
Optimization Methods for Optimal Control 
of Nonlinear Elliptic Systems 

 
JOHN COLETSOS and BASIL KOKKINIS 

Department of Mathematics, School of Applied Mathematics and Physics  
National Technical University of Athens 
Zografou Campus, 15780 Athens, Greece 

 
Abstract: - We consider an optimal control problem for systems governed by a highly nonlinear second order 
elliptic partial differential equation, with control and state constraints. The problem is formulated in the 
classical and in the relaxed form, and various necessary conditions for optimality are given. For the numerical 
solution of these problems, we propose a penalized gradient projection method generating classical controls 
and a penalized conditional descent method generating relaxed controls. We study the behavior in the limit of 
sequences constructed by these methods, using relaxation theory. Finally, numerical examples are given. 
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1   Introduction 
We consider an optimal control problem for systems 
governed by a highly nonlinear second order elliptic 
partial differential equation, with control and state 
constraints. The problem is formulated in the 
classical and in the relaxed form. Various necessary 
conditions for optimality are first given for both 
formulations. For the numerical solution of these 
problems, we then propose a penalized gradient 
projection method generating classical controls, and 
a penalized conditional descent method generating 
relaxed controls. Under appropriate assumptions, we 
prove that relaxed (resp. strong in  classical) 
limits of subsequences (resp. sequences) constructed 
by the classical method are admissible and weakly 
extremal relaxed (resp. classical) for the relaxed 
(resp. classical) problem, and that relaxed limits of 
subsequences of controls constructed by the relaxed 
method are admissible and strongly extremal for the 
relaxed problem. Finally, numerical examples are 
given. For various classical and relaxed optimization 
and approximation methods applied to optimal 
control problems, see e.g. [2-15,17,19], and the 
references therein. 

2L

 
 
2   Classical and relaxed formulations 
Let  be a bounded domain in , with Lipschitz 
boundary . Consider the nonlinear elliptic state 
equation 

Ω d

Γ

(1)   in  ( , ( ), ( )) 0Ay f x y x w x+ = ,Ω
(2)   on , ( ) 0y x = Γ

where  is the formal second order elliptic 
differential operator 

A

(3)  
1 1

: [ ( )
d d

ij
j i i j

yAy a x ].
x x= =

∂ ∂
= −

∂ ∂∑∑  

We denote by ( , )⋅ ⋅  and ⋅  the inner product and 
norm in 2 ( )L Ω , and by  and 1( , )⋅ ⋅

1
⋅  the inner 

product and norm in the Sobolev space 1
0: (V H )= Ω . 

The state equation will be interpreted in the 
following weak form 
(4)  y V∈  and 

       ( , ) ( , ( ), ( )) ( ) 0,a y v f x y x w x v x dx
Ω

+ =∫ ,v V∀ ∈  

where ( , )a ⋅ ⋅  denotes the usual bilinear form on 
V V×  associated with   A

(5)  
, 1

( , ) : ( )
d

ij
i j i j

y va y v a x dx
x xΩ

=

∂ ∂
=

∂ ∂∑ ∫ . 

Define the set of classical controls 
(6)  : { : measurable}W w U w= Ω→ , 
where U ν⊂  is a compact set, and the functionals 
(7)   . ( ) : ( , ( ), ( )) ,m mG w g x y x w x dx

Ω
= ∫ 0,...,m q=

The classical optimal control Problem  is to 
minimize  subject to the control and state 
constraints 

P
0 ( )G w

(8)  w W∈ ,  
(9)  ( ) 0mG w = , 1,...,m p= , 
       ( ) 0mG w ≤ , 1,...,m p q= + . 
     It is well known that the classical problem may 
have no solutions, even if the set U  is convex. The 
existence of such a solution is usually proved under 
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strong, often unrealistic for nonlinear systems, 
convexity assumptions (such as the Cesari property). 
Reformulated in the so-called relaxed form, the 
problem is convexified in some sense and has a 
solution in a larger space under weaker assumptions. 
     Next, define the set of relaxed controls (or Young 
measures; for the relevant theory, see [18,16]) 
(10) 1: { : ( ) weakly measurable}R r M U r= Ω→  
       1( , ( )) ( , ( )) *wL M U L C U∞⊂ Ω ≡ Ω , 
where ( )M U  (resp. 1( )M U ) is the set of Radon 
(resp. probability) measures on U . The set R  is 
endowed with the relative weak star topology, and 
R  is convex, metrizable and compact. If each 
classical control  is identified with its associated 
Dirac relaxed control 

