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1 Introduction
This review paper is dedicated to Bismut’s book
”Large deviations and the Malliavin Calculus” ([7])
from where main novelties of the Malliavin Calculus
for densities come. Namely there are two parts in the
Malliavin Calculus:

-)A part involved with functional analysis. If
the functional analysis part of the Malliavin Calcu-
lus has a lot of precursors (See for instance work
of Albeverio-Hoegh-Krohn [1], Hida [8], Fomin [2],
Berezanskii [5]...), the main novelty of the Malliavin
Calculus was to complete the classical differential op-
erations on the Wiener space in all the Lp such that the
test functional space of the Malliavin Calculus is an
algebra of functional almost surely defined, because
there is no Sobolev imbedding in infinite dimension.
The main interest of the Malliavin Calculus is that it
can be applied to diffusions.

-)A part involved with the regularity of the law of
diffusions. The main theorem of Malliavin in this part
is the following: if the Malliavin matrix associated to
a functional has an inverse which belongs to all the Lp,
the law of this Rd valued variable has got a smooth
density with respect to the Lebesgue measure on Rd.
Bismut ([6]), in the case of diffusions, has got another
way to get Malliavin’s theorem, the role of the infinite
dimensional Sobolev Calculus being replaced by the
stochastic flow theorem.

In the first part of this review paper, we remark
that in Bismut’s approach of the Malliavin Calculus all
quantities involved satisfy convenient stochastic dif-
ferential equations. So the formulas of [6] can be in-
terpreted in semi-group theory: it is the purpose of
our work [19]. We briefly describe in this part the
main ingredient of [19], thas is the Cameron-Martin-

Maruyama-Girsanov formula in semi-group theory as
well as the elementary integration by part formula,
which are in stochastic analysis the basical ingredient
of Bismut’s way of the Malliavin Calculus for densi-
ties. We give afterwards the results of [19].

In the second part of this paper, we translate in
semi-group theory our proof of Varadhan’s estimates
for hypoelliptic heat kernels, lower bound which were
got by ourself in [11] and [12]. We remark in the con-
siderations of [11] and [12], only stochastic differen-
tial equation appear, which can be interpreted in semi-
group theory. The analytical tool is the Malliavin Cal-
culus depending from a parameter of Bismut’s type,
which was introduced in [11] and in [12], which is
translated in semi-group theory in [20]. The second
main ingredient is that the Bismutian’s distance asso-
ciated to the degenerated operator is equal to the tradi-
tional subriemannian metric: this allows to understand
in semi-group theory the role of Bismut’s condition
([6]) in the asymptotics. We describe briefly later a
situation where the two distances are not equal.

In the last part of this paper, we translate in semi-
group theory a result of Ben-Arous and us [4] giving
a condition in order a heat-kernel is strictly positive,
which was using Bismut’s procedure ([7]), that is a
kind of implicit theorem for a functional (the diffu-
sion) almost surely defined, which allows to get an
integrated expression for the density of the diffusion.
Our translation ([21]) is based upon a translation of
the Wong-Zakai approximation of a diffusion in semi-
group theory, which allows to get a translation of dis-
crete Bell’s approach of the Malliavin Calculus ([3]),
where we pass to the infinite dimension via this an-
alytical Wong-Zakai approximation instead of using
the theory of stochastic differential equations and the
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martingale inequalities. Bismut’s procedure is there-
fore reduced to the use of the classical implicit func-
tion theorem with some uniform integrability condi-
tions provided by a discrete version of the classical
Stroock-Varadhan support theorem for diffusions.

For application of the Malliavin Calculus to heat
kernel, we refer to the survey of Kusuoka ([9]),
Watanabe ([25]) and various surveys of Léandre ([14],
[15], [16], [17], [18]).

2 The theorem of Malliavin without
probability

Let us consider some vector fields Xi i = 0, ..,m on
Rd with bounded derivatives of all order. Let L be the
Hoermander type operator

Lf = X0 + 1/2
∑
i>0

X2
i (1)

acting on smooth bounded functions on Rd. It can be
written as

Lf =< X0,Df > +1/2
∑
i>0

< DXiXi,Df >

+ 1/2
∑
i>0

< Xi,D
2f,Xi > (2)

In (1), vector fields are consider as first order differen-
tial operators and in (2) vectors fields are considered
as smooth applications from Rd into Rd. Let us con-
sider the generator

Lh = L +
∑
i>0

hi
tXi (3)

where t → hi
t are smooth bounded functions which

don’t depend on x. Lh generates a inhomogeneous
Markov semi-group Ph acting on bounded continuous
functions on Rd.

