
Searching Raw Datasets in Data Grids
Using Ant Colony Optimization

UROŠ JOVANOVIČ
XLAB Research

Teslova 30, SI-1000 Ljubljana
SLOVENIA

BOŠTJAN SLIVNIK
Faculty of Comp. and Inf. Science

University of Ljubljana
Tržaška 25, SI-1000 Ljubljana

SLOVENIA

Abstract: - A pure peer-to-peer method for (1) an efficient discovery of data in large distributed raw datasets
and (2) collection of thus procured data is considered. It is based on ant colony optimization (ACO) and supports
a user-specified extraction of structured metadata from raw datasets, and automatically performs aggregation of
extracted metadata. The paper is focused on effective data aggregation and includes the detailed description of the
modifications of the basic ACO algorithm that are needed for effective aggregation of the extracted data. Using a
simulator, the method was vigorously tested on the wide set of different network topologies for different rates of
data extraction and aggregation. Results of the most significant tests are included.

Key-Words: - Distributed search, P2P, data grids, ant colony optimization.

1 Introduction
Nowadays, vast datasets too large to be stored on a
single computer are being generated and used all the
time. Some datasets are generated by a single source
but must be distributed immediately because of their
size. For example, data grids are being developed
to manage all data produced by particle accelerators.
Other datasets like computer logs, for example, are
generated by multiple sources but are most often anal-
ysed together.
Data grids represent a promising way to handle

these large and distributed datasets as well as a plat-
form for running data intensive applications [2, 1, 3].
However, if the amount of data needed by the ap-
plication is small compared to the entire dataset, the
data should be extracted at the remote servers first,
then collected together, and finally transfered back to
the application. To achieve this, an application must
be capable of sending custom requests to the dataset
servers. In a distributed environment based on an
unstructured network with no fixed topology and no
metadata prepared in advance, this problem is hard to
solve efficiently.
A few important issues should be noted at this

point. First, the infrastructure should handle all the
low level details of sending the requests and obtaining
the results. Second, when searching for the relevant

data, the application should not be limited to a set of
metadata prepared in advance. Instead, at least full
read access to the raw data must be given to the appli-
cation. Third, as multiple applications can run simul-
taneously, the load caused by servicing the requests of
one application should be limited. Keeping load under
control is especially important if the dataset is gener-
ated at the same time as it is being used and thus the
search is an ongoing process instead of an one-time
event. Thus a decentralized, possibly a peer-to-peer
solution is preferred. Fourth, if possible, the data ex-
tracted by one application should be available to all
other applications.
The first two issues can be solved by using exist-

ing grid infrastructure like Globus or gLite [8, 7]. The
third and the forth issue have already been addressed
by proposing a grid service within Globus Toolkit 4
[10]. To avoid flooding the network with requests and
thus keeping the load limited the implemented grid
service uses a method of ant colony optimization for
extracting and collecting data from chunks of a dis-
tributed dataset [6]. Ant colony optimization has been
used as it has been demonstrated to be an effective
method for clustering (and sorting) of data within a
distributed environment [9].
However, only static datasets has been considered

so far when ant colony optimization has been used

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 1

either for clustering or for extracting and collecting
data. In this paper, an ant colony optimization based
method for extracting and collecting data from dy-
namic as well as static raw datasets stored within a
data grid is desribed and analysed.
The paper is organized as follows. In Section 2,

a user’s perspective on a grid service based on this
method is described as the motivation. Sections 3 con-
tains a description of ant colony optimization in rela-
tion to data clustering. The details of all modifications
for data aggregation in a dynamic environment are de-
scribed in Section 4 together with the algorithm used
by extraction ants. Before listing the conclusions and
plans of the future work in Section 6, results obtained
at testing the method using extensive simulations are
given in Section 5.

