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Abstract: - A new form of a linearSIR model (Susceptible-Infected-Recovered) is posed amlytical
solutions are presented. It is motivated by a desir mimic illness patterns for particular zoonotic
microorganisms. In cases where person-to-persosrtriasion of a zoonosis is generally considerduktoare
(e.g., campylobacteriosis), an interaction termwken Susceptible and Infected groups is not neggssa
enabling a linear model to be posed. Immunity lsssel gains are accounted for, and also the plitysibhat
infection may occur in the absence of any illnegmmoms. Under realistic values of its parametghs,
solutions are able to mimic two patterns oftenrnrgé from clinical trial and outbreak data: (i) thehildren
are more susceptible to zoonotic pathogens thatisadii) that people in regular contact with faamimals
may attain greater immunity than the ordinary prbli
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1 Introduction livestock have a greater and more frequent exposure

Quantitative microbial risk assessment (QMRA) {0 zoonotic pathogens, and so may develop and
demands information on dose-response, typicallymaintain a greater immunity than the bulk of the
obtained from a clinical trial in which volunteerse  POpulation. Conversely, a city person may develop
split into groups, each receiving different dosta o immunity after illness, but lose it thereafter. tidy
particular pathogen [1]. In some cases (€igydia of the risk of.campyl'()ba'lctenogs in the New
cysts, adenoviruses), the dose-response relatpnnshizea|a”d population has indicated that dqse-response
appears to conform to a single-hit model in which Mmodels do need to account for this feature.
each pathogen particle has a constant probahility i Furthermore, _there is evidence that c_:h||dren are
any human host of surviving the body's defences tomore susceptible than adults [3], and it should be
reach an infection site. The resulting model has anoted that, for ethical reasons, clinical trials
simple decreasing exponential or binomial form. For 9enerally do not include children. Therefore, there
other pathogens (such &ampylobacter there is @ need to account for both the age-dependence of
clear evidence of differential susceptibility beeme ~ Susceptibility, and also the differential immunity
the individuals participating in the trial. To acen ~ Status of subgroups in a population.

for this, the pathogen survival probability is regd We develop a Ilnea_r model for these features,
by a beta-distribution. The resulting model (which based on the Susceptible-Infected-Recovefi&) (
has a more complex form—beta-Poisson or betaframework. Its linearity arises because the human
binomial) therefore accounts for differential POPUlation can be regularly exposed to zoonotic
immunity within the group of people participating in Pathogens such a€ampylobacter jejunithrough

the trial [2]. However, in applications of QMRA to Poth food and environmental routes; person-to-
larger populations, one may be faced with the need?€rson transmission is generally considered to bg
to account for differential immunityetweergroups. ~ faré. Dose-response data enters the model via

For example, rural workers in regular contact with Probability terms accounting for infection-given-
dose and for illness-given-infection.



2 Problem Formulation

The basic SIR model is shown below. 2.2 Differential Equations
The equations that result from tt8&R structure and
al the assumptions stated above are:
| 5
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In this diagram:
b =immigration rate of susceptibles (#)t N=S+I+R 4
c = specific rate of contact with pathogen{jT )
K, = probability of infection given contact; whereS, | andR are functions of agea), and all
K, = probability of illness given infection; other terms are independent of age.
y = 1/shedding period (}); Doses enter the model via the probability tekims

andK.. In so doing it is appropriate to use a simple
single-hit decreasing binomial or exponential
model, because immunity is already catered for in
the SIRmodel. In that case we have

a = specific death rate in populatiori {)f
5 = specific immunity loss rate ().

2.1 Assumptions o |
The following assumptions are made in developing Kiz =1-e " or Ky, :1‘(1‘&2) (5)

the solutions to the model: (i) static conditions

prevail, so tha | andR change with ageaj, but  wherer is a pathogen survival probability in any
not with time; (ii) the population is of constaites  host to be determined for infectiom;)( and for

(N); (iii) all persons are born susceptible, so the illness-given-infection r). Note that the first
initial conditions areS,=o = N, la=o = 0 andRsx0 = 0;  equation is typically used in analyzing clinical trial
(iv) a is the same for alb-I-R classes; (v) the model data, in whichd,. is the average dose given to
parametery andd are also constant; (vi) person-to- subgroups in the trial, whereas the second equation
person transmission can be ignored; (vii) individua may be used in risk calculations, in whigdtis the
may become infected and ill and then recover to particular dose assigned to an individual [2].

become immune, or, on exposure, they may pass

directly into the immune class.

Assumption (i) recognizes that some zoonoses3 Problem Solution
(e.g., campylobacteriosis) seldom appear as largey differentiating (4) with respect to age, we obtain
outbreaks. Assumption (iv) is permissible because
many zoonotic pathogens, ar@ampylobacterin b:u(S+| +R):aN (6)
particular, cause much more mild illness than death
Assumption (vi) dictates a linear model, whereas
much of the SIR literature is concerned with
nonlinear models, including a8l interaction term
[4]. Analytical solutions to thé&IR equations may
therefore be obtained. Assumption (vii) mimics a
pattern sometimes found in clinical trials [5].

With these assumptions, this model represeris tw
extensions of the basic static linear model present
elsewhere [6]: firstly, by including immunity losse
and gains and secondly, by allowing individuals to
pass directly from theS to the R class [via
assumption (vii)].

which removed from (1).N may also be removed
from (1-4) by making use of the dimensionless
proportionss = SN, i = I/N andr = R/N. The full
equation set is derived using standard (albeit
tedious) analytical methods [7], and are given in the
Appendix. Their analytical forms have all been
checked in detail, using Mathemaficg8], and
calculations made from them have been checked
against results from an ordinary differential
equation solver [9].

