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Abstract: - In the process of designing digital recursive filters to satisfy a given magnitude 
response, the designer may end up with an unstable filter.. This unstable filter can be stabilized 
using methods such as Planar Least Square Inverse technique, Complex Ceptrum Method etc. 
The Planar Least Square Inverse technique is supposed to preserve the desired magnitude 
response which is found to be not true in all cases. Hence a new method of designing recursive 
filters using the improved genetic optimization algorithm is presented in this paper. The 
optimally designed filter will be stable and will have a magnitude response almost similar to the 
desired magnitude response. 
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1. Introduction 
Two-dimensional filters have applications 
in image processing, geophysical signal 
processing, x-ray image processing etc 
[1][2]. Designing bounded input bounded 
output (stable) two dimensional digital 
recursive filters can be a time consuming 
process if one has to ensure the stability at 
the end of each iteration of the optimization 
process [3]. To overcome this, a filter can 
be initially designed to satisfy only the 
magnitude response specifications without 
considering the stability of the filter. If the 
designed filter is found to be unstable, it 
can be stabilized using the double planar 
least square inverse technique [4]-[6]. The 
magnitude response of the filter may get 
altered in the process of stabilization. A 
new technique using the improved genetic 
algorithm is presented in this paper to 
reduce the error between the magnitude 
response of the stabilized filter and that of 
the original filter without affecting the 
stability of the digital recursive filter.  
 

2. Design Procedure using 
Improved Genetic Algorithm 
To explain the procedure, consider a first 
order two-dimensional recursive digital 
filter as given below 
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Let the filter represented by this transfer 
function be unstable. The filter can be 
stabilized using the double planar least 
square inverse technique. Let the transfer 
function of the resultant filter be 
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At the end of the stabilization process the 
magnitude response of the filter (1) might 
be different from that of the original filter. 
If the error in the magnitude response of the 
stabilized filter is found to be too large, the 
improved genetic algorithm technique is 
used to optimally reduce the error as small 
as possible by tuning the parameters of the 
numerator polynomial of (2). Let the 
resultant filter transfer function be  
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In the following chapter, the improved 
genetic algorithm technique is explained. 
  
3. Parameter tuning using 
Improved Genetic Algorithm 
(IGA) 
Genetic Algorithm is an efficient stochastic 
search technique wherein a population of 
randomly generated candidate solution 
evolves to an optimal solution via 
application of genetic operators such as 
selection, crossover and mutation. GA can 
help to find out the optimal solution 
globally over a domain [7]-[9].In improved 
GA (IGA), the standard GA is modified and 
new genetic operators are introduced to 
improve its performance. In this paper, an 
improved GA [10] has been used for tuning 
of the parameters . 
First a population of chromosomes, say ‘n’ 
is created randomly. The fitness value, a 
non-negative figure of merit for each 
member of the population is computed. 
Next, some of the chromosomes are 
selected for performing genetic operations. 
The offspring obtained by genetic operation 
on the selected parent chromosomes replace 
the members in the initial population. This 
process repeats until the fitness value of a 
member is less than or equal to the desired 
fitness value. 
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In the genetic operation phase, the 
Roulette-Wheel technique [11] is used to 
select two chromosomes from the 
population for crossover operation. The 
crossover operation is then performed. The 
best offspring of the crossover operation 
undergoes mutation operation. Utilizing the 
mutation operator, three new offspring are 
created. These new offspring replace a few 
existing chromosomes having smaller 
fitness value. This process continues until 
the fitness value of any member is greater 
than or equal to the desired fitness value. 
Figure.1 gives the steps of genetic 
optimization. 

Start

Selection of  population size, number 
of parameters, min. and max. limits of 

the parameters

Generation of initial population and 
computation of fitness values

If any fitness value=desired
fitness value

EndYES

NO

Crossover

Mutation

Computation of fitness function of the offspring

Selection of parents

Replacing of chromosomes in the previous 
population by the offspring

 
Fig 1: Steps of Genetic Optimization 

 
3.1 Initial population 
The initial population of size n is generated 
randomly as follows. Let. 

{ 1 2, , ....., n}P p p p= . . . (4) 
and  
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For the filter problem,   
n = population size  
no_vars  = number of variables to be tuned  

jip   = parameters to be tuned 

m injp  = min. value of the parameter  
jip

m axjp = max. value of the parameter  
jip

 
3.2 Evaluation 
Each chromosome in the population is 
evaluated by the defined fitness function. 
The fitness function is defined as: 
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4. Genetic Operations 
 
4.1 Selection 
1. Starting with the first member of the 

existing population, for each member, i 

find 
1

_ 1, 2, ...,
i

i i
j
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=

= =∑  

where  is the fitness value of iiF th 
member as defined in (7). 

