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Abstract: The paper gives a general definition of guaranteeing cost strategy for uncertain dynamical systems. The
strategy is constructed by a parametrized Riccati-inequality for a fairly general system with linear nominal part
and with uncertainty of linear fractional form. The strategy is determined by an LMI system and by the full-block
multiplier technique, too. The methods are compared. Also a fictitious system without uncertainty is shown, for
which the minimax strategy is also the solution of the examined problem.
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1 Introduction

The research of guaranteeing cost controls has been
one of the focuses of control theory for a decade (see
e.g. [8], [11], [12], [13] and the references therein).
This type of controls are preferred for systems, where
the system performance is influenced by uncertain ef-
fects, and the control should assure both stability and a
certain performance level. In these systems both sys-
tem uncertainties and an exogenous disturbance are
present, and the control has to compensate any real-
ization of these effects. A similar problem occurs in
dynamic games, where several players give inputs for
the uncertain system, and each player wishes to reach
as low cost as possible according to their specific cost
functions (see e.g. [4], [7]).

There are several approaches to construct guaran-
teeing cost strategies. If the control guaranteeing the
lowest cost cannot be given analytically, a possible set
of such controls can be determined by solving linear
matrix inequalities (LMIs). These controls may re-
sult in higher cost values, but they can effectively be
solved by standard software. These LMIs contain a
positive scalar variable, since the determination of the
guaranteeing cost control is based on different non-
standard ε-inequalities (see e.g. [11], [13]). The full-
block multiplier technique (see e.g. [2], [9]) can be
considered as an extension of this approach. Instead
of one additional variable, the LMI to be solved con-
tains a whole parameter matrix. This method is based

on Lemma A.1 of [9]. However, the main disadvan-
tage is that one has to give further constraints for the
uncertainty, which may considerably reduce the set of
feasible solutions. A special approach for dynamical
games is followed by [4] and [7], where a fictitious
system is assigned to the original one, and the ficti-
tious system performance is also appropriately mod-
ified. The fictitious system performance is not influ-
enced by the system uncertainty, therefore a minimax
strategy can be given, and these inputs will guarantee
the corresponding level of cost for the player also in
the original system.

In this paper discrete-time linear systems with
parametric uncertainties of linear fractional form are
examined. The purpose is to establish guaranteeing
cost strategies by the above methods. The different
approaches are compared. In section 2, a general def-
inition for the guaranteeing cost minimax strategy is
given, then the problem will be stated. In section 3,
the controls are constructed by the different methods.
In section 4 we compare the methods by numerical
examples. Finally, section 5 concludes the paper.

In the paper standard notation is applied. The
transpose of matrix A is denoted by AT , and P >
0 (≥ 0) denotes the positive (semi-) definiteness of
P . Notation u is used for the vector series u0, u1, ...,
and In denotes the identity matrix of dimension n. K
and K∞ denote the set of usual class-K and class-K∞
functions (definitions are given e.g. in [5]). The nota-
tion of time-dependence is omitted, if it does not cause
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any confusion.

2 Statement of the problem

Consider the following discrete-time uncertain sys-
tem:

x+ = A0x + B0u + E0w + H0p,

q = Aqx + Bqu + Gqp, (1)
p = ∆(t)q,

where x ∈ Rn is the state, u ∈ Rm1 is the control,
w ∈ Rm2 is the exogenous disturbance and p ∈ Rk

describes the time-varying uncertainty, where ∆(t) ∈
Rk×l and

∆T (t)∆(t) < Il. (2)

The initial condition isgiven by x(0) = x0.
The coefficient matrices are of appropriate dimen-

sions. If the system is well-posed, i.e. I −∆Gq is in-
vertible for all possible ∆ satisfying (2), then (1) can
be rewritten in a standard way as

x+ = (A0 + δA)x + (B0 + δB)u + E0w, (3)

where
δA = H0(I −∆Gq)−1∆Aq,

δB = H0(I −∆Gq)−1∆Bq.

It can be shown that I −∆Gq is invertible for all pos-
sible ∆ satisfying (2), if and only if (Ik−GT

q Gq) > 0,
which is equivalant to (Il −GqG

T
q ) > 0. This will be

assumed throughout the paper. For system (3), con-
sider the cost function

J(x0,u,w) =
∞∑

k=0

(xT
k Qxk + uT

k Ruk − wT
k Swk), (4)

where Q, R, and S are symmetric positive definite
matrices of appropriate dimensions. The control has
to be determined in such a way that the lowest possible
cost is reached for any realization of the uncertainty
and for any w.