The solutions can be used to calculate the
proportions of ill people for any group of people



with similar immunity profiles, and for any given 3.2 Example predictions
age group. They all consist of an age-progressionConsider typical data for campylobacteriosis, for
toward Methuselahstates (old age). For example, which New Zealand has a reported rate well over

the ultimate Methuselah)liness proportion is 300 cases per 100,000 people per year [10],
representing many more actual cases. This burden

. (0( +25)cK1K2 implies a relatively high rate of annual contacthwi

les = (0( N y)(a +6+cKl)+ 5cK,K, (7) Campylobacterlgnoring available dose data, for the

normal population we take= 1 per annum anid; =
K, = 0.5. For a typical shedding period (a month) we

3.1 1lInessturning points
- : : : takey = 12 per annum. The overall death rate can be
It is instructive to consider the special case where .
P taken as 1/80= 0.0125 per annum. Now consider

the determinant of the auxiliary equation for | tes for two distinct 0.9
equations (1-3) vanishes. The solutions are then of "MMuNIty 10SS rate€s for two distinct groups. ©.9 pé

simpler form (i.e., thé = 0 case in the Appendix). annum for the normal population and 0.05 per

This shows that illness proportions can peak before®"NuM for rural workers in regular contact with

the Methuselalstate (7) is attained. To see that, note animals (.g., in milking sheds), in which case¢hr

that setting the first differential of the equation for revised parameter values must be sup_ph_ned:lo,
illness (16) to zero gives an extremum at K; = 0.1,6 = 0.05 per annum. The predictions made

by the analytical model presented here for thege tw
1 2o +3) 5 cases are shown on Figure 1: part (a) displaystsesu
al ={1+ }: (8) for the high immunity loss rate; part (b) shows
‘ CKy+y-58] cK;+y-d results for the low immunity loss rate.

wherep = a + (y + & + cKy)/2 is the system's time 0.04
constant. The second derivative of tleguation is N

T T 1

(a) High immunity loss rate

i _ 2 0oal \\ . 408
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4y +cK,)+2a[2 +a(8 -y - cK, )] + a[62 - (y+ cKl)z] (9) A .
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For a maximum to occus takes the value given oo

by (8), in which case the right-hand-side of (9) must 192

be negative. This requires that the numerator of the i

fraction term in that equation is positive. This can be oo

shown to give the requirement that 0.04 1

o<y+cK; (20)
0.03
If =y +cKy, then we havet = a +y + cKy, and the
general solution foi(a) is simply

i(a)=(C|:—é)2(1—e"”a) (11)

— 002}t

0.01 |

which has its maximum as - . Ford >y + cKy,

there is no positive-age maximum illness proportion 0 ' ‘ ‘ ‘ ‘ 0
before theMethuselatstate is reached [although (7) 0 2 4 6 8 10
then admits a negative-age maximum]. Age (year class)

Criteria for turning points for the general cage
> 0 andA < 0) are more complex. Nevertheless, Fig. 1. Parameters values: @F 1,K; = K; = 0.5,
early-age maxima can still occur. y=12,a =0.01250 = 0.9, (b)Ky, a same as for (a)

but withc = 10,K; = 0.1,6 = 0.05.



Both sets of results show that the illness proporti  Acknowledgements
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4 Discussion and Conclusion
The solutions to th&IRmodel presented here are of [1]
course considerably more complex than the age-
independent forms in routine use—though their
computation is direct and straightforward. However [2]
they do hold some promise in explaining two
patterns sometimes inferred from dose-response data
and from outbreak data: (i) that children are more [3]
susceptible to zoonotic pathogens than adults, (ii)
that people in regular contact with farm animalyma
attain greater immunity for longer periods than the
ordinary public (this may also be the case for
general rural population frequently exposed to low [4]
doses).

The model is of course idealistic, in particular  [5]
its use of constant coefficients. This may be
overcome by use of numerical methods to solve
Equations (1-3); analytical solutions are not
generally attainable in such cases. Neverthelbss, t
analytical solutions shown here serve a valuable[6]
purpose in explaining overall features of the
behaviour of the model. In any event, mere
consideration of thethuselabstates is likely to be
informative when performing QMRA studies.

This work appears to be the first attempt to
incorporate infectious disease dynamics and[8]
immunity into dose-response modelling of zoonotic
pathogens. It thus represents a shift in thinkimg t [9]
allow for intermixing between hosts, pathogens and
the environment. We hope that it will spawn both

[7]

Murthy Mittinty and Desmond Till.
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Appendix: Full List of Analytical Solutions

In the following equation sefy is the determinant of the auxiliary equation fog system of
Equations (1-3).

General case\ >0

sa)=fL-etve]s, + {e“a +{1+ %)(Z—QJ (e~ (gu. . )} e

(@)=h-e | [ 2 e -l -r)] e

e

Special caseh =0 (sol = 0, andpy = @. = @)

sa)=p-e s, +fir 1+ doaloi, -1 e
i(@)=-e*]i, -[oalei. -r. ) e
r(e)=h-elr. ~lovalgi. -r.]]e™

General case\ <0

s(a)=[L-codza)e s, + [cos(Za) " (%j sin(¢a) HMJ 1 ﬂ ot

i(a) =[1- coza) e i, + ng sin(¢a) (%im + rmﬂ et

r(a)= [1— codta) e‘“a] r,— K%J sin(¢a) (% i+, H ghe

where theMethuselah-stateare:

S, = pla+3) Iw:g(a+6) and r, PCK =09 it
pa+y pa+y pa+y
g=cKK,, p=a+y, g=a+d+cK,, y=3g, p=+_3, y=L

2
szz—y, Z:m, n=v+g, (pL:—(Z%j, (pM:Z_n, LIJ:Z2+F|2.

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)