2 User’s Perspective
Following the approach introduced in [10], a grid ser-
vice must enable a user to do the following two tasks:

1. Starting a new search: As a user is given full
(read) access to the raw dataset, a user should be
able to specify a program that searches the local
chunk of a distributed dataset and extract the rel-
evant data.

2. Checking the list of performed searches: A user
must be able to check if any other user has al-
ready performed a search equal or similar to the
one he or she is about to start.

As the user’s program extracts data from the local
chunk only, if is the responsibility of the grid service
to transfer the user’s program to each dataset server,
to run the program, and to collect the extracted data
from all servers.
The first reason for keeping a list of performed

searches is to keep the overall system load low (a) by
not repeating the same search all over again and (b)
by using results from a similar (possibly more gen-
eral) search instead of starting a new one. The second
reason is a fact that the list of performed searches acts
as a virtual blackboard about what data or relations
among data in the dataset seem interesting to other
users. This might be especially valuable in a collabo-
rative scientific research. It follows that the results of
the searches performed in the past should be stored in
one form or the other somewhere in a data grid.
Hence, the typical method for performing a search

is best described by an (informal) Algorithm 1. Note

(1) that starting a new search in line 6 does not block
the execution as the new search is performed on re-
mote servers; (2) that the search and its results will
eventually appear on the list of performed searches
(even if it yields no results) and thus the loop in lines
7–13 does terminate.

Algorithm 1 Performing a search.
1: check the list of performed searches
2: if the (similar) search has been found then
3: return its results and stop
4: end if
5: provide the extraction program
6: start a new search
7: loop
8: check the list of performed searches
9: if the search has been found then
10: return its results and stop
11: end if
12: sleep for a specified amount of time
13: end loop

This method allows different implementations of a
distributed index of performed searches and different
implementations of searching. At the time being, the
research is focused on the efficient peer-to-peer im-
plementation of a single search (line 6). The task
of maintaining a list of performed searches in a dis-
tributed index and especially a method for comparing
descriptions of different searches are left for the future
work.

3 Ant Colony Optimization
for Searching Raw Datasets

Ant colony optimization is a biologically-inspired op-
timization method [5]. The basic idea is to use a
large number of simple agents called ants: each ant
performs a relatively simple task but combined to-
gether they are able to produce sophisticated and ef-
fective optimization. Further improvements of ACO
are based usually on a combination of the ACO algo-
rithm with other local optimization techniques [6].
Ant based clustering and sorting was first intro-

duced in [4]. Further analysis and extensions of
the basic algorithm used for clustering is described
in [9]. These algorithms were applied to problem
domains that are first mapped into two dimensional
cartesian space which is stored in computers main
memory. Moving from this domain to real physically

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 2

distributed space presents new constraints to the envi-
ronment in which the algorithm is used.
There are three main differences between ant based

clustering and peer-to-peer searching as described in
this paper. First, unlike in [4] and [9], a node in the
system can possess a pile of data, not just one datum.
The size of a pile is bounded only by the available
storage space on the node.
Second, the distance function proposed in original

algorithm and also in changed ATTA algorithm [6]
uses window of 3 × 3 or 5 × 5 neighbor nodes. In
2D cartesian space, there are only 9 or 25 nodes to be
considered. Unlike in original algorithms, distributed
environments can be based not only on mesh topology
but on arbitrary topologies and close neighborhoods
can include hundreds of nodes (this is especially true
in the grid environment). Communicating with all
neighbors and gathering information about their sta-
tus can present massive load on the network and must
therefore be avoided. In order to limit the network
load and prohibit the distribution of large amounts of
data, new probability function is proposed (see be-
low).
And third, instead of using only one type of ants

as in [6], there are three different types of ants in our
scheme: extraction, aggregation and query ants.