Definition 1 Consider the uncertain system

x+ = f∆(x, u, w) (5)

with cost function

J(x0,u,w) =
∞∑

k=0

L(xk, uk, wk), (6)

where f∆ is not known, but it belongs to a known class
of functions F . Let V : Rn → R denote a positive
definite continuous function. The state-feedback u =
k(x) is a guaranteeing cost minimax strategy with a

guaranteed cost V(x0) if for all possible f∆ and for
all x 6= 0

max
w
{V(f∆(x, k(x), w))− V(x) + L(x, k(x), w)} < 0 (7)

holds.
The problem is to establish a necessary and suf-

ficient condition for the existence of a state-feedback
guaranteeing cost minimax strategy for system (3)-(4),
and to construct the control.

Proposition 1 Suppose that there exist a K∞-
function ϕ and a K-function σ such that

L(x, u, w) ≥ ϕ(‖x‖+ ‖u‖)− σ(‖w‖) (8)

holds, and u = k(x) is a guaranteeing cost minimax
strategy. Then the closed-loop system is input-to-state
stable (ISS) for every f∆ ∈ F .

Proof. See [4].
Since the cost function (4) satisfies (8), it fol-

lows from Proposition 1 that a linear guaranteeing cost
minimax strategy u = Kx renders the system (3) ISS.

The problem stated above can be considered as
a generalization of several ones known from recently
published papers. If S = I in (4), the problem is
equivalent to that examined by [11]. If S = 0, B0 =
Bq = 0 and E0 = 0, the problem is identical with the
first one considered by [8], while one gets the second
problem, if Gq = 0, E0 = 0. If S = 0, H0 = B0H̃1,
Gq = 0 and E0 = 0, one arrives at the problems
examined in [12]. The case of additive perturbation
corresponds to Bq = 0, while at the choice of Aq = 0,
the case of multiplicative perturbation is considered.
Finally, the problem examined by [7] is also a special
case of ours. That system can be rewritten in the form
of (3) with Gq = 0.

3 Construction of the guaranteeing
cost strategy

3.1 Solution by Riccati-inequality

Firstly, the best state-feedback u = Kx is given ana-
lytically in such sense that the maximum on the left-
hand side of (7) is as low as possible. Let ε > 0 be a
constant and introduce the following notations:

A1 = A0 + H0(I −GT
q Gq)−1GT

q Aq,

B1 = B0 + H0(I −GT
q Gq)−1GT

q Bq,

A = A0 + B0K,

A1 = A1 + B1K,

Aq = Aq + BqK,

A∆ = H0(I −∆Gq)−1∆(Aq + BqK),
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Qε =
1
ε2

AT
q (I −GqG

T
q )−1Aq,

Nε =
1
ε2

AT
q (I −GqG

T
q )−1Bq,

Rε =
1
ε2

BT
q (I −GqG

T
q )−1Bq.

Theorem 1 Consider the uncertain system (3)
with the cost function (4). Let P denote a positive def-
inite symmetric matrix. Function x → V(x) = xT Px
satisfies (7) with k(x) = Kx for all possible ∆ and
for all x 6= 0 if and only if there exists an ε > 0 such
that

P2 = (P−1
1 − E0S

−1ET
0 )−1 > 0 (9)

with

P1 = (P−1 − ε2H0(I −GT
q Gq)−1H0)−1 > 0, (10)

and

AT
1 P2A1 − P + Q + Qε + KT RK < 0. (11)

If P and ε satisfy (9)-(10) and

0 > AT
1 P2A1 + Q + Qε − P − (Nε + AT

1 P2B1)

×(R + Rε + BT
1 P2B1)−1(BT

1 P2A1 + NT
ε ), (12)

then for

K = −(R + Rε + BT
1 P2B1)−1(BT

1 P2A1 + NT
ε ) (13)

the state feedback u = Kx is the best guaranteeing
cost minimax strategy with the guaranteed cost V(x0).

