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Abstract: The bad accuracy of a simplified model can compromise the sensitivity analysis. We propose to build
accurate simplified models for sensitivity analysis thanks to an adaptive model reduction method: the A Priori
Hyper Reduction (APHR) method. The adaptivity allows to guaranty both the quality of the state estimation and
a small number of shape functions involved in the reduced order model (ROM). This approach is very convenient
for time dependent problems described by the finite element method. In case of non-linear problems, a reduction
of integration point number named Hyper Reduction improves the efficiency of the simplified computations. This
method can be thought of as an adaptive Snapshot POD. The ROM adaptations are based on iterative finite element
computations. The initial guess of such iterative computations is obtained thanks to the current ROM. So the
proposed method can also be interpreted as a convergence acceleration method based on model reduction. A
non linear thermal example illustrates the capability of the APHR method. A numerical sensitivity analysis is
solved to validate the efficiency of the adaptive strategy. The ROMs we proposed are time independent but slightly
parameter dependent. The effect of the values of the parameters at the beginning of an inverse problem treatment
can be forgotten, while the ROM is efficient for values of parameters in the vicinity of the optimal parameters.

Key–Words: Snapshot POD, hyper reduction, convergence acceleration, incremental learning

1 Introduction

Numerical sensitivity analysis are based on variations
of model input parameters over a reasonable range in
order to observe the relative change in the model re-
sponse. Two interesting questions can be raised. How
can be reused previous computational results in order
to reduce the time needed to obtain an updated model
response? And, how accurate should be the model
to get a convenient sensitivity estimation? The rela-
tive change of model response should be around 5%
in case of sensitive parameters. To catch a convenient
estimation of such sensitivity the relative change in
the model response must be greater than the variations
of numerical defaults due to the variation of parame-
ters. In practice, the model used for sensitivity anal-
ysis should be accurate enough. Two different kinds
of approaches are available to reuse previous compu-
tational results: the model reduction methods and the
convergence acceleration methods associated to an it-
erative solving technic [1]. A reduced order model
(ROM) is deduced from the full model thanks to a set
of shape functions that span a subspace large enough
to approximate the response. The Snapshot POD [2]
is a reduction method widely used in the frame work
of non-linear time dependent analysis. The principle

of convergence acceleration methods is to propose an
initial guest to an iterative solver thanks to a subspace
approximation. In case of time dependent problem
the subspace used for convergence acceleration can
be time dependent, despite the subspace spanned by
the shape function of a ROM should be time inde-
pendent. An accurate ROM, according to large vari-
ations of parameters, usually leads to a large number
of shape functions and a large data base. With conver-
gence acceleration methods, the size of the data base
has no influence on the accuracy of the estimation of
the model response. But it has an influence on the
efficiency of the computation. Interesting approaches
consist in mixing model reduction and convergence
acceleration [3] [6]. To do so, a time independent sub-
space is obtained thanks to the Proper Orthogonal De-
composition of the state evolution obtained during the
incremental computation. This paper is focused on
the capability of the APHR method [3] to build ROM
shape functions that are time independent but param-
eter dependent. Hence, during the treatment of an in-
verse problem, the ROM can be adapted to be efficient
only in the vicinity of the optimal parameters.

To reduce the cost of the computation of a new
model response we propose :
◦ a reduction of the number of state variables thanks
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to a convenient choice of ROM shape functions;

◦ a reduction of the ROM integration points by an Hy-
per Reduction technique;

◦ an incremental adaptive strategy to avoid to check
the quality of the estimated model response at all
time steps;

◦ a selection of the most significant events as shape
functions thanks to a POD [4] applied on reduced
state variables (small eigenproblems);

◦ an expansion of the subspace spanned by the shape
function thanks to an iterative solving of the high
dimensional equations with an initial guess provided
by the ROM.