Let us consider on Rd+1 some vector fields

X̃t
i = (Xi, h

i
tu) (4)

and the generator on Rd+1 acting on smooth functions
on f̃ on Rd+1:

L̃h(f̃) =< X0, D̃f̃ > +

1/2
∑
i>0

< DXiXi, D̃f̃ >

+ 1/2
∑
i>0

< X̃t
i , D̃

2f̃ , X̃t
i > (5)

It generates a semi-group P̃ h operating on the
bounded continuous functions on Rd+1. In the se-
quel, for the integrability conditions, we refer to the
appendix.

Theorem 1 (Quasi-invariance)

P h
t f(x) = P̃ h

t [uf ](x, 1) (6)

Proof: We have, since the vector fiels X̃t
i are linear in

u:
P̃ h[uf ](x, u0) = P̃ h[uf ](x, 1)u0 (7)

for any bounded continuous f on Rd such that:

L̃hP̃ h[uf ](., .)|(x, 1) = LhP̃ h[uf ](., 1)|(x) (8)

Therefore the result arises by using uniqueness of the
solution of the parabolic equation associated to Lh.
♦

Let us consider the vector field X
h
i = (Xi, h

i
t)

and the generator on Rd+1 acting on smooth functions
f̃on Rd+1

L
h
f̃ =< X0, D̃f > +1/2

∑
i>1

< DXiXi, D̃f̃ >

+ 1/2
∑
i>0

< X
h
i , D̃2f̃ ,X

h
i > (9)

It generates a semi-group P
h

acting on the bounded
continuous functions on Rd+1.

Theorem 2 (Elementary integration by parts for-
mula):

∫ t

0
Pt−s

∑
i>0

hi
sXi[Psf ]]ds = P

h
t [uf ](x, 0) (10)

Proof: We have P
h
t [uf ](x, u0) = At(x)u0 + Bt(x)

because ∂
∂u commute with L

h
. Therefore,

P
h
t [uf ](x, u0) = Pt[f ](x)u0 + P

h
t [uf ](x, 0) (11)

such that

∂

∂t
P

h[uf ](., .)|(x, 0)

= LP
h[uf ](., 0)|(x) +

∑
i>1

hi
t < Xi, Pt[f ](x) >

(12)

with starting condition 0.
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On the other hand F (t, x) =∫ t
0 Pt−s[

∑
i>0 hi

uXi[Ps[f ]]]ds is solution of the
parabolic equation:

∂

∂t
F (t, x) = LF (t, x) +

∑
i>0

hi
tXiPt[f ](x) (13)

which is the same than (12) with the same initial con-
dition.
♦

Let us consider the vector fields on Rd×Gl(Rd)×
Md = V d where Gl(Rd) is the space of invertible
matrices on Rd, and Md the space of matrices on Rd:

X̂i = (Xi,DXiU, 0) (14)

and

X̂ = (0, 0,
∑
i>0

< U−1Xi, . >2) (15)

Let us consider the semi-group operating on con-
tinuous bounded functionals on Vd generated by L̂:

L̂f̂ = 1/2
∑
i>0

< X̂i, D̂
2f̂ , X̂i >

+ 1/2
∑
i>0

< DX̂iX̂i, D̂f̂ > +

< X̂0, D̂f̂ > + < X̂, D̂f̂ > (16)

We consider P̂t the semi-group associated to L̂.

Theorem 3 (Malliavin): If P̂t[V −p](x, I, 0) < ∞
for all p, we have that Ptf(x) =

∫
Rd pt(x, y)f(y)dy

where y → pt(x, y) is smooth positive.

Scheme of the proof: The proof is based upon
the following considerations: under Malliavin’s non-
degeneracy assumption, we can improve the elemen-
tary integration by parts formula (10) in order to get

Pt[Drf ](x) = Qt[fR](x, I, 0) (17)

for a convenient enlarged semi-group Qt where the
inverse of the Malliavin matrix with big power ap-
pear. We consider Fourier exponential and we deduce
from (17) that the Fourier transform of Pt(x)(dy) has
a quick decay.
♦

Remark: V is called the Malliavin matrix asso-
ciated to the diffusion.