Proof. Consider V (x) = xT Px and set ∆̃ =
(I−∆Gq)−1∆. Then the following inequality should
be fulfilled for every w:

0 >
(
xT wT

) [(
AT +AT

∆

ET
0

)
P (A+A∆ E0) +(

Q− P + KT RK 0
0 −S

)] (
x
w

)
. (14)

By Schur-complement (14) is equivalent to

0 >

Q + KT RK − P 0 −AT

0 −S −ET
0

−A −E0 −P−1

 +

 0
0

−HT
0

 ∆̃ (Aq 0 0) +

AT
q

0
0

 ∆̃ (0 0 −H0) .

By lemma 2.6. of [11], this is equivalent to the exis-
tence of a scalar ε > 0 for which P − (Q + Qε + KT RK) 0 AT

1

0 S ET
0

A1 E0 P−1
1

 > 0. (15)

Applying the Schur-complement again, (15) is equiv-
alent to the negative definiteness of
�

AT
1 P1A1 − P + Q + Qε + KT RK AT

1 P1E0

ET
0 P1A1 ET

0 P1E0 − S

�
,

which is fulfilled if and only if (9) holds and also

0 > AT
1 P1A1 − P + Q + Qε + KT RK−
AT

1 P1E0(ET
0 P1E0 − S)−1ET

0 P1A1. (16)

Applying the matrix inversion lemma, (16) can be
rewritten as (11). By completion of square we get that

0 > AT
1 P2A1 + Q + Qε − P+

[K + (R + Rε + BT
1 P2B1)−1(BT

1 P2A1 + NT
ε )]T

×(R + Rε + BT
1 P2B1)×

[K + (R + Rε + BT
1 P2B1)−1(BT

1 P2A1 + NT
ε )]

−(Nε + AT
1 P2B1)(R + Rε + BT

1 P2B1)−1

×(BT
1 P2A1 + NT

ε ). (17)

From (17) it is clear that the best choice of K is (13).
It follows from Theorem 1 that, if P and ε are

chosen to satisfy (9)-(12), the best control is obtained
analytically. In the case of Nε = 0, these parameters
can be determined by an LMI given in [4].

3.2 Solution by LMI
In this subsection an LMI system is derived, which
gives the solution of the formulated problem in terms
of P , ε and K simultaneously. By Schur-complement
it is easy to prove that (9)-(10) is satisfied if and only
if

P−1 − (H0 E0)
(

ε2(I −GT
q Gq)−1 0

0 S−1

) (
HT

0

ET
0

)
> 0. (18)

Introduce the notation W = P−1, V = KP−1 and
µ = ε2. By Schur-complement again and applying the
congruence transformation diag{I, µI, I}, inequality
(18) can be rewritten as W µH0 E0

µHT
0 µ(I −GT

q Gq) 0
ET

0 0 S

 > 0. (19)

Substituting the definition of P2 from (9) and
(10), inequality (11) can be rewritten as

AT
1 (P−1 − ε2H0(I −GqG

T
q )−1HT

0 − E0SET
0 )−1A1

−P + Q + Qε + KT RK > 0. (20)

Applying the Schur-complement twice we arrive at

0 <


(1, 1) AT

1

A1 (2, 2)
1
εAq 0
0 εHT

0

1
εA

T
q 0

0 εH0

(3, 3) 0
0 (4, 4)

 ,
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where (1, 1) = P − (Q + KT RK), (2, 2) = P−1 −
E0S

−1ET
0 , (3, 3) = I − GqG

T
q and (4, 4) = I −

GT
q Gq. Now by the subsequent application of the

congruence transformation diag{P−1, I, I, I}, then
by the Schur-complement again and by the congru-
ence transformation diag{I, I, εI, εI, I, I, I} the fol-
lowing LMI for W , V and µ is obtained:

0 <



W WAT
1 + V T BT

1 WAT
q + V T BT

q

A1W + B1V W 0
AqW + BqV 0 µ(I −GqG

T
q )

0 µHT
0 0

W 0 0
V 0 0
0 ET

0 0

0 W V T 0
µH0 0 0 E0

0 0 0 0
µ(I −GT

q Gq) 0 0 0
0 Q−1 0 0
0 0 R−1 0
0 0 0 S


(21)

Certainly, the LMI system to be solved has to be com-
pleted with the requirement of

W > 0, µ > 0. (22)

It is easy to see that, if there are matrices W , V and
a scalar µ satisfying (21) and (22), this involves (19).
Therefore, if the LMI system (21)-(22) has a feasi-
ble solution, then the control can be determined as
K = V P. In order to reach as low guaranteed cost as
possible, one has to seek matrix P that has the mini-
mum largest eigenvalue. This can be achieved in such
a way that we introduce a new variable ω and a new
condition as

ωI < W,

with the objective function ω → max .
Remark 1 Consider the fictitious without any un-

certainty

x+ = A1x + B1u +
(

E0 H0

) (
w
ν

)
(23)

and introduce the objective function of type (6)
parametrized by ε as follows.

