition, in a complex design where several
different clocks are used, the interrupts from
different IPs may be synchronized to different
clocks. If the pulse is too short compared to the
target clock frequency the interrupt may not be
noticed at all. Therefore it is required that the signal
is synchronized with a suitable clock and converted
to be same type to make sure that the interrupt is
noticed by an interrupt controller.

When the interrupts and DMA request are
documented in a table format as shown in Table 1,
the connections can be automatically created and
implemented to the RTL code.

The spreadsheet document in Table 1 contains
all the required information needed to generate the
interrupt and DMA connections. First of all, the
name and width of the signal is defined. After that,
the source module is described in From column. The
Connected to field describes where the signal is
targeted. If all the bits are not connected, the
connected bits are defined in parenthesis. The same
signal can be connected to several targets. The Src
Clock field defines the clock domain where the
source module belongs (and if a synchronizer need
to be added to he signal), and the last column
defines if the signal needs to be inverted.

The code generation tool adds the inverter and
synchronizer near the interrupt/DMA controller in
the RTL if such a component is required. However,
the physical locations of such modules naturally
depend of the used back-end tools and given
constraints.

Figure 3 shows an example of the created
connections. To clarify the picture, all the other
logic, clocks, bus connections are not shown. As can
be shown of the Figure 3, the IP A belongs to
different clock domain than the interrupt controller,
the interrupt is synchronized to target clock.. In
addition, the upper interrupt from IP A and interrupt
from interrupt B is inverted. This is required, for
example, if the interrupt controller recognizes rising
edges and we are interested about falling edges.

CPU 1

CPU n

IP 1

IP x
DMA controller 1

DMA controller m

IP 2

CPU 1

CPU n

IP 1

IP x
DMA controller 1

DMA controller m

IP 2

Figure 2. Principles of interrupt and DMA request
connections

Table 1. An example of interrupt connections description

………………

yesBCPU nIP B1IP_B.Interrupt
noBDMA; CPU 1(0)IP B3IP_B.DMA req
yesACPU 1, CPU nIP C1IP_C.Interrupt

1

A

A

A

Src
Clock

no

no

no

Inver
sion

DMA; CPU 1(1:0);
CPU 2(3:2)

IP D4IP_X.StatusSi
gnal

CPU nIP A1IP_A.Interrupt
2

CPU 1(1:0); CPU n(0)IP A2IP_A.Interrupt
1

Connected toFromWidth
(bits)

Name

………………

yesBCPU nIP B1IP_B.Interrupt
noBDMA; CPU 1(0)IP B3IP_B.DMA req
yesACPU 1, CPU nIP C1IP_C.Interrupt

1

A

A

A

Src
Clock

no

no

no

Inver
sion

DMA; CPU 1(1:0);
CPU 2(3:2)

IP D4IP_X.StatusSi
gnal

CPU nIP A1IP_A.Interrupt
2

CPU 1(1:0); CPU n(0)IP A2IP_A.Interrupt
1

Connected toFromWidth
(bits)

Name

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 110

IP A

IP B

Sync

Interrupt
Controller CPU

Sync

IP C

CPU clk

IP A

IP B

Sync

Interrupt
Controller CPU

Sync

IP C

CPU clk

5 Conclusions
Two different use cases in a typical ASIC were
presented. As discussed, the tool significantly
reduces design time generating synthesizable VHDL
code and required h-files and compilation scripts for
the design sub-system presented in a spreadsheet
document. The presented method also reduces the
amount of required manual work and, especially in
case when the implementation often changes, it also
improved the quality of the design.

The area and timing of the generated modules
are practically the same as if the modules would be
implemented manually. However, this is expectable
since the generated modules are after all very
simple. The gain of this approach is that new
implementation from updated spreadsheet document
can be generated in a second. Moreover, for instance
a changed interrupt connections does not cause any
changes to the SW. This all saves at approximately
five to ten hour implementation and verification
work compared to a situation that all would be done
manually.

In addition, time is saved with automatic code
generation when manual coding is not needed.
Therefore the saved time can be used to verification
or to system-level design. This also improves the
design quality since the designers can concentrate to
details that are more essential.

The use of the method is presented with two
examples. However, there are plenty of potential
areas in system-on-chips where the approach can be
used. In addition, the tool can be improved to
generate, for example, SystemC code and required
makefiles or compilation scripts for every design
tool.

6 References
[1] Pimentel, P. Lieverse, P. van der Wolf, L.

Hertzberger, and E. Deprettere, “Exploring
embedded-systems architectures with

Artemis”. IEEE Computer 34, 11, 2001, pp.
57-63.

[2] T. Kangas et al., “A Communication-Centric
Design Flow for HIBI-based SoCs”, LNCS
3133 Computer Systems: Architectures,
Modeling, and Simulation, A.D. Pimentel, S.
Vassiliadis, (eds.), Springer-Verlag, Berlin,
2004, pp. 474-483.

[3] CoCentric System Studio, homepage of
Synopsys, http://www.synopsys.com

[4] D. Maclay, “Click and Code (automatic code
generation),”IEEE Review, Vol 46, Iss 3, May
2000, pp. 25-28.

[5] Homepage of mathworks Inc,
http://www.mathworks.com

[6] M. Erba, R. Rossi, V. Liberali, A. G.B.
Tettamanzi, “An Evolutionary Approach to
Automatic Generation of VHDL Code for
Low-Power Digital Filters”, Proceedings of the
Genetic Programming European Conference,
EuroGP 2001, LNCS 2038, Springer-Verlag,
Berlin 2001, pp. 36-50.

[7] A. Valderrama, F. Nacabal, P. Paulin, and A.
A. Jerraya, “Automatic Generation of
Interfaces for Distrubuted C-VHDL
Cosimulation of Embedded Systems an
Industrial Experience”, Proceedings of 7th
IEEE International Workshop on Rapid System
Prototyping, June, 2001, pp. 72-77.

[8] Telelogic Tau G2, Homepage of Telelogic,
http://www.telelogic.com

[9] J-M. Daveau, ”VHDL generation from SDL
specications,” Proceedings of International.
Conference. Computer Hardware Description
Languages and Their Applications, Apr. 1997.

[10] Homepage of Comprehensive Perl Archive
Network, www.cpan.org

Figure 3. Interrupt connections, inversions, and synchronization

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 111