( )w ⋅

( )( ) : wr δ ⋅⋅ = , then W  may be 
regarded as a subset of R , and W  is thus dense in 
R . For 1( ; ( ))L C Uφ ∈ Ω  and r , we shall use for 
simplicity the notation 

R∈

(11) ( , ( )) : ( , ) ( )( ).
U

x r x x u r x duφ φ= ∫  

The relaxed optimal control Problem P  is then 
defined by replacing  by  (with the above 
notation) and W  by 

w r
R  in the classical problem. 

     We suppose that the coefficients  satisfy the 
ellipticity condition 

ija

(12)   2
0

, 1 1

( ) ,
d d

ij i j i
i j i

a x z z zα
= =

≥∑ ∑ , ,i jz z∀ ∈ ,x∈Ω  

and that the functions f , yf  are defined on 
, measurable for fixed , continuous 

for fixed 
UΩ× × ,y u

x , and satisfy the conditions 
(13) 0( ,0, ) ( ),f x u xφ≤  ( , )x u U∀ ∈Ω× , 
where , with , 0 ( )sLφ ∈ Ω 2s ≥ / 2s d>  (e.g. 2s = , 
for ), and 3d ≤
(14) 1 10 ( , , ) ( ) (y )f x y u x yφ η≤ ≤ ,    
       ( , , ) ,x y u U∀ ∈Ω× ×  
where 1η  is an increasing function from +  to + , 
and  .  1 ( )sLφ ∈ Ω
     Then, for every control , the state equation 
has a unique solution such that 

r R∈
: ry y V Cα= ∈ ∩ Ω( ) , 

for some (0,1)α ∈  (see [1]).  
     We suppose now in addition that the functions 

 are defined on  measurable for fixed 
, continuous for fixed 

mg ,UΩ× ×
,y u x , and satisfy 

(15) 0( , , ) ( ),m mg x y u xψ≤  
       ( , , )x y u U∀ ∈Ω× ×  with 'y C≤ ,    
where , . 'C C> 1

0 ( )m Lψ ∈ Ω

 
Theorem 1 (i) (Assumptions on  omitted) The 
operator  (resp. ), from 

mg

rr ya ww ya R  (resp. W  
with the relative topology of ) to V , and to 2 ( )L Ω

0 ( )C Ω , is continuous. 
(ii) The functionals  on ( )mr G ra R  (resp. 

 on W  with the -topology) are 
continuous.  

( )mw G wa 2L

(iii) If the relaxed problem has an admissible 
control, then it has a solution. 
 
     Since W , we generally have R⊂
(16) 0 0constr. on constr. on 

: min ( ) inf ( ) :R Wr w
c G r G w c= ≤ = , 

where the equality holds, in particular, if there are no 
state constraints, as W  is dense in R . Since usually 
approximation methods slightly violate the state 
constraints, approximating an optimal relaxed 
control by a relaxed or a classical one, hence the 
possibly lower relaxed optimal cost Rc , is not a 
drawback in practice (see [18], p. 259). Note also 
that approximating sequences of classical controls 
may converge to relaxed ones. 
     In order to state the optimality conditions, we 
suppose in addition that the functions , uf f , 

, ,m my mug g g  are defined on , where  is 
an open set containing U , measurable on 

'UΩ× × 'U
Ω  for 

fixed ( , )y u U∈ × , continuous on  for fixed U×
x∈Ω , and satisfy the conditions 
(17) 2( , , ) ( ),uf x y u xφ≤  1( , , ) ( ),my mg x y u xψ≤  

(18) 2( , , ) ( ),mu mg x y u xψ≤  
       ( , , )x y u U∀ ∈Ω× × , with 'y C≤ , 
where 'C C< , 2

2 , (im Lφ ψ )∈ Ω . 
     The following lemma and theorems can be 
proved by using the techniques of [8,18] (the weak 
relaxed minimum principle in Theorem 2 is proved 
similarly to Theorem 2.2 in [12]). 
 
