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Abstract:This work deals with the problem of estimating the trajectory of an autonomous rover by passive stereo
vision only (visual odometry). The proposed method relies on the tracking of pointwise image features and on
the estimation of the robot motion by robust bundle adjustment of the stereo matched features, before and after
the motion. Preliminary results from the application of the algorithm both to simulated data and to actual image
sequences acquired by a mobile platform are presented and discussed.
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1 Introduction
It is well known that estimating the actual trajectory of
a mobile robotic platform by pure dead reckoning, i.e.
by integration of wheel motions over time, is highly
prone to error accumulation. Wheel odometry alone
is not even sufficient in principle when navigating on
a non-planar surface, and must be complemented by
other inputs (e.g. inclinometers).

On the other hand, there are several applications
where teleoperation of the robot is difficult, if at all
possible. Such applications require truly autonomous
long range navigation in a partially or totally unknown
environment. This is the case for a planetary rover,
which typically can communicate with the Earth sta-
tion once per day, in order to transmit acquired data
and to receive commands, e.g. to reach some far target
on the planet surface. In such a scenario, it is clear that
high navigation errors may mean loss of entire days,
while keeping such errors to a minimum can boost the
scientific throughput of the rover mission.

The use of vision techniques for improving the
rover’s trajectory estimate has been studied rather ex-
tensively. There have been many proposals for us-
ing ego-motion estimation from either monocular or
stereo image sequences [1, 2, 3, 4], possibly integrated
with dead reckoning as well as with other kinds of
sensorial inputs. An affine field of research is that
of Simultaneous Localisation And Mapping(SLAM)
techniques [5, 6, 7, 8, 9]. Most of the published
SLAM algorithms, however, are designed for indoor
environments, and make use of environment represen-
tations (maps) which are essentially 2D. Their exten-
sion to navigation on a generic rough terrain is there-
fore not straightforward.

In this paper we present some results on a trajec-
tory estimation method which relies on visual odom-

etry from stereo. From pairs of images taken by a
stereo head fixed on the rover, a dense depth map is es-
timated by standard correlation techniques. Point fea-
tures are then extracted in the left image and matched
against the right image, using the depth map as a dis-
parity cue. Image features are then tracked along the
sequence grabbed during the rover motion, and after
a suitable number of frames the relative motion is es-
timated by bundle adjustment over the two (left and
right) initial images and the two final ones. The lat-
ter step consists in estimating both the 3D positions of
all observed features, and the relative rototranslation
of the stereo head between the two rover positions, by
minimizing a robust cost function of the reprojection
error of feature points in all four images. The com-
puted rototranslation constitutes the visual odometry
estimate which is then summed over to determine the
rover trajectory.

This approach has some resemblance both to a
SLAM method previously proposed by the authors
[10] (though in that case only the angular part of vi-
sual odometry was used), and to the one in [4, 11].
In both the cited references, however, visual odome-
try is obtained by first making two 3D reconstructions
from stereo, one before and one after the motion, and
then registering the two point clouds by minimizing
a fitting criterion defined in 3D space. This has the
distinct drawback of requiring an accurate modeling
of the distribution of the result of stereo reconstruc-
tion, not to mention the problem of outliers (i.e. mis-
matched features). On the contrary, a bundle adjust-
ment approach, like the one described here, takes ad-
vantage of a more sound definition of fitting error (i.e.
on the image plane), and can easily accommodate the
use of a robust cost function to deal with outliers.

It should be remarked that this kind of approach is
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purely passive, relying only on available images ac-
quired during rover motion, so it should not interfere
with other visual tasks as e.g. obstacle avoidance.

In the following, the method is explained in some
detail. Results from its application to image se-
quences, both simulated and actually acquired by a
mobile robotic platform, are presented and discussed.

2 Visual odometry
As said above, the algorithm relies on estimating rel-
ative motion from tracked features in the images ac-
quired while the robot is moving. In principle, such
estimate is not computed for every image, but only at
key frames, whose spacing is a compromise between
larger intervals, which are desirable both for numer-
ical accuracy and for economy of computations, and
the need for a sufficiently large number of features,
which naturally tend to be lost either because going
out of view and because of tracking errors. The algo-
rithm can be summarized in the following steps:

Depth map computation. A dense depth map is
estimated at each key frame for easing stereo match-
ing of features.

Feature extraction. Point features are extracted at
each key frame and left-right matched.

Feature tracking. Detected features are tracked in
the left image up to the next key frame, where stereo
matching of tracked features is performed again.

Motion estimation. The relative rototranslation of
the robot between consecutive key frames is estimated
by bundle adjustment of the tracked and matched fea-
ture points.

The actual implementation of the algorithm must
take into account some features that make it just a bit
more complicated than the above sketch. In partic-
ular, tracking failure cannot be detected until it oc-
curs, which forces to store the previous stereo pair, so
as to be able to restart from there. Also the bundle
adjustment step may fail, either for numerical errors
or because of an excessive number of outliers (see
Sec. 2.4), forcing to declare a key frame at the pre-
vious frame; this means that bundle adjustment must
be performed at every frame, although this is not a
big problem, as the bundle adjustment step is usually
rather fast.

