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Abstract: - This paper describes the application of Benders decomposition to hydro-thermal optimal scheduling 
problems. In particular, Benders decomposition combined with dynamic programming techniques can handle multiple-
stage scheduling problems which are common for both short-term and long-term planning. The main advantage of the 
decomposition approach is the ability to solve linear programming (LP) problems which would be otherwise too large 
or too time-consuming when standard LP algorithms are employed. Although similar topics were covered in existing 
literature, the techniques required to handle overall problem and single-stage sub-problem infeasibilities have not been 
discussed in prior work. The paper will address this issue in detail.  
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1   Introduction 
 

The optimal utilization of hydro energy resources has 
become more important than ever, due to competitive 
market environment arising from energy deregulation 
and the promotion of renewable energies. The problems 
presented in this article address systems of mixed hydro-
thermal energy resources with small to large proportion 
of hydro energy. The key point of hydro scheduling is 
the transitional effect of decision from one time stage to 
another. For example, the exploitation of hydro energy 
in the early stages can lead to the unnecessary use of 
expensive resources (thermal) in the later stages when 
the demand is high. Therefore, given a fixed horizon, the 
optimal use of hydro energy must be worked out taking 
into account water inflows, energy prices and demand of 
all stages in this horizon, while respecting all the system 
and operating constraints. The techniques presented in 
this paper can be applied to both short-term and long-
term scheduling problems. Even though only 
deterministic cases are considered in this paper, the 
techniques can easily be extended to cope with 
stochastic cases. The latter relate to long-term problems, 
in which accurate prediction of stochastic variables such 
as inflow and demand cannot be guaranteed.   
The following section gives an introduction to Benders 
decomposition, followed by a section with the problem 
formulation for the decomposition approach. Afterwards, 
we present techniques of handling infeasibilities 
encountered while solving the single-stage sub-problems 
under the decomposition approach, which have not been 
addressed in prior literature. Then the results of some 
case studies are shown to illustrate the robustness and 

accuracy of the various approaches. The last section of 
this paper is reserved for conclusions.  
 
2   Benders Decomposition 

 
One of the first technical articles on Benders 

decomposition appeared in the early 60s [1]. The initial 
intended application was to solve mixed-integer 
programming problems. The main principle is to divide 
the problem into two parts: one with integers only and 
the other with continuous variables only. The advantage 
is that the divided problems are easier to tackle than their 
original mixed counterpart. The master problem is the 
pure integer problem with the associated constraints plus 
the so called Benders cuts. These cuts are formulated 
through iterations with the dual variables found in 
solving the sub-problem, in this case the pure continuous 
variable problem. There are two types of Benders cuts: 
optimality and feasibility cuts. The first ones are to 
enhance optimality while the latter to avoid 
infeasibilities of the sub-problem. The logic of Benders 
decomposition is depicted in the flowchart of Figure 1.   

 
This decomposition technique was elaborated in the 

80s to solve multi-stage stochastic optimization 
problems for multi-reservoir hydroelectric systems 
[2][3]. This is done through a nested approach of the 
original Benders decomposition based on the principle of 
dynamic programming. The deterministic case is called 
Dual Dynamic Programming (DDP) and the stochastic 
case Stochastic Dual Dynamic Programming (SDDP), 
respectively. 
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Figure 1 Logic Flowchart of Benders Decomposition 
 
3 Problem Formulation 

 
In this paper the problems aim at system cost 

minimization, i.e. the role played by the system/market 
operator. However, it should be noted that the same 
principles can equally be applied to profit maximization, 
i.e. for individual generation companies. Thus consider a 
problem with T stages, for which the objective function 
can be expressed as: 
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where tc~  and tx~ are column vectors of the same length 
with cost coefficients and optimization variables 
respectively.  
For each stage t = 1, 2, … T, the following constraints 
must be satisfied: 
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i = the energy output from all thermal and hydro plants 
G = the total number of plants 
vt