Lε(x, u, w) =(
xT uT

) (
Q + Qε Nε

NT
ε R + Rε

) (
x
u

)
−wT

(
S 0
0 1

ε (I −GT
q Gq)

)
w (24)

with wT =
(
wT νT

)
. It is easy to show that matrix(

Q + Qε Nε
NT

ε R + Rε

)
is positive definite. In the same way as [1], it can be
shown that under appropriate stabilizability and ob-
servability conditions (9)-(12) admits a positive def-
inite solution if and only if there exists a positive ε

such that the fictitious game (23) with (6) and (24)
has equal upper and lower values. The minimax con-
trol for this game is given by u = Kx, where K is
defined by (13).

3.3 The full-block multiplier technique

Finally we solve the problem by the full-block multi-
plier technique. Let the set of admissible uncertainties
be denoted by

D = {∆ ∈ Rk×l, ∆T ∆ ≤ Il}. (25)

Consider the original system again, for which we
seek the linear state-feedback guaranteeing cost min-
imax strategy u = Kx. The closed-loop system is
x+ = A∆x + E0w. The inequality (7) of definition 1
is equivalent to the negative definiteness of

I 0
A∆ E0

I 0
0 I


T 

−P 0 0 0
0 P 0 0
0 0 Q + KT RK 0
0 0 0 −S

 (∗)

for all ∆ ∈ D, where the asterisk replaces the matrix
that is inferred readily by symmetry. By the full-block
multiplier technique, this is equivalent to the existence
of an invertible multiplier

Z = ZT =
(

Z1 Z2

ZT
2 Z4

)
such that the matrix

Ψ =0
BBBBBB@

I 0 0
A E0 H0

I 0 0
0 I 0
0 0 I
Aq 0 Gq

1
CCCCCCA

T 0
BBBBBB@

−P 0 0
0 P 0
0 0 (3, 3)
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
−S 0 0
0 Z1 Z2

0 ZT
2 Z4

1
CCCCCCA

(∗) , (29)

where (3, 3) = Q + KT RK, is negative definite, and(
∆T I

)
Z

(
∆
I

)
> 0, (26)
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for all ∆ ∈ D. In what follows, the inequality Ψ <
0 will be transformed to a linear one. Introduce the
notation (

Z1 Z2

ZT
2 Z4

)−1

=
(

Y1 Y2

Y T
2 Y4

)
.

By permutations and by the dualization lemma (see
e.g. [9], Lemma A.2) we get that

0 >


I 0 0
0 I 0
0 0 I

−AT −I −Aq

−E0 0 0
−HT

0 0 −GT
q



T 
−P 0 0
0 −(Q + KT RK)−1 0
0 0 −Y4

0 0 0
0 0 0
0 0 −Y2

0 0 0
0 0 0
0 0 −Y T

2

P−1 0 0
0 S−1 0
0 0 −Y1

 (∗).

By the linearization lemma, and by the subse-
quent application of a permutation, of the multi-
ple use of the Schur-complement and of the congru-
ence transformation diag{I, Y1, I, P−1, I, I} one can
prove that the following LMI for W , V , Y1, Y2 and Y4

is equivalent to Ψ < 0:

W H0Y1 −H0Y2

Y1H
T
0 −Y1 Y1G

T
q

−Y T
2 HT

0 GqY1 −Y T
2 GT

q −GqY2 + Y4

0 0 0
ET

0 0 0
WAT

0 + V T BT
0 0 WAT

q + V T BT
q

0 0 0

0 E0 A0W + B0V 0
0 0 0 0
0 0 AqW + BqV 0

R−1 0 V 0
0 S 0 0

V T 0 W W
0 0 W Q−1


> 0. (27)

We can summarize these results by the following
theorem.