The following paragraphs describe the above steps
in some detail.

2.1 Depth map
Image pairs from the stereo head are warped to re-
move both lens distortion and camera misalignment,
so that the output of this process is a stereo pair with
horizontal epipolar lines, as would be obtained from

an ideal binocular head with parallel optic axes. The
images are then passed through a Laplacian of Gaus-
sian (LOG) filter. We use LOG filtered images instead
of the original intensity images to reduce the effect of
exposure differences.

A dense disparity map is then computed by correla-
tion matching, using the well known minimum Sum-
of-Absolute-Differences (SAD) method [12]. We
have also tested more refined algorithms like the one
in [13]; however, the depth map in our case is only
used as a cue for predicting stereo disparity of point
features, and for this purpose the simple and fast SAD
method is adequate. For the same reasons, the algo-
rithm may be run on subsampled images, which both
reduces the computational load and helps the correla-
tion matching algorithm by smoothing out high fre-
quencies.

2.2 Features
The current implementation uses Shi-Tomasi features
[14], i.e. small textured image patches, whose centers
yield pointwise measurements, similarly to SIFT fea-
tures used by other researchers [9]. A significant ad-
vantage of Shi-Tomasi features is that their definition
implicitly provides an efficient frame-to-frame track-
ing algorithm, provided that the image-plane displace-
ment be small, i.e. well within the size of the patch.
Using the same algorithm for stereo matching, where
the displacement (disparity) may be rather large, espe-
cially for near objects, is still feasible if some coarse
initial estimate of disparity is available. In our im-
plementation, such estimate is provided by the dense
disparity map computed as said above.

Matched point pairs are then backprojected to a 3D
point estimate, in the camera reference. This 3D es-
timate is used both as a starting point for the bundle
adjustment step, and for guiding the tracking of fea-
tures in subsequent frames.

2.3 Tracking
The features detected in the left image at a key frame
are tracked along the sequence up to the next key
frame. As said in Sec. 2.2, the frame-to-frame track-
ing algorithm for point features expects limited fea-
ture displacements between subsequent frames. This
is seldom the case, especially when the robot is ro-
tating, so for reliable tracking we need some predic-
tion of frame-to-frame feature displacements. We cur-
rently use two methods to this end.

Wheel odometry. As long as the robot motion
is sufficiently smooth (and planar), differential wheel
odometry already yields an estimate of robot motion
between consecutive images. Combining the latter
with the estimated 3D feature positions from stereo
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allows to predict feature point displacements. This is
the normal mode of operation.

Optic flow. When wheel odometry fails, as indi-
cated by loss of many (sometimes all) feature points,
the predicted displacements are estimated by comput-
ing a dense optic flow from suitably subsampled ver-
sions of the two consecutive left images. This has
the advantage of not depending upon 3D point esti-
mates, but is computationally expensive and therefore
avoided as long as possible.

2.4 Bundle adjustment
At every key frame, sayk + 1, except the first, we
have a set ofNk featuresFi, left-right matched and
tracked from the previous key framek to the next one
k + 1 (for the sake of simplicity, and without loss
of generality, from now on we shall assumek = 1
and drop thek index). LetXi = [xi, yi, zi, ti]> be
the unknown 3D projective coordinates of featureFi

in the reference of the left camera at frame1. Note
that the scale ambiguity onXi can be fixed by taking
zi = 1 since all the points must be visible in the first
left image, hence they have strictly positive depthz.
Let uiq = [uiq, viq]> be the 2D image coordinates of
the feature point in imageq ∈ {1L, 1R, 2L, 2R}, and
xiq = [suiq, sviq, s]> the same in projective represen-
tation. Then

xi,1L = PLXi

xi,1R = PRMSXi

xi,2L = PLM12Xi

xi,2R = PRMSM12Xi

(1)

wherePL andPR are the3×4 intrinsic camera matri-
ces, andMS ,M12 are4× 4 Euclidean transformation
matrices representing the stereo (left-to-right) map-
ping and the motion (frame 1 to frame 2) mapping,
respectively, and are of the form

M =

[
R t
0> 1

]
=

[
e[r]× t
0> 1

]
(2)

wherer is the vector representation of rotationR, i.e.
r/‖r‖ = rotation axis,‖r‖ = rotation angle, and[r]×
is the antisymmetric matrix representation of vector
cross product byr.

Note that in the above bothPL, PR and the stereo
transformMS are known from calibration data; in
fact, due to image warpingRS ≡ I3×3 and tS ≡
[b, 0, 0]> with b the stereo baseline length. We
can also takePL,R ≡ [I3×3,03] in Eq. (1) if the
pixel-based feature coordinates are preliminarly trans-
formed tocalibratedcoordinates using the actual in-
trinsic camera matrices. Now, for each pair of con-
secutive key frames we have measurementsu∗iq of the

quantitiesuiq corresponding to Eq. (1), so we can de-
fine an error measure

J(p) =
∑

i

∑
q f(‖eiq‖2)

=
∑

i

∑
q f(‖uiq − u∗iq‖2)

(3)

parametrized as a function of the6 + 3N unknowns

p = [r12, t12, x1, y1, t1, ...xN , yN , tN ]> (4)

with r12, t12 the generators ofM12. The visual odom-
etry estimate is then given by ther12, t12 entries of
thep value that minimizesJ .