1 = the energy demand in stage t 
κ xt

p = the amount of water through turbine in stage t 
xt

o = the amount of water spilt in stage t 
xt

s = the amount of water in reservoir at end of stage t 
vt

2 = the amount of inflow into the reservoir in stage t 
Equation (2) stands for the energy balance equation 
while equation (3) is for water conservation. Note that 

more complicated hydraulic constraints can be added to 
model upstream / downstream reservoir relationships. 
For demonstration purposes we only show the simplest 
model here. Besides, the maximum and minimum 
allowed values for each variable must be respected: 

maxmin ~~~
ttt xxx ≤≤      (4) 

These form a set of linear equations and can be 
generalized as: 
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Based on the decomposition approach, the problem is 
solved stage by stage and each single-stage master 
problem is formulated as: 
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where   represents the approximate future cost function 
of stages t+1 to T. Based on duality theory [5], this 
approximate future cost function is in fact a convex 
piecewise linear function and is expressed as: 
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where the  are the dual variables of the sub-problem 
for stage t+1 and no is the total number of iterations. For 
multi-stage problems, the real future cost for the current 
solution is compared with the approximate future cost to 
determine if convergence is reached. Each iteration 
consists of forward simulation where trial solutions are 
found and backward recursion where the approximate 
future cost functions are updated. Further explanation of 
the approximate future cost function and details of 
derivation can be found in [3]. 

jπ~

  
4   Handling Infeasibilities 

 
In this article we put emphasis on how infeasibilities 

should be handled since most other articles focus on how 
optimality cuts are derived but not on feasibility cuts 
[2][3][6][8]. The handling of infeasibilities is important 
while searching for the optimal solution since 
convergence cannot be achieved when infeasibilities are 
not dealt with properly.  

 
In this article two possible approaches are proposed. 

The first one is the traditional approach where feasibility 
cuts are added when necessary. When infeasibilities are 
encountered while solving the single-stage sub-problem 
at stage t, a feasibility check sub-problem has to be set 
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up [7]. This feasibility check sub-problem is to minimize 
all the violations while respecting the same set of 
constraints as the original sub-problem. Mathematically, 
these cuts are formulated as follows: 
 0~~)~̂~()~̂( 1111 ≤′′−− −−−− uExxxs tttt   (8) 
where 

)~̂( txs  = the optimal solution of the feasibility check sub-
problem 
u~  = dual variables found from the feasibility check sub-
problem 

1
~̂

−tx  = the original trial values of 1
~

−tx . 
The principle of the feasibility cuts is that a more 

restrictive constraint should be applied to the previous 
stage problem in order to ensure the feasibility of the 
next stage. In nested Benders decomposition (i.e. multi-
stage problems), optimality cuts for the approximate cost 
function cannot be updated until infeasibilities are 
cleared from all stages t = 1 to T. Moreover, the 
constraints from one stage must be carried over to as 
many previous stages as necessary in order to clear the 
infeasibilities. This is depicted in Figure 2. 

  
 

Figure 2 Feasibility Cuts’ Implementation for multi-stage problems 
 

The above-mentioned approach is the standard 
approach of handling sub-problem infeasibilities when 
implementing Benders decomposition. However, it 
suffers from the disadvantage that the iteration has to 
come to a stop when the overall problem is infeasible, 
i.e. when t = 0 as shown in Figure 2. In view of this, a 
second approach is presented.  

In this second approach, a set of so-called “violation” 
variables ε~  are added to the original optimization 
variables to form a new set of optimization variables.  
The objective function of this new formulation is 
  (9) ∑
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where the new components are: 

td~  = penalty cost vector 

tε~  = violation variables for constraints. 
The purpose of using violation variables is to make sure 
that any violations of the constraints can be expressed in 
terms of positive ε. In order to achieve that, it is 
necessary that  
 tt cd ~~

>  
and 
 0~ ≥tε .     (10) 
Note that the penalty costs should be bigger than all the 
other original costs so that the amount of violation is 
minimized. These violation variables are included into 
the various constraints as follows: 
For equality constraints, e.g. the energy balance equation 
(2): 
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For inequalities, e.g. soft upper bounds: 
 maxmax ~~~

ttt xx ≤− ε  
The main advantage of this approach is that no 

infeasibilities are encountered during iterations and 
therefore the feasibility cuts are not needed. However, 
although there are no additional optimization problems 
(the feasibility check sub-problems) that have to be 
solved each time infeasibilities are encountered, the 
overall computational time is not necessarily reduced. 
This is because the decomposed problems have 
additional variables and therefore take more time to 
solve. Moreover, it can be shown that the penalty costs 
need to be above a certain threshold so that optimal 
solution can be obtained [4]. In other words, 
convergence can only be guaranteed when the penalty 
costs are chosen with care. 
 
