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Abstract: In competitive electricity trading a group of producers, marketers, and consumers is called a ‘balance 
circle’ where a balancing mechanism is used to match supply and demand in all time periods. Fluctuations in 
the actual consumption are compensated by external sources or by the transmission system operator, which re-
sults in balancing charges. This paper presents an illustrative model of a balance circle, comprising a wind tur-
bine and an electricity consumer to minimize the balancing energy costs. Since wind speed and air temperature 
influence the rate of generation and demand, the weather prediction affects the planned electricity purchase. 
Mathematical models are developed for the wind generator and the consumer loads. The application of these 
models allows us to predict the balancing energy requirements using deterministic and probabilistic (ensemble) 
weather forecasts. 
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1   Introduction 
In market driven electricity trading the balance circle 
is a group of producers, marketers, and consumers 
where a balancing mechanism is used to match sup-
ply and demand in all time periods (e.g. every quarter 
hour). The difference between the actual consump-
tion and supply is balanced by external sources or the 
transmission system operator, which results in the 
purchase costs and balancing charges [1]. In this pa-
per an illustrative model of a balance circle is pre-
sented to plan the cost of balancing energy. The cir-
cle includes a wind turbine and an electricity con-
sumer. The air temperature and the wind speed influ-
ence the electric loads and the wind power output, 
consequently, the meteorological forecasting effects 
the planned electricity purchase. 

The ideal forecast product for the risk manager 
who tries to plan the balancing energy is not a prob-
abilistic weather forecast, but a probabilistic forecast 
of the weather dependent economic quantity (elec-
tricity demand, wind energy production) [2]. Such 
forecasts attempt to transform current uncertainty in 

weather variables to future uncertainty in variables 
relevant to the market conditions. 
 
 
2   Ensemble Forecast 
Ensemble weather forecasting is a well-established 
approach in the field of numerical weather predic-
tion. This technique involves the perturbation of the 
initial conditions to an extent representative of initial 
uncertainties. Numerical integrations are carried out 
forward from all perturbed conditions to arrive at a 
probabilistic estimate of the future state of the at-
mosphere (instead of a single valued estimation). It 
has been demonstrated that such forecasts can have 
advantages for the forecast users compared to the use 
of deterministic forecasts [3]. 
 
 
3   Decision Making and Risk Man-
agement 

Proceedings of the 6th WSEAS International Conference on Power Systems, Lisbon, Portugal, September 22-24, 2006         137

mailto:laszlo.j.varga@eon-hungaria.com


The central idea of decision making theory is utility, 
which is a quantification of the desirability of a par-
ticular outcome, relative to alternative outcomes [4]. 
Let X  be a random variable and  the util-
ity function of the user where  represents his deci-
sion. Denote  the probability of the 
event . The expected value of the utility 
function is given by 

( xzuy ,= )

)

z
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In general,  is a nonlinear function of u X  so 
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If the distribution of X  is known, the user can make 
the choice ∗z  that maximizes (or minimizes) the ex-
pected utility 
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4   Balancing Energy Calculation 
In deregulated electricity trading the balance circle is 
used to match supply and demand in all time periods. 
Experts responsible for the power balance of the cir-
cle are required to send load schedules to the trans-
mission system operator and to plan selling and buy-
ing electricity. The performance of a wind turbine is 
proportional to the third power of the wind speed. Let 
the power of the wind generator at time  be t ( )tp  
and let the actual demand of the electricity consumer 
be , . Then the balancing power in 
kW is given by 

( )td Tt ,,2,1 K=

 

( ) ( ) ( )tptdtb −=  . Tt K,2,1=
 

If the actual balancing energy equals or exceeds zero, 
the consumer must purchase electricity at a price 
( )tα  which depends on  (the price is different in 

peak and off-peak periods). Since the imbalance 
charges can greatly exceed the spot market price 

t

( )tγ  
it is worth to buy electricity on the spot market to 
match the power supply with actual demand as much 
as possible. If, however, the actual difference be-
tween demand and production is negative, that is the 
wind generator output is higher than the demand, 
then the regional utility should sell the surplus energy 
at the price of ( )tβ . 

If the power purchased on the spot market is equal 
to , the balancing energy can be calculated as 

, . The cost to 
maintain the energy balance in the balance circle is 
given by 

( )ts
( ) ( ) ( ) ( )tptstdtb −−= Tt ,,2,1 K=
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where the demand and wind generation depend on 
the air temperature and the wind speed. Since these 
dependencies are nonlinear, the calculation of balanc-
ing energy costs ( )tc  requires a probabilistic fore-
cast. For the time period T  the balancing energy 
costs can be calculated as 
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which can be considered as the utility function of the 
balancing strategies ( )yxsuc ,,= . 

If X and Y are discrete random variables, then the 
distribution function of  can be computed as C
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  Let  denote the probability of the 
event

kjr
( )jk yYxXP == , . The expected value of bal-

ancing cost is given by 
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The nonlinearity of C  suggests that balancing en-
ergy planning requires a probabilistic forecast for the 
weather variables; the expected value is not sufficient 
for a rational decision making. 
 