In the above, choosingf(·) = identity corresponds
to standard least squares, which would be optimal for
independent Gaussian distributed image errors. For
reasons of robustness against outliers (mismatched
points), it is however preferable to use a robust cost
function such as the Lorentzian cost:

f(e2) = log(1 + e2/σ2) (5)

with σ chosen as a function of the expected image-
plane error.

Since the first derivatives ofJ with respect top
can be computed analytically, the minimization ofJ
can be achieved by a gradient-based method such as
Levenberg-Marquardt. Moreover, for giveni the cor-
responding terms in Eq. (3) only depend upon one of
the triples(xi, yi, ti), which allows to use a sparse al-
gorithm like the one described in [15, A4.3].

For better accuracy, the residualseiq are compared
against a threshold (proportional to the Lorentzσ),
and those exceeding that threshold are marked as out-
liers. The bundle adjustment is then run again on the
inliers only.

3 Results
The proposed method has been implemented in C and
MATLAB, and tested on a number of simulated and
actual image sequences.

3.1 Simulation
In order to validate the algorithm, it has been run on a
sequence of synthetic images of a Mars-like environ-
ment as shown in Fig. 1. The images were synthesized
using the free raytracer POV-Ray [16]. Lens distortion
and acquisition noise were not included in the simu-
lation, but camera calibration was performed, using
Bouguet’s method [17] on five synthesized images of
a checkerboard.

The simulated robot was sent on a closed trajectory
with some sharp turns, as shown in Fig. 2, at a speed
of 16 mm/frame (similar to that of the actual robot),
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Figure 1: Simulated environment.

for a total of 1150 frames. Fig. 2 shows both the odo-
metric trajectory (which in this case is exact!) and the
estimates provided by the algorithm. The final pose
was off by about 0.16◦ in angle and 0.014 m in po-
sition over a trajectory length of about 18.5 m (i.e. a
position error less than 0.1% of travelled length).

This small but not negligible error is mostly due to
the finite spatial sampling of the images, and to cali-
bration errors (again due, in this case, to finite spatial
resolution).
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Figure 2: Trajectory for simulated data, top and side
view. Red line: odometry, blue dots: estimates at
keyframes. The initial position is at (0,0).

3.2 Actual rover tests
This section presents some results obtained by pro-
cessing sequences of images acquired with our Activ-
Media Pioneer 3-DX robot, equipped with a Videre
Design STH-MDCS stereo head (Fig. 3). The latter is
a low-cost commercial product nominally capable of
yielding pairs of1280× 960 colour images at7.5 fps,
or lower resolution images (640×480 and320×240)
at up to 30 fps. A serious limitation of this device is its
small stereo baseline (88 mm, non-adjustable). The
head mounted a pair of consumer-grade 5mm lenses
with a field of view of about 63◦, and was calibrated
before and after each run.

Figure 3: The mobile robot with stereo head.

In our experiments, the robot wandered on an as-
phalted surface as shown in Fig. 4. Since we currently
have no means to assess the robot position with a rea-
sonable accuracy, the initial position was marked, and
the rover was then manually driven to run along an
approximately closed path, so as to be able to check
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Figure 4: Real environment. The two bricks mark the starting position.

the estimate at least on every return of the rover to its
starting position. In the experiment presented here,
the robot described a sort of double figure of eight,
with four returns to the starting point, as shown in
Fig. 5. The processed sequence counted a total of
6258 stereo frames acquired at a mean spacing of
about 11 mm/frame. As can be seen from the im-
ages, the surface on which the robot travelled was
quite rough, causing a rather irregular motion. It is
worth noting that the odometric estimate of the trajec-
tory, as shown in Fig. 5 is not only all but closed, but
the final heading is off by more than 100◦.

In order to have a rough estimate of the algorithm
accuracy, the four frames of the sequence nearest
to the four returns of the rover to the starting point
were selected, and the robot pose relative to the initial
one was estimated independently. Table I compares
the latter to the actual algorithm output at the same
frames. Note that the column labeled ’length’ reports
the path length estimated by the algorithm. The posi-
tion error is always well below 1% of the path length,
with an attitude error less than 6◦ over almost 70m of
travel.

4 Conclusion
This work has presented a method for estimating the
egomotion of a rover vehicle purely from passive
stereo, without any other sensor input. In spite of the
use of low-cost vision equipment, the preliminary re-
sults from field tests compare favorably to those re-
poted e.g. in [11].
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Figure 5: Trajectory for actual data, top and side view.
Red line: odometry, blue line and dots: estimates. The
starting point is at (0,0).
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