Theorem 2 Consider system (3) with the cost
function (4). Assume (27) has a feasible solution
W , V and Y1, Y2, Y4 such that (26) is satisfied with
the corresponding Z. Then the state-feedback u =
Kx = V Px is a guaranteeing cost minimax strat-
egy, and V(x0) = xT

0 Px0 is a guaranteed cost, where
P = W−1.

To achieve the possible minimum cost bound, a
further variable ω can be introduced and an expedient
objective function can be taken for the LMI (32) as
discussed earlier.

Remark 2 It should be emphasized that compared
with the LMI obtained by the ε-inequality, the full-
block multiplier technique is more flexible. Namely,
in this case there is not only one parameter, but a
whole parameter matrix occurs in the LMI to be
solved. However, it has to be assured that (26) holds
for any realization of the uncertainties. Therefore fur-
ther assumptions has to be imposed for the uncertain-
ties, e.g. the matrix ∆ should be block diagonal, or
the admissible set of uncertainties should be a convex
polyhedron, etc. In this case (26) can be substituted
by uncertainty-independent LMIs for the blocks of the
multiplier as it is discussed in [9].

4 Numerical examples
In order to illustrate the application of the different
methods, consider first the numerical examples of
[12]. In these examples we have

A0 =
(
−1.0 0.5

1.0 1.5

)
, B0 =

(
0
1

)
, E0 =

(
0 0
0 0

)
,

Q = I , R = 1, S = 0.
In the case of additive perturbation we set Aq =

I2, Bq = (0 0)T , Gq = 0 and

H0 =
(

0 0√
0.2

√
0.2

)
.

If the guaranteeing cost minimax strategy is deter-
mined according to (13), and P and ε are deter-
mined by the LMI given in [4], the maximum eigen-
value of P is λmax(P ) = 47.4831, and the eigen-
values of the closed-loop system are −0.5936 and
0.0001. If the problem is solved by the LMI (21)-
(22) with the proposed objective function, we get that
λmax(P ) = 47.4877 and the eigenvalues are−0.5934
and 0.000045. This means that both methods give
similar results, which are a bit better than those pro-
vided by the method of [12].

In the case of multiplicative perturbation we have
Aq = (0 0), Bq = 1, Gq = 0 and H0 = (0

√
0.2)T .

In this case Nε = 0 and Qε = 0, but the LMI to be
solved is non-linear in υ = ε−2. Therefore, we solved
(21)-(22) firstly to determine the optimal ν. This re-
sulted in λmax(P ) = 117.6933, and the eigenvalues
of the closed-loop system are −0.5112 and 0.000013.
If the solution is directly determined by (21)-(22), the
results proved to be similar: λmax(P ) = 117.016,
and the corresponding eigenvalues are −0.5115 and
0.0001. In this second case we also applied the full-
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block multiplier technique. Here ∆ ∈ R and multi-
pliers Yi are scalars. In this case the fulfillment of (26)
can be assured by the linear inequalities Y1 ± 2Y2 +
Y4 < 0. In the solution the value of λmax(P ) and the
eigenvalues of the closed-loop system are the same as
before within the numerical accuracy. This is not sur-
prising, since the LMIs to be solved are almost the
same except for the parameter Y2, which is close to
zero in the optimal solution.

Secondly, the parameters of the multiplicative
case were changed as Aq = (0.5 0.25), Bq = 0.5,
Gq = 0.5 and E0 = 0.1I2. The results showed that
the guaranteed cost is far lower compared to the previ-
ous case. Here λmax(P ) = 34.4103, and the eigenval-
ues are −0.4521 and 0.2967. If Bq = 1 is set again,
the LMI (32) is infeasible, even if entries of Aq, Gq

and E0 are small. This shows that the guaranteed cost
can relevantly be improved only if the uncertainty in
the input coefficient matrix is small enough.

5 Conclusions

We determined guaranteeing cost minimax strategies
in a fairly general uncertain discrete-time system with
linear nominal part, where uncertainty is of linear
fractional form. Firstly, the problem has been solved
by a parametrized Riccati-inequality. The parameter
and the strategy can simultaneously be calculated by
determining a feasible solution of an LMI, too. In this
case we proposed an objective function, by which one
can reach the minimum cost. The full-block technique
provides flexibility by more parameters in the LMI,
although in this case further constraints are needed
in the specific problems to capture the possible real-
izations of the uncertainties. The numerical exam-
ples showed that the LMI with the proposed objec-
tive function provides similar results to those resulted
in the Riccati inequality. The numerical examples
showed that the guaranteed cost had relevantly been
reduced by the application of the proposed methods.
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