The POD applied to reduced state variables warranties
the time independence of the shape functions. Ap-
plied at the time instant tj during the incremental
computation, the POD provides a selection of the most
significant events involved in the state evolution be-
fore tj . This property is used to adapt the ROM dur-
ing the incremental computation. Thus we avoid a
too important size of ROM. But due to this proce-
dure shape functions that are significant for time in-
stants higher than tj can be dramatically removed of
the ROM. When a ROM is used to perform a sensitiv-
ity analysis, all the shape functions should be reused
and eventually completed. No shape function should
be removed. A learning strategy is proposed to master
this memory effect. A single scalar parameter allows
to gradually choose between forgetting or storing the
significant events involved in a sequence of different
model responses related to different parameter values.
If we choose to select the significant part of all the
computed states, the ROM shape functions are going
to be time and parameter independent. But the size of
the ROM tends to be very large. On the contrary, when
solving an inverse problem, it’s possible to forget the
effect of the first values of the parameters during the
iterative optimization of the parameter values. Then
we obtain shape functions that are time independent
but slightly parameter dependent.

The second section of this paper is a brief pre-
sentation of the APHR method. The Hyper Reduc-
tion is explained in case of a given ROM. The ROM
adaptivity and the memory selection of the effect of a
sequence of parameter values is presented as an in-
cremental learning strategy. The third section pro-
vides numerical results obtained on a non-linear ther-
mal problem.

2 The A Priori Hyper Reduction
method

2.1 Formulation of the high dimensional
model

The purpose of this section is to define the equations
of the high dimensional model. This model is as-
sumed to be obtained by the finite element method.
In the framework of thermomechanical simulations,
the state variable s could be a displacement field or a
temperature field defined over the structure Ω. The Fi-
nite Element method allows to describe this state vari-
able thanks to shape functions Ni and nodal degrees
of freedom qi such that:

s (x, t) =
i=ñ∑

i=1

Ni (x) qi (t) ∀x ∈ Ω ∀t (1)

The state evolution is described by the value of
the degrees of freedom at different time instants tj ∈
{t1, ..., tm} such that :

qi (t) = qi (tj)
tj − t

tj − tj−1
+ qi (tj)

t− tj−1

tj − tj−1
(2)

A column q
j

of state variables at the time instant
tj can be defined such that the ith componant of q

j

is qi (tj). Let’s assume that a numerical scheme is
used for the time integration of the balance equations.
Then the following formulation of non linear govern-
ing equations is obtained :

q
1

= qini (3)

R
(
q
j
, q

j−1
, tj

)
= 0 ∀ j = 2 . . .m (4)

R is the residual of the governing equations. R
and q have the same size. Each line of the system of
equations (4) corresponds to a local balance condition.
A step by step approach is used. We assume that an
iterative solver allows to forecast q

j
for a known q

j−1
thanks to an initial guest q̃

j
. An estimated state evolu-

tion
(
q̂
j

)

j=2...m
is convenient if the following quality

criteria is satisfied :

∥∥∥R
(
q̂
j
, q̂

j−1
, tj

)∥∥∥ < εR ‖F‖ ∀j = 2...m (5)

where the norm ‖.‖ is the euclidian norm such that∥∥∥q
∥∥∥
2

= qT q. Such criteria depends on a column of
a generalized force F corresponding to the significant
forces induced by the state evolution over the entire
time interval.
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2.2 The Hyper Reduction
The Galerkin projection is the most popular formu-
lation used to deduce the governing equations of the
reduced state variables from the governing equations
of the high dimensional problem. But in case of non
linear problems a more efficient approach can be ob-
tained by reducing the number of integration points
used to obtain an estimation of the reduced state vari-
ables. Let’s assume that a known ROM is defined by
shape functions (φk)k=1...r such that the state variable
s is represented with reduced state variables ak(t):

s (x, t) =
k=r∑

k=1

φk (x) ak (t) ∀x ∈ Ω ∀t (6)

The kth shape function φk is a field of the same
kind as s and it is defined by the kth column of a re-
duction matrix A such that :

φk (x) =
i=ñ∑

i=1

Ni (x) Ai k ∀x ∈ Ω (7)

