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Abstract: - A new form of a linear SIR model (Susceptible-Infected-Recovered) is posed and analytical 
solutions are presented. It is motivated by a desire to mimic illness patterns for particular zoonotic 
microorganisms. In cases where person-to-person transmission of a zoonosis is generally considered to be rare 
(e.g., campylobacteriosis), an interaction term between Susceptible and Infected groups is not necessary, 
enabling a linear model to be posed. Immunity losses and gains are accounted for, and also the possibility that 
infection may occur in the absence of any illness symptoms. Under realistic values of its parameters, the 
solutions are able to mimic two patterns often inferred from clinical trial and outbreak data: (i) that children 
are more susceptible to zoonotic pathogens than adults, (ii) that people in regular contact with farm animals 
may attain greater immunity than the ordinary public. 
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1 Introduction 
Quantitative microbial risk assessment (QMRA) 
demands information on dose-response, typically 
obtained from a clinical trial in which volunteers are 
split into groups, each receiving different doses of a 
particular pathogen [1]. In some cases (e.g., Giardia 
cysts, adenoviruses), the dose-response relationship 
appears to conform to a single-hit model in which 
each pathogen particle has a constant probability in 
any human host of surviving the body's defences to 
reach an infection site. The resulting model has a 
simple decreasing exponential or binomial form. For 
other pathogens (such as Campylobacter) there is 
clear evidence of differential susceptibility between 
the individuals participating in the trial. To account 
for this, the pathogen survival probability is replaced 
by a beta-distribution. The resulting model (which 
has a more complex form—beta-Poisson or beta- 
binomial) therefore accounts for differential 
immunity within the group of people participating in 
the trial [2]. However, in applications of QMRA to 
larger populations, one may be faced with the need 
to account for differential immunity between groups. 
For example, rural workers in regular contact with 

livestock have a greater and more frequent exposure 
to zoonotic pathogens, and so may develop and 
maintain a greater immunity than the bulk of the 
population. Conversely, a city person may develop 
immunity after illness, but lose it thereafter. A study 
of the risk of campylobacteriosis in the New 
Zealand population has indicated that dose-response 
models do need to account for this feature. 
Furthermore, there is evidence that children are 
more susceptible than adults [3], and it should be 
noted that, for ethical reasons, clinical trials 
generally do not include children. Therefore, there is 
a need to account for both the age-dependence of 
susceptibility, and also the differential immunity 
status of subgroups in a population. 
   We develop a linear model for these features, 
based on the Susceptible-Infected-Recovered (SIR) 
framework. Its linearity arises because the human 
population can be regularly exposed to zoonotic 
pathogens such as Campylobacter jejuni through 
both food and environmental routes; person-to-
person transmission is generally considered to be 
rare. Dose-response data enters the model via 
probability terms accounting for infection-given-
dose and for illness-given-infection. 



2 Problem Formulation 
The basic SIR model is shown below. 
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In this diagram: 
b = immigration rate of susceptibles (#/T–1); 
c = specific rate of contact with pathogen (T–1); 
K1 = probability of infection given contact; 
K2 = probability of illness given infection; 
γ = 1/shedding period (T–1); 
α = specific death rate in population (T–1); 
δ = specific immunity loss rate (T–1). 

 
 
2.1 Assumptions 
The following assumptions are made in developing 
the solutions to the model: (i) static conditions 
prevail, so that S, I and R change with age (a), but 
not with time; (ii) the population is of constant size 
(N); (iii) all persons are born susceptible, so the 
initial conditions are Sa=0 = N, Ia=0 = 0 and Ra=0 = 0; 
(iv) α is the same for all S-I-R classes; (v) the model 
parameters γ and δ are also constant; (vi) person-to-
person transmission can be ignored; (vii) individuals 
may become infected and ill and then recover to 
become immune, or, on exposure, they may pass 
directly into the immune class. 
   Assumption (i) recognizes that some zoonoses 
(e.g., campylobacteriosis) seldom appear as large 
outbreaks. Assumption (iv) is permissible because 
many zoonotic pathogens, and Campylobacter in 
particular, cause much more mild illness than death. 
Assumption (vi) dictates a linear model, whereas 
much of the SIR literature is concerned with 
nonlinear models, including an SI interaction term 
[4]. Analytical solutions to the SIR equations may 
therefore be obtained. Assumption (vii) mimics a 
pattern sometimes found in clinical trials [5]. 
   With these assumptions, this model represents two 
extensions of the basic static linear model presented 
elsewhere [6]: firstly, by including immunity losses 
and gains and secondly, by allowing individuals to 
pass directly from the S to the R class [via 
assumption (vii)].  

 
2.2 Differential Equations 
The equations that result from this SIR structure and 
the assumptions stated above are: 
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where S, I and R are functions of age (a), and all 
other terms are independent of age. 
   Doses enter the model via the probability terms K1 
and K2. In so doing it is appropriate to use a simple 
single-hit decreasing binomial or exponential 
model, because immunity is already catered for in 
the SIR model. In that case we have 
 

ave2,1e12,1
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where r is a pathogen survival probability in any 
host to be determined for infection (r1) and for 
illness-given-infection (r2). Note that the first 
equation is typically used in analyzing clinical trial 
data, in which dave is the average dose given to 
subgroups in the trial, whereas the second equation 
may be used in risk calculations, in which d is the 
particular dose assigned to an individual [2]. 
 