Lemma 1 With the derivatives in u  omitted (resp. 
included) in our last assumptions, dropping the 
index  in , the directional derivative of the 
functional  defined on 

m ,m mg G
G R  (resp. W , with U  

convex) is given, for ,r r R∈  (resp. ,w w ), by  W∈

(19) 
0

( ( )) (( , ) lim G r r r G rDG r r r
α

α
α+→

+ − −
− =

)  

       ( , ( ), ( ), ( ) ( ))H x y x z x r x r x dx
Ω

= −∫ , 

(resp.     
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(20) 
0

( ( )) (( , ) lim G w w w G wDG w w w
α

α
α+→

+ − −
− =

)  

       ( , ( ), ( ), ( ))( ( ) ( ))uH x y x z x w x w x w x dx
Ω

= −∫  ), 

where the Hamiltonian  is defined by H
(21)  ( , , , ) : ( , , ) ( , , ),H x y z u z f x y u g x y u= − +
and the adjoint state  satisfies the linear 
adjoint equation 

: rz z V= ∈

(22)  ( , ) ( ( , ) , ) ( ( , ), ),y ya v z f y r z v g y r v+ =

       (resp.   ), ( , ) ( ( , ) , ) ( ( , ), )y ya v z f y w z v g y w v+ =

        with  (resp. ). ,v V∀ ∈ : ry y= : wy y=
Moreover, the operator , from rr za R  to V  (resp. 

, from W  to V ), and the functional ww za

( , ) ( , )r r DG r r r−a , defined on R R×  (resp. 
( , ) ( , )w w DG w w w−a , on W ), are continuous. W×
 
Theorem 2 (Necessary Conditions for Optimality) 
With the derivatives in u  omitted (resp. included) in 
the assumptions, if  (resp. , with U  
convex) is optimal for Problem 

r R∈ w W∈
P  or  (resp. 

Problem ), then  (resp. ) is strongly extremal 
relaxed (resp. weakly extremal classical), i.e. there 
exist multipliers 

P
P r w

mλ ∈ , , with 0,...,m = q 0 0λ ≥ , 

0mλ ≥ , , 1,...,m p q= +
0

1
q

m
m

λ
=

=∑ , such that 

(23) 
0

( , ) 0,
q

m m
m

DG r r rλ
=

− ≥∑  r R∀ ∈ , 

(24) ( ) 0,m mG rλ =  , 1,...,m p q= +
       (relaxed transversality conditions) 
(resp. 

(25) 
0

( , ) 0,
q

m m
m

DG w w wλ
=

− ≥∑  w W∀ ∈ , 

(26) ( ) 0,m mG wλ =  , 1,...,m p q= +
       (classical transversality conditions) ). 
The global condition (23) is equivalent to the strong 
relaxed pointwise minimum principle 
(27)      ( , ( ), ( ), ( )) min ( , ( ), ( ), ),

u U
H x y x z x r x H x y x z x u

∈
=

        a.e. in Ω , 
where the complete Hamiltonian  and adjoint  

are defined with . 

H z

0
:

q

m m
m

g gλ
=

= ∑
If U  is convex, then (27) implies the weak relaxed 
pointwise minimum principle 
(28) ( , , , ( )) ( )uH x y z r x r x  
       min ( , , , ( )) ( , ( )),uH x y z r x x r x

φ
φ=  a.e. in Ω , 

where the minimum is taken over the set ( , ; )B U UΩ  
of Caratheodory functions (in the sense of Warga 

[18]), which in turn implies the global weak relaxed 
condition 
(29)  ( , , , ( ))[ ( , ( )) ( )] 0,uH x y z r x x r x r x dxφ

Ω
− ≥∫

       ( , ; )B U Uφ∀ ∈ Ω . 

A control  satisfying (29) and (24) is called weakly 
extremal relaxed. The global condition (25) is 
equivalent to the weak classical pointwise minimum 
principle 

r

(30) ( , ( ), ( ), ( )) ( )uH x y x z x w x w x  
       min ( , ( ), ( ), ( )) ,uu U

H x y x z x w x u
∈

=  a.e. in Ω .  

 
 
3   Optimization methods 
Let , ( )l

mM 1,...,m q= , be positive and increasing 
sequences such that  as l , l

mM →∞ →∞ 0γ ≥ , 
, (0,1b c )∈ , and ( )lβ , ( )kζ  positive sequences, with 

( )lβ  decreasing and converging to zero, and 1kζ ≤ .  
We define the penalized functionals on W  

(31)  2
0

1
( ) : ( ) { [ ( )]

p
l l

m m
m

G w G w M G w
=

= + ∑

       . 2

1
[max(0, ( ))] }/ 2

q
l
m m

m p
M G w

= +

+ ∑
The classical penalized gradient projection method is 
described by the following Algorithm, where U  is 
assumed to be convex. 
  