 
5   Statistical Modeling Framework  
In our study different statistical models are applied to 
predict wind power output and electric loads. Let 
{ }Tt yyyy ,,,,, 21 KK  denote the observations made at 
equidistant time intervals where  can be regarded 
as an observation at time . Our objective is to model 
the series 

ty
t

{ }ty  and to use that model to forecast be-
yond the last observation . Ty
 
5.1 Time series models 
The time series model provides a description of the 
random nature of the stochastic process that gener-
ated the sample of observation under study [5]. A 
mixed autoregressive and moving average stochastic 
process with exogenous variables (ARMAX) can be 
written as 
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where  is a zero mean white noise sequence with 
unknown 

te
σ  variance, p  is the order of the autore-
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gressive term,  is the order of the moving average 
term, 

q

pφφφ ,,, 21 K , qθθθ ,,, 21 K  are the model pa-
rameters and sωωω ,,, 10 K  are the coefficients of the 
explanatory variables. 
 
5.2 Nonlinear system models 
Both the theory and practice of nonlinear system 
modeling have advanced considerably in recent 
years. It is known that a wide class of these systems 
can be represented by the nonlinear autoregressive 
moving average time series with exogenous input [6]. 
These NARMAX models provide a description of the 
system in terms of a nonlinear functional expansion 
of lagged inputs, outputs and prediction errors.  

Time series and transfer function models are used 
to infer relationships between historical input-output 
data and future outputs by collecting a finite number 
of past inputs  and outputs  into the vector tx ty tϕ : 
  ( )Tstttptttt xxxyyy −−−−−= ,,,,,,, 121 KKϕ

where denotes transposed. ( )T.
 
The forecasting problem is to give the next output  
as a function of 

ty

tϕ . To obtain this function we have a 
set of observed data (training set): ({ tty )}ϕ, . From 
these data we infer a relationship ( )tt gy ϕ= . Typi-
cally, a function expression of the type 
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k
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is used, where , , and spd += RRg d →: kα  is the 
-th component of the parameter vectork α . Using a 

special nonlinear relationship in the basic functions 
of the expansion we have  
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where kβ  is a parameter vector of size ϕdim , kα  
and kγ  are scalar parameters. The most common 
choice for ϑ  is 
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This model is referred to the feed-forward, three-
layer neural network where the output layer has only 
a single node [7]. 
 
 
6   Wind Energy Production 
Two wind power units, with nominal capacities of 
600 kW, are set up on the north-western part of Hun-
gary in the village called Mosonszolnok. Wind speed 
and performance data measured at the top of the sup-

port tower sampled at 10 minute intervals were used 
to form half-hourly time series for modeling the 
units. Based on the measurement data the relation-
ship between performance and wind speed is shown 
in Fig.1. 
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Fig.1  Relationship between wind power output and 
wind speed based on the measurement data. 
 
Models were developed based on wind power and 
wind speed measurement data to model and predict 
the performance of the wind generation unit. The 
training period was about one month the forecasting 
horizon was one day ahead and hourly weather pre-
diction data was used. In the first phase of our inves-
tigation autoregressive moving average models with 
external parameters (ARMAX) were used, consider-
ing the wind speed as an external parameter. The fi-
nal model we applied for the calculation of balancing 
energy was a NARMAX model using artificial neural 
network technique. During the training, features from 
the historical data (wind power output and wind 
speed) are entered into the network's input layer. The 
neuron activation in the input layer is fed forwards 
through the network and the final outputs are com-
pared with the known unit performance values. The 
observed and calculated data of the wind generator 
output applying the model can be seen in Fig.2. 
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Fig.2  Observed and calculated wind unit’s per-
formance using the wind power forecasting 
model.  
 
 
7   Electricity Demand 
The electricity consumer in our balance circle was a 
medium size shopping center with a maximum load 
of about 400 kW in the north-western part of Hun-
gary. Electricity demand was sampled at 15 minute 
intervals from which we formed half-hourly time 
series to model the demand of the balance circle. The 
ambient temperature data were observed on an 
hourly basis. Based on the metering data the relation-
ship between the daily average load and air tempera-
ture is shown in Fig.3. 
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Fig.3  Relationship between consumer’s loads and 
air temperature based on the measurement data.  
 
To forecast the electricity demand a multivariate lin-
ear regression model was used. Historical data (loads 
and temperatures) for the two months training period 
was entered into the regression model. This regres-
sion model was applied to forecast the demand of the 
supermarket one day ahead. The observed and calcu-

lated data are shown in Fig.4. 
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Fig.4 Observed and calculated consumer’s loads 
using the electric load forecasting model.  
 