By introducing a column aj of reduced state vari-
ables at the time instant tj , such that the kth compo-
nant of aj is ak (tj), we obtain:

q
j

= A aj ∀j = 2 . . .m (8)

The classical Galerkin procedure provides the fol-
lowing governing equations for the reduced state vari-
ables:

AT R
(
A aj , A aj−1, tj

)
= 0 ∀ j > 1 (9)

Thus the number of governing equations and the
number of reduced state variables are equal. In case of
governing equations due to an energy minimization,
the Galerkin procedure provides an optimal value of
the reduced state variables. In case of non linear prob-
lem, if the convergence criteria (5) is satisfied, we are
more interested in efficient computations than in the
optimal value of the reduced state variables. To obtain
a number of equations equal to the number of reduced
state variables, we do not need to consider all the gov-
erning equations of the high dimensional problem. We
propose to choose a selection of few governing equa-
tions of the high dimensional problem. This selection
can be formally represented by a rectangular matrix Π
containing zeros and a one per line. If the value one is
placed in column k, this means that the kth governing
equation is going to be selected. The formulation of
the selected residuals is :

Π R
(
A aj , A aj−1, tj

)
∀ j > 1 (10)

The corresponding local values of the ROM shape
functions are given by :

Π A (11)

The same number of shape functions and reduced
governing equations is obtained by the following Hy-
per Reduction formulation:

AT ΠT Π R
(
A aj , A aj−1, tj

)
= 0 ∀ j > 1 (12)

To select the governing equations of the high di-
mensional problem, we consider a list of few loading
nodes completed by the following procedure. With a
loop on shape functions (φk)k=1...r we add to the list
of nodes two new nodes per shape function φk: one
where the gradient of φk is maximum and one where
the magnitude of φk is maximum. The selected gov-
erning equations are related to the degree of freedom
of the selected list of nodes. These nodes are con-
nected only to a few elements of the mesh. The part
of the domain Ω covered by these elements is the re-
duced integration domain. It is sufficient to take into
account these elements to compute Π R.

A drawback of the Hyper Reduction formulation
is an error amplification. To illustrate this procedure
we can consider a simple 2D hyperbolic problem:

∂2 T

∂x2
+

∂2 T

∂y2
= 1 ∀(x, y) ∈ Ω T∂Ω = 0 (13)

A regular grid of 11x11 nodes is used to mesh the
domain Ω = {x, y | x ∈ [0, 1], y ∈ [0, 1]} with lin-
ear triangular elements. Thanks to the finite element
method, we obtain the column of nodal values q

FE
.

To study the error amplification due to the Hyper Re-
duction technic, we introduce a random perturbation
q
rand

of the finite element prediction to build an ap-
proximate shape function thanks to A such that:

A = q
FE

+ q
rand

(14)

with : ∥∥∥q
rand

∥∥∥ = 10−3
∥∥∥q

EF

∥∥∥ (15)

Then the reduced state variable a is computed
thanks to the Hyper Reduction technic. We consider
1000 random trials. The mean value of

∥∥∥q
FE

−A a
∥∥∥

provided with the Hyper Reduction is 3.38 higher than
the default obtained with the classical Galerkin pro-
cedure. The maximum default reached by the Hyper
Reduction method is 10.9 higher than the Galerkin
one. Better results are obtained if the number of
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shape functions is increased. For example, a second
statistical analysis is performed by adding as ROM
shape functions 4 eigenvectors corresponding to the
lowest eigenvalues of the linear system. The mean
value of the error becomes only 2.35 higher and the
maximum value is only 4.9 higher when compared
to the Galerkin procedure. Those results are suffi-
cient to validate the Hyper Reduction technic in the
frame work of an adaptive procedure involving quality
control of the ROM and improvement of ROM shape
functions.