Algorithm 1 
Step 1. Set : 0k = , : 1l = , and choose . 1

0w W∈
Step 2. Find l

kv W∈  such that 

(32) 
2

: ( , )
2

l l l l l l
k k k k k ke DG w v w v wγ
= − + −  

       
2

min[ ( , ) ],
2

l l l l
k k kv W

DG w v w v wγ
∈

= − + −  

and set . : ( ,l l l l
k k kd DG w v w= − )k

Step 3. If l
kd β≤ , set , , :l l

kw w= :l l
kv v= :l

kd d= , 
:l

ke e= , 1 :l l
k kw w+ = , : 1l l= + , and go to Step 2. 

Step 4. (Modified Armijo Step Search) Find the 
lowest integer value , say s∈ s , such that 

 and ( ) (0,1]s
ks cα ζ= ∈ ( )sα  satisfies the inequality 

(33) , ( ( )( )) ( ) ( )l l l l l l
k k k kG w s v w G w s bdα α+ − − ≤ k

and then set : (k )sα α= . 
Step 5. Set , , and 
go to Step 2. 

1 : ( )l
k

l l l
k k k kw w v wα+ = + − : 1k k= +
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     One can easily see by “completing the square” 
that Step 2 amounts to finding the projection  of 
the function 

l
kv

(34) , ( ) : ( ) (1/ ) ( , , , )l l l l
k k u k ku x w x H x y z wγ= − l

k

)

onto W , which reduces to finding the corresponding 
pointwise projection onto U  for a.a . By the 
definition of the directional derivative and since 

, the Armijo step 

x∈Ω

, (0,1b c∈ kα  in Step 4 can be 
found for every k . The parameter γ  is chosen here 
experimentally to yield a good rate of convergence. 
    A (classical or relaxed) extremal (or weakly 
extremal) control is called abnormal if there exist 
multipliers as in the optimality conditions, with 

0 0λ = . A control is admissible and abnormal 
extremal in rather exceptional situations (see [18]). 
     With  as defined in Step 3, define the 
sequences of multipliers 

lw

(35) : ( ),l l l
m m mM G wλ =   1,..., ,m p=

(36)   : max(0, ( )),l l l
m m mM G wλ = 1,..., .m p q= +

 
Theorem 3 We suppose that U  is convex. 
(i) In the presence of state constraints, if the whole 
sequence  generated by Algorithm 1 
converges to some  in  strongly and the 
sequences 

( )( )l k
k kw ∈

w W∈ 2L
( )l

mλ  are bounded, then  is admissible 
and weakly extremal for Problem . In the absence 
of state constraints, if a subsequence (

w
P

)k k Kw ∈  (no 
index ) converges to some  in  strongly, 
then  is weakly extremal classical for Problem . 

l w W∈ 2L
w P

(ii) In the presence of state constraints, if a 
subsequence  of the sequence generated by 
Algorithm 1 in Step 3, regarded as a sequence of 
relaxed controls, converges to some  in 

( )l
l Lw ∈

r R , and the 
sequences  are bounded, then  is admissible 
and weakly extremal relaxed for Problem 

( )l
m l Lλ ∈ r

P . In the 
absence of state constraints, if a subsequence 

 (no index ) converges to some  in ( )k k Kw ∈ l r R , 
then  is weakly extremal relaxed for Problem r P . 
(iii) In any of the convergences cases (i) or (ii) with 
state constraints, suppose that the classical, or the 
relaxed, problem has no admissible, abnormal 
extremal, controls. If the limit control is admissible, 
then the sequences of multipliers are bounded, and 
this control is also extremal as above. 
 
     Next, we define the penalized discrete functionals 
on R  

(37)  2
0

1
( ) : ( ) { [ ( )]

p
l l

m m
m

G r G r M G r
=

= + ∑

       . 2

1
[max(0, ( ))] }/ 2

q
l
m m

m p
M G r

= +

+ ∑
The relaxed penalized conditional descent method is 
described by the following Algorithm, where U  is 
not necessarily convex. 
 