 
8   Balancing Energy Planning 
For the fictitious balance circle the task is to deter-
mine the minimum value of balancing costs taking 
into account the balancing conditions. In those peri-
ods where the consumer’s demand exceeds the 
amount of the generated wind power the consumer 
must buy extra electricity at the imbalance price. In 
our study we set the imbalance price 97.6 EUR in the 
peak period and 48.8 EUR in the off-peak period. For 
the study period the daily average EEX (European 
Energy Exchange) spot market prices were about 36 
EUR and 26 EUR in the peak and off-peak period, 
respectively. Since the balancing charges can greatly 
exceed the spot market price it is worth to cover the 
difference between the actual demand and wind 
power output as closely as possible by spot market 
trading. In our calculations the EEX hourly spot 
market prices were used. If the wind power is greater 
than the demand, the supply company in the region 
of the balance circle is forced to buy the surplus en-
ergy at the price 7.2 EUR in the peak period and 4.1 
EUR in the off-peak period. 
 
8.1 Weather forecasts 
The historical and forecasts data were observed and 
forecast for the temperature at height two meters and 
for the wind speed at height ten meters in the region 
of the shopping center and the wind generation unit. 
Weather forecast data were retrieved from the Mete-
orological Archival and Retrieval system (MARS) of 
the European Centre for Medium-Range Weather 
Forecasts (ECMWF). The Ensemble Prediction Sys-
tem (EPS) was developed by ECMWF which at-
tempts to provide different future scenarios for the 
state of the atmosphere instead of single value pre-

Proceedings of the 6th WSEAS International Conference on Power Systems, Lisbon, Portugal, September 22-24, 2006         140



dictions. EPS has been designed to simulate the un-
certainties in the initial state of the atmosphere. Un-
certainties in the initial state are simulated by per-
turbed initial conditions using the so-called singular 
vector approach. This method finds those perturba-
tions which leads to the fastest instability growth. 
Forecast errors resulting from approximations in the 
model are simulated by stochastically perturbing the 
overall effect of physical parameterizations. The EPS 
is capable of providing the time evolution of the 
probability density function of the atmospheric state 
[8]. 
 
8.2 The Method for the Calculation of Balancing 
Energy Costs  
Based on the developed mathematical models and the 
meteorological forecasts we computed consumer’s 
electric loads and wind generator performance one 
day ahead on half-hourly basis. From this calculation 
the required spot energy purchase can be scheduled 
for the next day. A good schedule for this external 
electricity sourcing results in cutting down the bal-
ancing energy costs. 

One of the main aim of this paper is to demon-
strate that the probabilistic forecasts based on the 
ECMWF ensembles can give better decision making 
(scheduling strategy for energy purchase on the spot 
market) for balancing energy planning in comparison 
with using ensemble mean forecasts.  

In the first step of the calculation we computed the 
load patterns for the purchased electric energy using 
ensemble as well as ensemble mean weather fore-
casts. Using the ensemble forecasts and the mathe-
matical models for the wind generator and the elec-
tric loads of the shopping center, the probability dis-
tribution of the balancing costs can be calculated 
(Fig.5).  
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Fig.5  Probability distribution of the balancing 
costs using the ensemble weather forecasts.  
 
In the second step these strategies were applied to 
calculate the balancing energy costs using the his-

torical data of the wind speed and the ambient tem-
perature for the region of the balancing circle. The 
results of our calculation can be seen in Table 1. 
 

Table 1 
Balancing energy costs using ensemble and en-

semble mean weather predictions 
 
26th August Temp Wspeed EDem WindGen Purchase Balancing Cost

2004 (Cgrade) (m/s) (EUR per day)
Ensemble 16.3 6.7 5251.0 3932.7 2030.0 133.7
EnsembleM 1415.0 145.1

(kWh/day)

 
 
The wind generation output, shopping center loads 
and weather parameters are shown in Fig.6, where 
the values were calculated using the historical 
weather components. 
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Fig.6  Calculation wind power and electric loads 
using the forecasting models and historical 
weather parameters.  
 
 
9   Conclusion 
The nonlinear nature of utility functions on weather 
dependent component in electricity trading make 
probabilistic forecasts essential for decision making 
[9]. In the case of electricity demand and wind gen-
eration forecasting ensemble forecasts can be used to 
improve forecasts of demand and wind power output 
and hence enable the balance circles to decide how 
much electricity they should purchase to cut the bal-
ancing energy charges. In this paper a balance circle 
is considered which includes a wind generator and 
one consumer. Since the imbalance price is much 
more expensive than the spot market price a good 
schedule of energy purchase can reduce the balancing 
charges. Based on the ensemble and ensemble mean 
weather forecasts for the wind speed and air tempera-
ture we formed two schedules for the spot energy 
purchases (see Fig.7). Using ensemble forecasts for 
the air temperature and wind speed an illustrative test 
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example on a specific day resulted in a relative per-
centage saving of 8.4%. 
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Fig.7  Spot market electricity purchase schedules 
using ensemble and ensemble mean weather fore-
casts. 
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