4 Ant Specialization

4.1 Extraction Ants
Using user-specified programs, extraction ants ex-
tracting data from local chunks of raw datasets stored
in the system, i.e., in a data grid. Each user-specified
extraction program is identified by its unique identifi-
cation code, or id for short. Extraction ants are mark-
ing their paths with pheromones associated with the
id of the program they are carrying. Hence, extraction
ants carrying different extraction programs use differ-
ent pheromones.
In order for extraction ants to discover as much data

as possible we have modified the behavior of the basic
ant algorithm. Unlike the normal ants that prefer fol-
lowing the pheromone trails, the extraction ants avoid
the trails and prefer the clean paths.

4.2 Aggregation Ants
The data extracted by extraction ants is collected into
piles by aggregation ants.

Due to the environment restrictions described in
Section 3, the probability function for dropping and
picking-up data has to be changed from the one re-
ported in [6].
Let us first describe the pick-up function 1/(1 +

x/n)k. According to the chosen function, small piles
of data are picked up with a very high probability.
On the other hand, large piles are most unlikely to
be picked up. The distinction between small and
large pile is predefined and based on the character-
istics of the environment, such as the average connec-
tion bandwidth, and expected amount of data. Note
that the distinction between a small and large piles can
be simply regulated by changing n (a measure for the
size of a pile) and k (a measure of strictness) in the
pick-up function.
Second, the dropping probability function is sim-

plified. Since the inspection of ant’s neighbor nodes is
expensive (regarding net traffic), the only information
available to the ant is the content of its current node.
The ant therefore decides to drop the load whenever
data of the same type is present on the node.
Another distinction from the original algorithm is

a limited number of hops that a loaded ant can make.
This limitation is also used in order to avoid the net-
work load.
The probability of finding some data is based on

the number of pheromone trails that lead to the pile
containing the data. To increase this probability, we
added another change in the behavior of ants. When
the load is dropped, an ant takes off in search for an-
other data to be picked up. During its first few steps,
the ant marks the path with pheromones directed to
the location of the dropped data as shown on Figure 1.
Large piles of data are surrounded by many

pheromone trails that are directed to pile’s location.
These trails act as a pile’s gravitational field. When-
ever an ant comes close to them, there is a high prob-
ability that it will be drawn towards the center of di-
rected pheromone trails. This is desired when the ant
is carrying some data, but it is undesired when the ant
drops the load and tries to find new data. In order
to avoid this pheromone fields and escape its pulling
effect, the ant that has just dropped the load makes
first few steps regardless of the pheromone informa-
tion, that is, the first few moves are completely ran-
dom based.
Random movement during the marking of pile’s lo-

cation can produce cycles. These cycles can lead to

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 3

!"#"$%&'("#)'*
'+%#,-%!.'//-!

&'"!

0*#12
(3..-*#
&'("#)'*#.")&%(.-"#-!

4)#,%&'"!

#.")&%(.-"#-!
"+#-.%#,-%!.'/

Figure 1: Ant makes a trail leading to the location
of dropped metadata pile. (The trail on the right is
a “backward” trail produced when the ants is mov-
ing away from the location where a data has been
dropped.)

ant %as a loa)

)roppe) loa)

t%e -ap on t%e trail
pre/ents for1ation

of t%e cycle

after t%e -ap4
t%e trail continues

Figure 2: Result of the acyclic path marking. (The
trail on the right is a “backward” trail produced when
the ants is moving away from the location where a
data has been dropped.)

inefficient behavior of ants that follow the pheromone
trails – by following the pheromone trail, they move
in circles. It is therefore desired to avoid the creation
of cycles.
In order to achieve acyclic pheromone trails, we

need to modify the process of marking used paths
with pheromones. To do so, we randomly select ant’s
new destination first. Then, we check if there exists a
pheromone trail directed from this new destination. If
there is no such trail, we mark a path from new des-
tination to current location with a pheromone. Oth-
erwise, this path is not marked. The result of such
process in shown in Figure 2.
The outcome of such pheromone marking is a tree

of pheromone trails, where every branch of the tree is
directed towards the root of the tree, which constrains
a pile of data.
Hence, an aggregation ant is based on Algorithm 2.