5   Case Studies 
 

To illustrate the performance of the various proposed 
approaches, a prototype has been set up in Matlab to run 
several small test cases. The linear programming engine 
is provided by the Optimization Toolbox of Matlab. 
Each case is solved using both the feasibility cuts 
approach and the violation variable approach. 
Furthermore, for each of these cases, the results are 
compared with the corresponding equivalent LP 
formulation, i.e. multi-stage variables and constraints are 
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aggregated to form one large-scale LP problem. The 
solution from this equivalent LP provides a benchmark, 
which can be used to check the accuracy of the other 
methods. 
 
5.1 Case Description 

For demonstration purposes, only small cases are 
studied. However, the same algorithm is under 
implementation in an energy market simulation tool, 
GridView (please see Acknowledgement), and the 
preliminary results for large-scale cases are encouraging. 
The base case consists of two thermal plants with 
different costs and five hydro-storage plants. The 
constraints for each stage are those stated in equations 
(2), (3) and (4). For more realistic results, the exogenous 
variables, i.e. inflow and demand, are scaled historical 
data. The total system demand and the inflow for one of 
the reservoirs are plotted in Figure 3.  
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Figure 3 Annual Inflow and Demand Values 

 
It should be noted the relative values of the demand 

and the inflow in different months of the year are typical. 
For many places where there is snow in winter, the large 
quantity of inflow comes when the snow starts melting 
in spring. However, the demand is usually relatively low 
this time of the year since the highest demand is during 
the coldest months of the year, i.e. in winter. This 
explains the important role of storage plants in a yearly 
scheduling horizon: water is saved in the reservoir when 
inflow is high and later on this water is used for 
electrical energy generation when the demand is high.  
 
5.2 Case 1a: 2-thermal, 5-hydro, overall feasible 

In this case there are five hydro plants and the 
exogeneous variables and constraints are set so that the 
overall problem is feasible. However, sub-problem 
infeasibilities are still encountered during iterations, 
especially the initial ones. The reason is because of the 
requirement to fill up the reservoirs at the end of the year 
to the same level at the beginning of the year. Some of 
the outputs are plotted in the following diagrams. 
Figures 4 to 8 show the outputs from the violation 
approach. Figure 9 shows the convergence trend from 
the feasibility cut approach. Since the results from the 

latter method are similar to those from the former 
method, the results are not plotted.  
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Figure 4 Convergence Trend (violation approach) 
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Figure 5 Total Amount of Violation (violation approach) 
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Figure 6 Thermal Outputs of 2 Thermal Plants (violation approach) 
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Figure 7 End Storage of 5 Reservoirs (energy equivalent; violation 

approach) 
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Figure 8 Hydro Outputs of 5 Hydro Plants (violation approach) 
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Figure 9 Convergence Trend (feasibility cut approach) 

 
Comparison of the final objective values from the 

two different approaches with the equivalent LP results 
show that they are identical, meaning that global 
optimum is reached in both cases. However, in terms of 
computational time, the feasibility cut approach takes 
only 6 seconds while the violation approach takes 41 
seconds.  Moreover, the first approach takes 6 iterations 
while the latter one requires 14 for convergence. 
Besides, it is also interesting to look at Figures 4 and 5 
which show the convergence trend (upper bound and 
lower bound) and total amount of violations plotted 
against the number of iterations for the violation 
approach. The total amount of violations is defined as 
the sum of the values of ε's after each iteration. The 
upper bound follows the same trend of the total amount 
of violations while the lower bound increases slowly. 
When total amount of violation reaches zero at 14th 
iteration, the upper bound decreases to the same value of 
the lower bound, i.e. convergence is reached.  
 