2.3 Convergence accelerations by ROM pre-
dictions

All the state evolutions defined by the APHR method
are described by a ROM. The APHR method is an a
priori approach because no model response (over the
entire time interval) is forecast by using the high di-
mensional model. The ROM evolves during the com-
putation of the state estimation. We denote A(n) the
reduction matrix of the nth version of the ROM such
that:

q(n)
j

= A(n) a(n)
j ∀j = 2 . . .m (16)

If no ROM is known, the initial reduction ma-
trix A(o) can be chosen in order to represent linear
polynomials. During the incremental computation of
the state evolution, each time step begins by the com-
putation of the reduce state variables a(n)

j thanks to
the Hyper Reduction technic. The residual of high
dimensional problem allows to check the quality of
q(n)
j . If the norm of the residual is too important

(‖R‖ > εR ‖F‖) then q(n)
j is used as an initial guess

of the iterative treatment of the equations of the high
dimensional problem. Hence we obtain convenient
state q̂

j
thanks to a convergence acceleration technic.

The difference ∆q = q̂
j
− q(n)

j corresponds to a miss-
ing shape function. To adapt the reduction matrix we
add a new column such that :

A(n+1) =
[
A(n) ,

1
‖∆q‖∆q

]
(17)

To update the column of reduced state variables over
the time interval [0, tj ] we just have to add a new line
such that :

a(n+1)
k =

[
a(n)

k
0

]

for k < j (18)

a(n+1)
j =

[
a(n)

j

‖∆q‖

]

(19)

Due to this updating procedure the new version of
the ROM is defined over [0, tj ]. At the end of the in-
cremental computation the ROM is therefore indepen-
dent on time. Such adaptive procedure is not sufficient
to obtain an efficient model reduction. One adapta-
tion out of four is completed by a selection of the
most significant events involved in the reduced state
evolution. These selection is performed by a reduc-
tion matrix V (n+1) that contains the first eigenvectors
of the Proper Orthogonal Decomposition of the state
variables a(n+1)

j . These eigenvectors V (n+1)
k max-

imize the following projection on the reduced state
variables:

Q(n+1)
j

(
V (n+1)

k

)
=

∑i=j
i=1

(
a(n+1) T

i V (n+1)
k

)2

∥∥∥V (n+1)
k

∥∥∥
2

(20)
Hence V (n+1)

k is the eigenvector of the correlation
matrix

∑i=j
i=1 a(n+1)

i a(n+1) T
i related to the eigenvalue

µk = Q(n+1)
j

(
V (n+1)

k

)
(µ1 ≥ µ2 ≥ ...) . Obviously,

we obtain orthogonal eigenvectors:

V (n+1) T
k V (n+1)

l = δkl (21)

where δkl is the Kronecker delta. The selection of
significant events is performed according to the fol-
lowing criteria :

V (n+1) =
[
V (n+1)

1 , ..., V (n+1)

r̂

]
(22)

with r̂ = max
µk>10−8 µ1

k (23)

To each empirical eigenvector V (n+1)
k corre-

sponds a vectors of the high dimensional model ac-
cording to the reduction matrix A(n+1). Therefore the
new shape functions of the ROM are defined by:

A(n+2) = A(n+1) V (n+1) (24)

After such adaptation, the minimization of∥∥∥a(n+1)
i − V (n+1) a(n+2)

i

∥∥∥ provides an updated state
description such that:

a(n+2)
i = V (n+1) T a(n+1)

i ∀i ≤ j (25)

To reduce the number of residual checking dif-
ferent adaptive strategies can be considered. If the
residuals are small enough after the ROM prediction
of q(n)

j , we choose to perform the next time steps with-
out checking the residuals. If ‖R‖ < 0.1 εR ‖F‖ two
time steps are not checked. If ‖R‖ < 0.001 εR ‖F‖
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ten time steps are not checked. But if the residu-
als computed over the reduced integration domain are
large (

∥∥∥Π R
∥∥∥ > 0.1 εR

∥∥∥Π F
∥∥∥) then the hyper reduc-

tion computation is stopped and the full residuals are
checked.