Algorithm 2 A pheromone-based aggregation ant.
1: loop
2: while the ant is empty do
3: while the node is empty do
4: select a random direction
5: make a step in the selected direction
6: end while
7: if load is selected then
8: pick up the load; h ← 0
9: end if
10: end while
11: repeat
12: select a direction

using the existing pheromones
13: mark the selected direction
14: make a step in the selected direction
15: h ← h + 1
16: if h = hmax ∨ the node load = the ant load

then
17: drop the load; h ← 0
18: end if
19: until the ant is empty
20: while h < hmax do
21: select a random direction
22: mark the selected direction

using the cycle-prevention method
23: make a step in the selected direction
24: h ← h + 1
25: end while
26: end loop

4.2.1 Dynamic Environment and One-Time Ag-
gregating Ants

Most of the analysis of ACO algorithms described in
literature is based on the idea that the data is scattered
around the environment first, and that the number of
data does not increase over time. But such assump-
tions are not realistic enough for a real distributed en-
vironment where we wish to deploy our ACO algo-
rithm. To address the specifics data grids (as described
above), new type of ant is being introduced, one-time
aggregation ant.
One-time aggregation ants are special type of ag-

gregation ants. Whenever an extracting ant extract
some data, a one-time aggregation ant is also cre-
ated at the same location. This ant picks up the new
extracted data and tries to drop it at an appropriate
place. If no appropriate pile of already organized data
is found in predefined maximal allowed number of

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 4

hops, the data is dropped and the ant dies, i.e., is re-
moved from the system. On the other hand, if a pile is
found, the data is dropped on the pile and the ant dies.
One-time aggregation ants annul the time needed to

discover new extracted data and increase the probabil-
ity that they are dropped into near piles. Furthermore,
because they are removed from the system as soon as
the data is dropped, they do not present significant in-
crease of network load.

4.3 Query ants
Another method for data discovery excludes the need
for query ants. It is based on maintaining of dis-
tributed indexing service. When the pile is static and
big enough, it registers its location into this distributed
indexing service. Here, static property of a pile means
that the pile has not changed its position in some pre-
defined amount of time. The second property, being
big enough, means that the pile contains at minimum
some predefined amount of aggregated metadata.

5 Experimental results
In order to eliminate the possibility of error, two
independent implementations were developed, from
which one is written in Java and the other is writ-
ten in pure functional language Haskell. All results
presented here were obtained by using a two-layered
network which describes GRID topology consisting
of connected clusters. Regarding the definition of a
layered topology, we have 50 fully-connected nodes,
each of them being a node of a subnetwork consisting
of another set of 51 fully-connected nodes. Therefore,
our system is composed of 2550 nodes. We have also
performed the tests on different layouts and of differ-
ent scale (classical 4- and 8-mesh topologies, for in-
stance). Different topologies yield very similar results
to those presented here.
The new ACO-based method was tested against

random walkers which are mostly used in the state-of-
the-art techniques used in unstructured peer-to-peer
systems. In the first scenario, the extraction is very
sparse, no more than 10 extractions are made per it-
eration (only 0.4% of nodes). In the second scenario,
the extraction is denser, 100 nodes participate in the
process of extraction in each iteration.
Note that during the extraction the aggregation is

also being performed. We have also tested the sce-
nario when the extraction stops and only aggregation

is being performed. These cycles are referred to as
pure aggregation cycles.
The most important property of the generated so-

lutions is the number of piles of data in the system -
the network load depends on this property, since all
the piles have to register to the indexing system and
therefore, the lower the number the lesser the load of
the network. Also, when the search for data is ex-
ecuted, the indexing system informs the user (query
ants) about the locations of piles and all must be ac-
cessed. Again, smaller number of piles presents small
load to the network. So it is desirable to have as orga-
nized (low number of piles) system as possible. Fig-
ure 3 shows the results obtained by simulating both
scenarios; temporary decrease of number of piles cor-
responds to the pure aggregation phase.
The graph shows that the ants are able to organize