3 Varadhan estimates without prob-
ability

Let us consider m+1 vector fields on Rd with deriva-
tives at each order bounded. Let us consider the vector
spaces defined inductively by:

E0(x) = (X1(x), ..,Xm(x)) (18)

El+1(x) = El(x) ∪ [El, (X1, ..,Xm)](x) (19)

We suppose that in the starting point x there exists
an l such that El(x) spanns Rd (Strong Hoermander’s
hypothesis).

We consider an Hoermander’s type operator:

L = X0 + 1/2
∑
i≥1

X2
i (20)

The heat semi-group associated to L has a smooth
density pt(x, y). It is the purposed of Hoermander’s
theorem [22]. We can use to show that the Malliavin
Calculus without probability of Bismut type. To in-
verse the Malliavin matrix, there are a lot of methods
in stochastic analysis which use the full path measure.
But the method of Léandre ([10]) which was used
to get a generalization of Hoermander’s theorem for
jump process, which uses basically the Markov prop-
erty, that is the semi-group property can be used in
this set-up where we translate the Malliavin Calculus
in semi-group theory.

We are concerned in this paper by the behaviour
of pt(x, y) when t → 0. We introduce as it is classical
the Carnot-Caratheory distance defined as follows: let
t → hi

t m elements of L2([0, 1]). We consider the
horizontal curve:

dxt(h) =
∑
i≥1

Xi(xt(h))hi
tdt (21)

We define d2(x, y) as the infimum of
∑∫ 1

0 |hi
t|2dt =

‖h‖2 when x0(h) = x and x1(h) = y. In the sequel
we will do the following assumption: d(x, y) < ∞
for all y in Rd.

Our result is the following:

Theorem 4 When t → 0

lim2t log pt(x, y) ≥ −d2(x, y) (22)

Scheme of the proof: us consider the Hilbert space H
of L2 maps from [0, 1] into Rm. We can consider ac-
cording Bismut ([6]) the elements h where h → x1(h)
is a submersion.

The main remark of Léandre ([11], [12]) is that

d2(x, y) = d2
B(x, y) (23)
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where in d2
B(x, y) (so-called Bismutian distance) we

take the infimum of ‖h‖2 where x1(h)(x) = y,
x0(h) = x and h → x1(h) is a submersion in h. In or-
der to see that, we remark that in some sense due to the
non-degenaracy condition of Malliavin, h → x1(h) is
”almost surely” a submersion: so we can go through
a small path from x and since (21) is autonomous,
we can come back to x and go to y by a minimiz-
ing curve (It was called in [12] little loop principle).
Afterwards since we want only to get a lower bound,
we analyze the diffusion along a curve which is almost
minimizing and where Bismut’s condition is checked:
the fluctuation around this curve is a non-degenerated
Gaussian variable which has therefore a strictly posi-
tive density. Let us recall that Bismut pointed out ([6])
if we were analysing the diffusion along a minimizing
curve as it was done for instance a long time ago by
Molchanov ([23]), the first fluctuation is in general a
degenerated Gaussian measure, which has no density,,
because Bismut condition is not in general satisfied
for minimizing curves between x and y. We remark
that in [11] [12] only stochastic differential equations
appear, which can be translated in semi-group theory
in [20]. In order to pass to density, we translate in [20]
in semi-group theory, the Malliavin Calculus of Bis-
mut type depending of a parameter of Léandre [11],
[12].

♦
Remark: We can follow this proof in order to

show without using probabilities the following result
which was shown by Ben Arous-Léandre ([4]) by
using probabilities. Let Lε be the generator X0 +
ε2

2

∑
i>0 X2

i where the involved vector fields satisfy
still the strong Hoemander’s hypothesis. The asso-
ciated semi-group under assumption similar to the
assumptions of the introduction has an heat-kernel
pε

t(x, y). Instead of considering (21), we consider:

dxt(h) =
∑
i>0

Xi(xt(h))hi
tdt + X0(xt(h))dt (24)

We introduce the quantity d2
B(x, y) (so called pseudo

Bismutian distance) which is the infimum of ‖h‖2
such that x0(h) = x, x1(h) = y and h′ → x1(h′)
is a submersion in h. We have only in this case
d2