In [5] the APHR method has been compared to
the snapshot POD. It has been proved that the APHR
method can provide the snapshot POD of an estimated
state evolution. In such a case the selected snapshots
are related to the time instant when the expansion of
the ROM is performed.

2.4 Learning strategy
The adaptive procedure presented above is very inter-
esting to build an adapted ROM when the initial ROM
is very unadapted to represent the model response.
But, if the initial ROM defined by A(o) allows to rep-
resent events at the end of the time interval despite it
doesn’t represent events at the beginning of the time
interval, the adaptive procedure is going to erase the
convenient shape function during the first time steps.
This is due to the POD of state evolutions on a time
interval when the convenient shape function are not
significant. Then, during the last time steps, iterative
treatments of the high dimensional problem will be
necessary to add onto the ROM the removed shape
functions. This is also a drawback of the algorithm
proposed in [6].

To avoid this superfluous computations, we pro-
pose a learning strategy. The purpose of this strat-
egy is the efficient treatment of a sequence of differ-
ent estimations of the model response corresponding
to different values of the model input parameters. In
the frame work of numerical sensitivity analysis the
initial ROM used to find new model response accord-
ing to new parameter values should be very accurate
to describe events on all the time interval. We must
avoid to erase shape functions which were signifi-
cant during the previous estimation of the model re-
sponse and which don’t have significant effect at the
beginning of the incremental computation of the new
model response. To do so, it is sufficient to introduce
a virtual time axis. We consider that the sequence
of the studied model responses belong to unique vir-
tual time axis. This changes the POD selection of the
most significant shape functions. Let’s denote C(n)

the covariance matrix of all the reduced state vari-
ables previously computed according to different time
instants and different parameter values. During the
ROM adaptation this covariance matrix must be up-
dated in case of subspace expansion :

C(n+1) =
[

C(n) 0
0 0

]

(26)

and in case of POD selection :

C(n+2) = V (n+1) T C(n+1) V (n+1) (27)

Thanks to the covariance matrix of all the reduced
state variables previously computed we are able to
keep in memory all the significant events involved in
the previous computation and in the current computa-
tion. To do so we just have to consider the eigenvec-
tors V (n+1)

k related to the following covariance matrix
:

C(n+1) +
i=j∑

i=1

a(n+1)
i a(n+1) T

i (28)

At the end of the computation of the new model
response the covariance matrix C(n) must be updated
before an other computation of the model response.
During the treatment of an inverse problem, large vari-
ations of parameters are often considered. It is not
necessary to keep in memory the effect of the parame-
ter values that are not on the vicinity of the optimal pa-
rameters. Therefore, we propose to master the mem-
ory effect thanks to a scalar coefficient γ ∈ [0, 1]. The
updated covariance matrix C̃

(n)
depends on the mem-

ory coefficient γ :

C̃
(n)

= γ C(n) +
i=m∑

i=1

a(n)
i a(n) T

i (29)

If γ is equal to 1, the ROM shape function are pa-
rameter independent. During a numerical sensitivity
analysis we suggest to choose γ equal to 1. If this sen-
sitivity analysis is used to update the parameter values,
we also suggest to choose γ equal to 1 to estimate the
updated model response. But before performing an
other sensitivity analysis on the vicinity of the updated
parameter a choice γ < 1 will soften the influence of
previous values of parameter on the ROM. Hence the
ROM becomes slightly dependent on parameters.

3 Example of adaptive ROM for an
inverse problem

3.1 A transient thermal problem
To illustrate the implementation of the APHR method,
a transient thermal problem is studied. A 3D finite el-
ement model of an experimental thermal chock is the
high dimensional model. The Figure 1 shows the ex-
perimental configuration. Hot water is going through
12 holes on an annular domain. The initial tempera-
ture of the domain is equal to -150 ◦C. The aim of
the numerical simulation is to identify the heat trans-
fer coefficient between the water and the domain. For

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006         198



this purpose, we exploit the temperature measurement
on 8 points (θ1 ... θ8 Figure 1). We denote Γc the face
of the domain in contact this the water. The water
temperature is assumed to linearly decrease through
the thickness from 90 ◦C to 80 ◦C. The thermal ca-
pacity C and the conductivity k are dependent on the
temperature. More details on this experiment can be
found in [7].