data in lesser number of piles. Even if we give random
walkers a time to organize (pure aggregation cycle),
the solution that is produced is worse than the solution
of ants without the cycle. We must note though that by
increasing the size of the pure aggregation cycle, the
random walkers do catch up with the ants without this
cycle. When both types are given the same amount
of time for either aggregation and extraction or pure
aggregation, the ants always outperform the random
walkers.

6 Conclusion
Distributed environments such as grids and peer-to-
peer systems present physical constraints that are not
present if the optimization is done on a single com-
puter. Communication between nodes can represent
network load that makes the system useless. In this
paper we have presented modifications of basic ACO
algorithms that are well suited to the limitations of the
distributed environments. We have compared the per-
formance of our algorithm with the algorithm based
on randomwalkers and shown that the ACO algorithm
always outperforms the one based on random walkers.
The described modification of ACO enables very

simple yet precise run-time control over the load
caused by extraction and aggregation simply by regu-
lating the number of ants.
In the future, the method described herein is going

to be implemented as a fundamental part of a grid ser-
vice instead of the method described in [10].

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 5

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600

random walkers
ants

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 100 200 300 400 500 600

random walkers
ants

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600

random walkers
ants

Figure 3: The results of testing with low rate of ex-
traction (top — 10 random extractions per iteration
and 300 extraction ants), medium rate of extraction
(below — 100 random extractions per iteration and
300 extraction ants), and high rate of extraction (be-
low — 500 random extractions per iteration and 300
extraction ants): the total number of piles aggregated
by random walkers and aggregation ants.

References
[1] F. Berman, G. C. Fox, and A. J. G. Hey. Grid

Computing: Making the Global Infrastructure a

Reality. John Wiley and Sons, Ltd., Chichester,
England, 2003.

[2] A. Chervenak, I. Foster, C. Kesselman, C. Sal-
isbury, and S. Tuecke. The data grid: Towards
an architecture for the distributed management
and analysis of large scientific datasets. Journal
of Network and Computer Applications, 23:187–
200, 1999.

[3] U. Čibej, B. Slivnik, and B. Robič. The com-
plexity of static data replication in data grids.
Parallel Computing, 31:900–912, 2005.

[4] J. L. Deneubourg, S. Goss, N. Franks,
A. Sendova-Franks, C. Detrain, and L. Chre-
tien. The dynamics of collective sorting: Robot-
line ants and ant-like robots. In From Animals
to Animats 1 (Proceeding of the First Interna-
tional Conference on Simulation of Adaptive Be-
havior), pages 356–365. TheMIT Press, Boston,
USA, 1991.

[5] M. Dorigo, V. Maniezzo, and A. Colorni. Posi-
tive feedback as a search strategy. Technical re-
port, Politecnico di Milano, Italy, 1991.

[6] M. Dorigo and T. Stütlze. Ant Colony Optimiza-
tion. The MIT Press, Boston, USA, 2004.

[7] gLite. EGEE > gLite — Lightweight Middle-
ware for Grid Computing. Retrieved April 28th,
2006, from http://glite.web.cern.ch/glite/, 2006.

[8] Globus. The globus alliance. Retrieved April
28th, 2006, from http://www.globus.org/, 2006.

[9] J. Handl, J. Knowles, and M. Dorigo. Ant-based
clustering and topographic mapping. Artificial
Life, 12(1):35–62, 2006.

[10] U. Jovanovič, J. Močnik, M. Novak, G. Pipan,
and B. Slivnik. Using ant colony optimization
for collaborative (re)search in data grids. In
Proceedings of the Cracow Grid Workshop ’05,
Cracow, Poland, pages 205–207, 2006.

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 6