2. Let the total of all the values of fitness 
functions, fit_sumn be fit_sum. 

3. Generate a random real number, 
rand_sum between 0 and fit-sum.  

4. If _ i _fit sum rand sum> , then the 
ith member is selected as a parent. 
Similarly, by generating another  
rand_sum the second parent is selected. 
Let 1par  and 2par  be the two selected 
parents. 

 
4.2 Crossover 
The crossover operation is mainly for 
exchanging information from the two 
parents. The two parents will produce four 
offspring as follows: 
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where, w is the weight to be determined by 
the user. Among ch1-ch4, the one with the 
best (largest) fitness value is used as the 
offspring of the crossover operation and is 
denoted as 

0 0 0 1 1 0 1 1[ ]o s a a a a= . .          (16) 

1 2max( , )par par  is defined as the 
maximum value of the parameters in both 
the parents.  
4.3 Mutation 
The best offspring of the crossover 
operation will then undergo the mutation 
operation. The mutation operation is to 
change the genes of the chromosomes. 
Three new offspring will be generated by 
the following mutation operation 
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  j = 1,2,and 3. . .         (17) 
where b1, b2, b3, and b4, can take the value 
of either 0 or 1. Δm1, Δm2, Δm3 and  Δm4, 
are randomly generated numbers such that  

( )m in m ax( ) (i i i i )ip o s m p o s− ≤ Δ ≤ − . The 
first mutated offspring mut1 is obtained 
according to (17) by assigning 1 to one of 
the bi by random selection and all other 
three bi values are set to zero. The second 
mutated offspring mut2 is obtained by 
assigning 1 to two of the bi’s by random 
selection. The third offspring, mut3 is 
obtained with all 1ib = . These three new 
offspring will then be evaluated using the 
fitness function (8). 
A method of selecting mutated offspring to 
replace one or more chromosomes in the 
population is given next. Let . 
The value p

]10[∈ap

a is the probability of accepting 
a bad offspring in order to reduce the 
chance of converging to a local optimum 
and is kept small. A real number is 
generated randomly and compared with pa. 
If the number is smaller than pa, then the 
one with the largest fitness value among the 
three new offspring will replace the 
chromosome in the population with the 
smallest fitness value. If the real number is 
larger than pa and if fitness(mut1) > the 
smallest fitness value fs,  then the first 
offspring mut1 will replace the chromosome 
with the smallest fitness value  in the 
population. The second and the third 
offspring are tried successively.  It may be 
noted that if 
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then there will be no replacement in the 
initial population. After the operation of 
selection, crossover, and mutation, a new 
population is generated. This genetic 
process is continued until the required 
accuracy is achieved. 
 
5. Example: 

Consider the following 1st order two-
dimensional digital recursive filter function 
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The magnitude response of this filter 
function is shown in figure 1. 

 
Fig 2: Normalized Magnitude Response of 

the Unstable Filter 
The above filter function is found to be 
unstable. Hence we stabilize the filter using 
the double planar least square inverse 
technique. The resultant transfer function of 
the stabilized filter is found to be 
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The magnitude response of this filter is 
shown in figure 2. Figure 3 shows the error 
in the magnitude response of the original 
filter compared with that of the stabilized 
filter. 
The parameters of the numerator 
polynomial of the stable filter transfer 

function shown in equation (19) is tuned 
using the Improved Genetic Algorithm 
discussed in sections 3 and 4.   
 

 
Fig 3: Normalized Magnitude Response of 

the Stable Filter 
 

 

 
Fig 4: Error between the Unstable and 

Stable Magnitude Responses 
In the algorithm, the following parameters 
are used: 
Population size = 20 
No. of variables = 4 
Max. value of all the variables = 3 
Min. value of all the variables = -3 
Weight parameter w = 0.99 
Desired fitness value  = 0.995 
The optimized filter transfer function is 
given by  
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The magnitude response of the above filter 
function and the error plot are shown in 
figures 5 and 6 respectively. 



It may be noted that the magnitude 
response of the optimized filter is almost 
same as that of the original unstable filter. 
 

 
Fig 5: Normalized Magnitude Response of 

the IGA Modified Stable Filter 
 

 
Fig 6: Error between the Unstable and IGA 

Modified Stable Filter Magnitude 
Responses 

 
6. Conclusion: 
In this paper, a new method for an optimal 
design of two dimensional digital recursive 
filters using improved genetic algorithms is 
presented. This method can be used to 
filters that were stabilized using any of the 
known stabilization techniques. The 
improved Genetic algorithm technique 
helps to modify the magnitude response of 
the stable filter so that it is very close to 
those of the original unstable filter. 
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