Figure 1: Experimental configuration.

The Figure 2 shows the finite element model
(126115 tetrahedron and 24145 nodes). The time in-
terval is regularly split into 49 time steps. The time in-
tegration scheme is the implicit forward Euler scheme.
The column q contains the 24145 nodal temperatures
of the considered mesh. Thanks to a classical Galerkin
formulation we can define R such that :

q∗ T R
(
q
j+1

, q
j
, tj+1

)
=

∫

Ω
T ∗ ρ C(T ) Ṫ dΩ

+
∫

Ω
Grad(T ∗) k(T ) Grad(T ) dΩ

+
∫

Γc

T ∗ h (T ) (T − Tc) dΓ (30)

with t = tj+1, T (x, t) =
∑i=n

i=1 Ni(x) qi(t) and
T ∗(x) =

∑i=n
i=1 Ni(x) q∗i . Tc is the water temperature.

The final temperature field shown on the Figure 2
has been obtained with a constant heat transfer coeffi-
cient h equal to 1000 W.K−1.m−2. This model leads
to a correlation default on the temperatures equal to
65 ◦C.

3.2 The first estimation of the model re-
sponse

A constant shape function is chosen to build the ini-
tial reduction matrix A(o). Obviously, this ROM is up-

Figure 2: The high dimensional Finite Element model.

dated during the first time step. 15 adaptations are per-
formed during the incremental computation of the first
model response over the 49 time steps. The reduction
matrix A(15) has 12 columns related to 12 shape func-
tions and 12 reduced state variables. This matrix pro-
vides a ROM for all the time interval. The prescribed
quality was εR = 10−3 and we obtained :

max
j

∥∥∥q
FE j

−A(15) a(15)
j

∥∥∥
∞

=

0.0013 max
j

∥∥∥q
FE j

∥∥∥
∞

(31)

The iterative treatment of the high dimensional
non linear equations is performed by a Newton algo-
rithm. The tangent matrix is updated only after 3 con-
secutive iterations and one iteration out of 3. Due to
the convergence acceleration effect of the ROM esti-
mation, the tangent matrix are updated only 6 times.
During the classical treatment of the finite element
equations the tangent matrix is updated 31 times. This
is the main effect of the convergence acceleration
technic. An other way to observe the convergence ac-
celeration induced by the APHR method is to study
the distance between the finite element state estima-
tion an the initial guess for each enrichment stage of
the ROM. The classical finite element initial guess is
the state obtained at the end of the previous time step.
On figure 3 we can see that the initial guess proposed
by the APHR method is better than the classical one.
We also can observe that most of the ROM adaptation
append at the beginning of the time interval.

We can notice that the updating of the reduce state
variables after each ROM adaptation is not an optimal
one. A new hyper reduced computation of ã(15)

j with-
out any adaptation of the ROM provides a better state
estimation:

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006         199



0 5 10 15 20 25 30 35 40 45 5010−4

10−3

10−2

10−1

100

Figure 3: The reduced integration domain according
to the 15th version of the ROM.

max
j

∥∥∥q
FE j

−A(15) ã(15)
j

∥∥∥
∞

=

0.0009 max
j

∥∥∥q
FE j

∥∥∥
∞

(32)

This new computation is really fast. Thanks to
the Hyper Reduction technic only 1292 elements are
used instead of 126115. The reduced integration do-
main is shown on Figure 4. Such computation with-
out adaptivity is interesting to know if a modification
of parameter values has an influence on the model re-
sponse. But if the influence exists, the adaptation is
necessary to compute accurately the sensitivity of the
model response to the modification of the parameters.

Figure 4: The reduced integration domain according
to the 15th version of the ROM.