 

3 Problem Solution 
By differentiating (4) with respect to age, we obtain 
 

( ) NRISb α=++α=     (6) 
 
which removes b from (1). N may also be removed 
from (1–4) by making use of the dimensionless 
proportions s = S/N, i = I/N and r = R/N. The full 
equation set is derived using standard (albeit 
tedious) analytical methods [7], and are given in the 
Appendix. Their analytical forms have all been 
checked in detail, using Mathematica® [8], and 
calculations made from them have been checked 
against results from an ordinary differential 
equation solver [9]. 
   The solutions can be used to calculate the 
proportions of ill people for any group of people 



with similar immunity profiles, and for any given 
age group. They all consist of an age-progression 
toward Methuselah states (old age). For example, 
the ultimate (Methuselah) illness proportion is 
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3.1 Illness turning points 
It is instructive to consider the special case where 
the determinant of the auxiliary equation for 
equations (1–3) vanishes. The solutions are then of 
simpler form (i.e., the ∆ = 0 case in the Appendix). 
This shows that illness proportions can peak before 
the Methuselah state (7) is attained. To see that, note 
that setting the first differential of the equation for 
illness (16) to zero gives an extremum at  
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where µ = α + (γ + δ + cK1)/2 is the system's time 
constant. The second derivative of the i equation is 
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   For a maximum to occur, a takes the value given 
by (8), in which case the right-hand-side of (9) must 
be negative. This requires that the numerator of the 
fraction term in that equation is positive. This can be 
shown to give the requirement that 
 

1cK+γ<δ                 (10) 
 
If δ = γ + cK1, then we have µ = α + γ + cK1, and the 
general solution for i(a) is simply 
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which has its maximum as a → ∞. For δ > γ + cK1, 
there is no positive-age maximum illness proportion 
before the Methuselah state is reached [although (7) 
then admits a negative-age maximum]. 
   Criteria for turning points for the general cases (∆ 
> 0 and ∆ < 0) are more complex. Nevertheless, 
early-age maxima can still occur. 
 

3.2 Example predictions 
Consider typical data for campylobacteriosis, for 
which New Zealand has a reported rate well over 
300 cases per 100,000 people per year [10], 
representing many more actual cases. This burden 
implies a relatively high rate of annual contact with 
Campylobacter. Ignoring available dose data, for the 
normal population we take c = 1 per annum and K1 = 
K2 = 0.5. For a typical shedding period (a month) we 
take γ = 12 per annum. The overall death rate can be 
taken as 1/80 ≈ 0.0125 per annum. Now consider 
immunity loss rates for two distinct groups: 0.9 per 
annum for the normal population and 0.05 per 
annum for rural workers in regular contact with 
animals (e.g., in milking sheds), in which case three 
revised parameter values must be supplied: c = 10, 
K1 = 0.1, δ = 0.05 per annum. The predictions made 
by the analytical model presented here for these two 
cases are shown on Figure 1: part (a) displays results 
for the high immunity loss rate; part (b) shows 
results for the low immunity loss rate. 
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Fig. 1. Parameters values: (a) c = 1, K1 = K2 = 0.5,  
γ = 12, α = 0.0125, δ = 0.9, (b) K2, α same as for (a) 
but with c = 10, K1 = 0.1, δ = 0.05. 



Both sets of results show that the illness proportion 
is highest in early years of exposure, in line with 
inferences elsewhere [3]. Adjusting the immunity 
loss rate reduces the Methuselah illness proportions 
by a factor more than five-fold (from approximately 
0.013 to 0.0024). Notably, the proportions of 
susceptibles and recovered individuals reverse on 
this large change in immunity loss rates.  

 
 

4 Discussion and Conclusion 
The solutions to the SIR model presented here are of 
course considerably more complex than the age-
independent forms in routine use—though their 
computation is direct and straightforward. However 
they do hold some promise in explaining two 
patterns sometimes inferred from dose-response data 
and from outbreak data: (i) that children are more 
susceptible to zoonotic pathogens than adults, (ii) 
that people in regular contact with farm animals may 
attain greater immunity for longer periods than the 
ordinary public (this may also be the case for 
general rural population frequently exposed to low 
doses).  
   The model is of course idealistic, in particular in 
its use of constant coefficients. This may be 
overcome by use of numerical methods to solve 
Equations (1–3); analytical solutions are not 
generally attainable in such cases. Nevertheless, the 
analytical solutions shown here serve a valuable 
purpose in explaining overall features of the 
behaviour of the model. In any event, mere 
consideration of the Methuselah states is likely to be 
informative when performing QMRA studies. 
   This work appears to be the first attempt to 
incorporate infectious disease dynamics and 
immunity into dose-response modelling of zoonotic 
pathogens. It thus represents a shift in thinking to 
allow for intermixing between hosts, pathogens and 
the environment. We hope that it will spawn both 
theoretical and empirical studies, so that microbial 
risk analyses will be put into a better position to 
inform policy/interventions in food and 
environmental safety. Currently the uncertainty in 
dose-response models (both model and parameter 
uncertainty) hinders our ability to extend exposure 
assessments into meaningful assessments of the 
impact of interventions on public health. The SIR 
approach reported here therefore points to a whole 
new area of research, clarifying data the need for 
new data, and identifying differential immunity 
groups and age classes that may need to be 
separately considered. 
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Appendix: Full List of Analytical Solutions 
 
In the following equation set, ∆ is the determinant of the auxiliary equation for the system of 
Equations (1–3). 

 

General case: ∆ > 0 
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Special case: ∆ = 0 (so ζ = 0, and φM = φL = φ) 
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General case: ∆ < 0 
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where the Methuselah-states are: 
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