B(x, y) ≥ d2(x, y) because the equation (24) is not
autonomous. We get when ε → 0

lim2ε2 log pε
1(x, y) ≥ −d2

B(x, y) (25)

4 Positivity theorem in semi-group
theory

Let us consider the equation starting from x:

dxr
t (z)(x) = rX0(xr

t (z)(x))dt+
∑
i>0

Xi(xr
t (z)(x))zidt

(26)
where the zi follows a Gaussian law on Rm with co-
variance rI and average 0. We consider the kernel op-
erating on smooth function with bounded derivatives
at all order

Qrf(x) = E[f(xr
r(.)(x))] (27)

An elementary computation show if L is defined as in
(20) and f is such a function that when r → 0:

Qrf(x) = f(x) + rLf(x) + O(r2) (28)

We take r = 1/n for a given integer and we iterate
Q1/n k-times. We get a kernel Qk

1/n which satisfies
when k varies a difference equation which is a good
discrete approximation by (28) of the parabolic equa-
tion satisfies by the semi-group Pt associated to L. We
get

Theorem 5 (Wong-Zakai) When n → ∞, we get if f
is a smooth function with bounded derivatives at each
order that Qn

1/nf(x) → P1f(x)

Wong-Zakai approximation is in stochastic analysis
the approximation of the Stratonovitch differential
equation issued of x

dxt(x) = X0(xt(x))dt +
∑
i>0

Xi(xt(x))dwi
t (29)

where the wi
t are independent Brownian motions. In

the Wong-Zakai approximation, we replace formally
in (29) the leading Brownian motions by their polyg-
onal approximation (wi

. )n. We get therefore a random
ordinary differential equation xn

t (x) and we get

Qn
1/nf(x) = E[f(xn

1 (x))] (30)

We consider the map (wi
. )

n → xn
1 (x) from the finite

dimensional Gaussian space described by the polyg-
onal approximation of the leading Brownian motion
into Rd. We can compute the derivative of the flow
Dxxn

1 (x) associated to this random ordinary differen-
tial equation as well as the Gram matrix Vn associ-
ated to the map from this Gaussian finite dimensional
equation into Rd. The both quantities satisfies ran-
dom ordinary equation, and for these we can improve
a little bit the Wong-Zakai approximation of Theorem
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5, by introducing a convenient kernel Q̂1/nf̂(x,U, V )
where x belongs to Rd, U belongs to Gld and V is a
matrix on Rd. We can show that

Q̂n
1/nf̂(x,U, V ) → P̂1f̂(x,U, V ) (31)

for a convenient set of test function f̂ for the semi-
group defined in (16).

On the finite dimensional Gaussian space, we can
integrate by parts for xn

1 (x) and pass to the limit
through the analytical Wong-Zakai approximation in
order to arrive to integration by parts formula of the
type (17). We get the following theorem originally
proved by Bell ([3]) by using stochastic integrals and
martingales inequalities:

Theorem 6 (Bell)Let g be a smooth function with
bounded derivatives at each order on R+ equal to 0
in a neighborhood of 0. Let µn the measure f →
Q̂n

1/n[fg(detV )](x, I, 0) and let µ be the measure

f → P̂1[fg(detV )](x, I, 0). The both measures have
smooth densities pn and p and when n → ∞ pn tends
to p uniformly.

This theorem allows us to prove the next theorem,
originally proved in [4] by using Bismut’s procedure,
a kind of implicit function theorem for the almost
surely defined solution of (29):

Theorem 7 (Ben Arous-Léandre) The measure
P1(x)(dy) is bounded below by a measure having a
strictly positive density in y0 as soon as the Bismutian
pseudo-distance dB(x, y0) is finite.

Scheme of the proof: We can look by the previous
theorem to the finite dimensional situation, where we
can apply the classical finite dimensional implicit the-
orem. But we have to apply uniformly this implicit
function theorem for big n in µn: it is possible by
a discrete version of the classical Stroock-Varadhan
support theorem for diffusions.
♦

5 Conclusion

We have reviewed some applications of the Malli-
avin Calculus of Bismut type without probability to
the study of some heat kernels, where probabilistic
tools were before used: the main remark is that in the
probabilist treatment of these, only suitable stochastic
differential equation appear, which lead to considera-
tions which can be interpreted in semi-group theory.
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[10] Léandre R.: Extension du théoreme de Hoer-
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[13] Léandre R.: Intégration dans la fibre associée a
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