3.3 Example of sensitivity analysis
Let’s consider a numerical sensitivity analysis. We
want to study a perturbation δh(T ) of the function
h(T ) over the temperature interval [−116 ◦,−74 ◦C]
such that:

∀ T ∈ [−150 ◦C,−116 ◦C] ∪ [−74 ◦C, 90 ◦C]
δh(T ) = 0 (33)

∀ T ∈ [−116 ◦C, −95 ◦C]
δh(T ) = δp (T + 116) (34)

∀ T ∈ [−95 ◦C, −74 ◦C]
δh(T ) = δp (−74− T ) (35)

The magnitude of the modification is identified
by Hyper Reduced computations (without any adap-
tation) until the value of δp produce a perturbation of
the reduced state variables δa(15) such that:

max
j

∥∥∥δa(15)
j

∥∥∥
∞
) 0.1 max

j

∥∥∥a(15)
j

∥∥∥
∞

(36)

When the magnitude of the perturbation is known
(δp = 200W.K−1.m−2) an adaptive computation of
the modified response can be performed with an ini-
tial reduction matrix equal to A(15) and a covariance

matrix of previous events C̃
(15)

such that:

C̃
(15)

= γ
i=50∑

i=1

a(15)
i a(15) T

i with γ = 1 (37)

11 ROM adaptations are performed during the
estimation of the new response of the model. Only
two updates of the tangent matrix of high dimen-
sional model are necessary (instead of 31 if a classical
FE simulation is performed). No significant event is
erased. The new reduction matrix A(26) is still conve-
nient to represent accurately the first response of the
model:

maxj

∥∥∥A(26) a(26)
j −A(15) a(15)

j

∥∥∥
∞

= 6. 10−5 max
j

∥∥∥A(15) a(15)
j

∥∥∥
∞

(38)

The magnitude of the perturbation of the response
is small, but greater than the accuracy of the ROM :

max
j

∥∥∥A(26) δa(26)
j

∥∥∥
∞

= 0.05 max
j

∥∥∥A(15) a(15)
j

∥∥∥
∞

(39)
Some adaptations of the ROM are necessary be-

cause the spatial distribution of the perturbation on the
model response is really different from the spatial dis-
tribution of the first model response. This is shown
by a comparison of the first estimation of the temper-
atures θ1, θ2, ..., θ8 on Figure 5 and the variation δθ1,
δθ2, ..., δθ8 due to the perturbation δh on Figure 6.

To illustrate the learning strategy capability to for-
get previous events, the same perturbation is studied
with the reduction matrix A(15) as initial data. But,

the covariance matrix of previous events C̃
(15)

is build
with γ = 10−4. 17 adaptations (instead of 11) are
necessary to forecast the modification of the model
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response. And the last ROM (n = 32) is less efficient
to represent the first model response:

maxj

∥∥∥A(32) a(32)
j −A(15) a(15)

j

∥∥∥
∞

= 14. 10−5 max
j

∥∥∥A(15) a(15)
j

∥∥∥
∞

(40)

The expected advantage of choosing γ lower than
1 is the lower number of ROM shape functions (17
instead of 18 in this case).

4 Conclusion
A learning strategy allows to build APHR ROM that
are time independent and slightly dependent on pa-
rameters. Hence small ROMs can be obtained for
the treatment of inverse problems. Despite the Hyper
Reduction technic amplify the error of the simplified
model, the accuracy of the APHR ROM is convenient
to perform sensitivity analysis. In case of sensitive pa-
rameter adaptations of the ROM are necessary to catch

the spatial distribution of the model response modifi-
cation. Both state variables and integration points are
reduced. Some resolution of high dimensional linear
problems are performed to improve the ROM. But the
number of such resolutions is very low compared to
the one needed in case of classical solving of the high
dimensional non linear equations. The APHR method
can be applied to any non linear time dependent prob-
lem. It’s efficiency depends on both hyper reduction
technic and a convergence acceleration provided by a
ROM prediction of the state variables.
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