Algorithm 2 
Step 1. Set : 0k = , : 1l = , and choose . 1

0r R∈

Step 2. Find l
kr R∈  such that 

(38) 
'

: ( , ) min ( , 'l l l l l l l
k k k k kr R

d DG r r r DG r r r
∈

= − = ).k−  

Step 3. If l
kd β≤ , set , :l l

kr r= :l l
kr r= , :l

kd d= , 
1 :l l

k kr r+ = , : 1l l= + , and go to Step 2. 
Step 4. (Modified Armijo Step Search) Find the 
lowest integer value , say s∈ s , such that 

 and ( ) (0,1]s
ks cα ζ= ∈ ( )sα  satisfies the inequality 

(39) ( ( )( )) ( ) ( )l l l l l l
k k k kG r s r r G r s bdα α+ − − ≤ k , 

and then set : (k )sα α= . 
Step 5. Choose any 1

l
kr + R∈  such that  

(40) 1( ) ( ( ))l l l l l l
k k k kG r G r r rα+ ≤ + − ,k  

set : 1k k= + , and go to Step 2. 
 
     With  as defined in Step 3, define the 
sequences of multipliers 

lr

(41) : ( ),ll l
m m mM G rλ = 1,..., ,m p =  

(42) : max(0, ( )),l l l
m m mM G rλ =   1,..., .m p q= +

 
Theorem 4 We suppose that the derivatives in  are 
excluded in the last assumptions of Section 2.  

u

(i) In the presence of state constraints, if a 
subsequence ( )l

l Lr ∈  of the sequence generated by 
Algorithm 2 in Step 3 converges to some r R∈  and 
the sequences ( )l

mλ  are bounded, then  is 
admissible and strongly extremal relaxed for 
Problem 

r

P . In the absence of state constraints, if a 
subsequence ( )k k Kr ∈  (no index l ) converges to some 

 in r R , then  is strongly extremal relaxed for 
Problem 

r
P . 

(ii) In case (i) with state constraints, suppose that the 
relaxed problem has no admissible, abnormal 
extremal, controls. If  is admissible, then the 
sequences of multipliers are bounded and r  is also 
strongly extremal relaxed for Problem 

r

P . 
 
     For the implementation of relaxed algorithms 
similar to Algorithm 2, where Gamkrelidze controls 
are actually constructed, in the continuous and 
discrete cases, see [6] and [10]. 
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     In practice, by choosing in Algorithms 1 and 2 
moderately growing sequences  and a 
sequence 

( )l
mM

( )lβ  relatively fast converging to zero, the 
resulting sequences of multipliers ( )l

mλ  are often 
kept bounded. One can choose a fixed initial step 

: (0,k 1]ζ ζ= ∈  in Step 4; a usually faster and 
adaptive procedure is to set 0 : 1ζ = , and then 

1:k kζ α −= , for . 1k ≥
     When directly applied to nonconvex problems 
whose solutions are non-classical relaxed controls, 
the above classical methods (Algorithm 1) may yield 
very slow convergence, due to highly oscillating 
involved extremal controls. If the constraint set U  is 
convex, one can formulate the relaxed problem in 
the equivalent Gamkrelidze relaxed form, using 
convex combinations of Dirac controls involving a 
finite, usually small, number of classical controls. 
Algorithm 1 can then be applied to this extended 
classical control problem, with much better results 
(for details on this approach, see [11,12]). When U  
is not convex, one can use Algorithm 2 for solving 
such highly nonconvex problems.  
     Finally, Gamkrelidze relaxed controls (practically 
in discrete form) computed as above, or by 
Algorithm 2, can be approximated, and simulated, 
by classical controls using a standard procedure 
similar to [9]. 
 
 
4   Numerical examples 
Example 1. Let . Define the functions 2: (0,1)Ω =
(43) 1 2( ) : ( ) ,u x v x x x= =  
(44) 1 2 1 2( ) : 8 (1 )(1 ),y x x x x x= − −  
and consider the following optimal control problem, 
with state equation 
(45) 3 3/ 3 (1 )) / 3y y u u y y y−∆ + + + − − −  
       1 1 2 216[ (1 ) (1 )] ( ) 0x x x x v v− − + − − − =  in Ω ,    
(46)  on , ( ) 0y x = Γ

control constraints , 2( ( ), ( )) : [0,1]u x v x U∈ = x∈Ω , 
and cost functional to be minimized 