5.3 Case 1b: 2-thermal, 5-hydro, overall 
infeasible 

This case is the same as case 1a, except that some 
exogeneous variables are changed to make the overall 
problem infeasible. It is therefore obvious that the 
approach using feasibility cuts will not work, since the 
iteration process will come to a halt when violations 
happen in the first stage. In this particular case, it is 

enough to increase the amount of demand for all the 
months to create infeasibilities for the overall problem. 
Some of the results of this case are plotted in the 
following diagrams.  
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Figure 10 Convergence Trend 
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Figure 11 Total Amount of Violation 
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Figure 12 Accumulated Cost BD Vs LP 
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Figure 13 End Storage of  5 Reservoirs (energy equivalent; BD) 
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Figure 14 End Storage of  5 Reservoirs (energy equivalent; LP) 

 
Figures 10 and 11 show the convergence trend and 

the total amount of violation plotted against the number 
of iterations. Similar to the previous case the upper 
bound has a similar shape as the total amount of 
violation, while in this case the amount of violation does 
not reach zero when convergence is reached. This is 
expected since the overall case is infeasible in reality and 
therefore non-zero ε's are needed in the optimum 
solution.  

Figures 12 – 14 show the comparison of results from 
the decomposition approach and the equivalent LP 
approach. Note that even though the total costs summed 
up for the whole year are the same in both cases, the 
values of the optimization variables are not necessarily 
identical. Figure 12 displays the accumulated costs along 
the year. It can be seen that, for this particular case, the 
total cost from the decomposition approach is higher 
than the LP approach except the very last month when 
they reach the same value. Figures 13 and 14 show the 
reservoir levels along the year for both approaches. 
Clearly the use of hydro energy is different, which 
implies the different use of thermal energy, therefore the 
different operating costs in the two approaches. Indeed, 
depending on the data and the setup of the cases, it is 
possible that more than one global optimum exists. As in 
this example: decomposition approach finds one, the 
equivalent LP finds another.  
 

5.4  The Importance of the Penalty Costs 
This section refers to the exact same case studied in 

the previous section. In Section 5.3 the results from the 
decomposition approach are obtained from a case which 
converges, with careful selection of the penalty costs, i.e. 
the costs associated to the ε's in the objective function. In 
other words, they are the penalty costs caused by one 
unit of violation. In fact these costs can have a very 
important effect on the convergence of the problem. As a 
rule of thumb they should be larger than any of the other 
costs in the objective function. In our case, the costs 
associated to the thermal plants are 50$/MWh and 
65$/MWh, those for all the hydro plants are 5$/MWh, 
while spillage and storage have zero costs. The penalty 
costs for the ε's used in Section 5.3 are 190$/MWh. 
Other values of the penalty costs are used and the results 
are summarized in Table 1.   
 

TABLE 1  THE EFFECTS OF DIFFERENT PENALTY COSTS ON 
CONVERGENCE 

Penalty Cost ($/unit violation) Total Violation  No. Iterations 
150 4384 20 
170 3180 (optimal) 

)
16 

190 3180 (optimal) 
)

11 
200 3201 20 
300 3456 20 

 
The table shows the total amount of violation at 

convergence or after 20 iterations. Figure 15 shows the 
“oscillating” pattern of the total violation plotted against 
the number of iterations for the case with 150$/unit 
violation as penalty cost. 
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Figure 15 Total Amount of Violation (Non-convergent case) 

 
6   Conclusions 

 
This paper describes the application of Benders 

decomposition to hydro-thermal scheduling problems. In 
particular the issue of how to handle single-stage sub-
problem or overall-problem infeasibilities is discussed 
and two possible approaches are described. The use of 
feasibility cuts is more efficient when the problem is 
overall feasible. However, the use of violation variables 
is indispensable for cases that are overall infeasible. 
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Nevertheless, the penalty costs must be chosen carefully 
so as to ensure convergence in the latter case. In general, 
both approaches can be combined to achieve the required 
performance of the optimization process. For example, 
violations such as load shedding or storage requirement 
are foreseeable and therefore violation variables should 
be included to take care of the relevant constraints. On 
the contrary, the violations arising from other constraints 
that occur in single-stage sub-problems during iterations 
should be taken care of by the feasibility cuts. 
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