(47) 2 2 2
0

1( , ) [( ) ( ) ( ) ] .
2

G u v y y u u v v dx
Ω

= − + − + −∫  

Clearly, the optimal controls are u  and v , the 
optimal state is y , and the optimal cost is zero. 
Algorithm 1, without penalties, was applied to this 
problem using the finite element method with 
continuous piecewise linear basis functions on 
triangular elements (half squares of edge size 

) for solving the differential equations, with 
(not necessarily continuous) elementwise linear 

classical controls, with 

0.01h =

0.5γ = , Armijo parameters 
0.5b c= = . After 15 iterations, we obtained the 

following results 
(48)   9

0 ( , ) 2.994 10 ,k kG u v −= ⋅ 126.211 10 ,kd −= − ⋅

       53.204 10 ,kε
−= ⋅   53.052 10 ,kη

−= ⋅
where kε  (resp. kη ) is the maximum error for the 
state (resp. controls) at the vertices of the triangles 
(resp. midpoints of the triangle edges). 
Example 2. Introducing the state constraint  
(49) 1( , ) : ( 0.22) 0,G u v y dx

Ω
= − =∫  

in Example 1, choosing , and applying 
here the penalized Algorithm 1, we obtained after 60 
iterations in k  the results 

2: [0,0.7]U =

(50)      3
0 ( , ) 2.034848361 10 ,l l

k kG u v −= ⋅

       6
1( , ) 8.247 10 ,l l

k kG u v −= ⋅  53.956 10 .kd −= − ⋅  
Example 3. Define the functions 
(51) 1 2( ) : max( 1,1 1.5( )),w x x x= − − +       
(52) 1 2 1 2( ) : 8 (1 )(1 ),y x x x x x= − −  
and consider the following problem, with state 
equation 
(53) 3 3/ 3 (2 ) / 3 2y y w w y y y−∆ + + + − − −  
       1 1 2 216[ (1 ) (1 )] 0x x x x− − + − =  in Ω , 
(54) ( ) 0y x =  on Γ , 
nonconvex control constraint set , : { 1} [0.5,1]U = − ∪
and nonconvex cost functional 
(55) 2 2

0 ( ) : {0.5( ) 1} .G w y y w dx
Ω

= − − +∫  

It can be easily verified that the unique optimal 
relaxed control r  is given by 
(56) ( ){1} [ ( ) ( 1)]/ 2r x w x= − −  

       1 2

1 2

{0}, if 1 1.5( ) 1
(0,1], if 1 1.5( ) 1

x x
x x

− + ≤ −⎧
∈⎨ − + > −⎩

 

(57) ( ){ 1} 1 ( ){1},r x r x− = −  
for ,x∈Ω  with optimal state y  and cost 0. The 
control  is concentrated at the two points 1 and r

1− ;  is classical if r 1 21 1.5( ) 1x x− + ≤ − , and non-
classical otherwise. Note also that the optimal cost 
value 0 can be approximated as closely as desired by 
using a classical control (as W  is dense in R ), but 
clearly cannot be attained for such a control. 
Algorithm 2, without penalties, was applied to this 
problem using the finite element method of Example 
1, here with elementwise constant relaxed controls. 
After 100 iterations in , we obtained the results k
(58) 9

0 ( ) 9.152 10 ,kG r −= ⋅  83.032 10 ,kd −= − ⋅  
       43.543 10 ,kε

−= ⋅  
where kε  is the maximum state error at the vertices 
of the triangles. 
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Example 4. Introducing the state constraint 
(59)  1( ) : ( 0.22) 0,G w y dx

Ω
= − =∫

in Example 3 and applying the penalized Algorithm 
2, we obtained after 200 iterations in  the results k
(60)         6

0 ( ) 3.087499887 10 ,l
kG r −= ⋅

         8
1( ) 7.187 10 ,l

kG r −= ⋅ 72.569 10 .kd −= − ⋅
     Finally, similar results were obtained after the 
approximation of the last computed relaxed controls 
by classical ones (see end of Section 3). 
 
 
5   Conclusions 
An optimal control problem involving highly 
nonlinear elliptic systems has been studied. 
Necessary conditions for optimality have been 
derived for the classical and relaxed formulations of 
the problem. A classical penalized gradient 
projection method and a relaxed penalized 
conditional descent method have been proposed. 
Using also relaxation theory, the behavior in the 
limit of sequences constructed by these methods has 
been analyzed. 
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