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Abstract: - A system structure, i.e., how elements of a system are connected, is a key factor for information 
retention and transmission through its elements. From the system dynamics, i.e., the states of the elements 
over time, we measure the system’s ability to propagate information through its elements as the pairwise 
mutual information (pMI) between the elements at moments t and t + L, where L is the minimum path length 
between the two elements. Information retention is measured with Lempel-Ziv (LZ), a measure of the 
complexity of transmitted information, from the same time series of states. We propose a combined measure 
of information propagation and ability to retain information efficiently, to determine optimal structures for 
information propagation and retention. We present the results on information propagation and retention, as a 
function of topology (random and small world structures), connectivity, noise and clustering coefficient. The 
conclusions are applicable in any context where these networks are used to model the system. Here, we apply 
our findings to a model of human organizations and than propose a generalization of the model to capture 
more realistic features, such as more complex internal states for elements and simulating information 
exchange with the environment outside of the system. As more features are incorporated, this model will 
capture many important features of human organizations, and other complex systems. 
 
Key-Words: - Organization, System, Information, Complexity, Lempel-Ziv, Information propagation and 
retention, Knowledge Management, Organizational Development. 
 
1   Introduction 
Structures where knowledge creation and flow of 
information are present are inherently dynamic and 
adaptive to external and internal changes [19][21] 
becoming resistant to environmental uncertainty 
[13][16]. Human organizations have these 
capacities, with variable degrees of effectiveness, 
depending on their goals and ability to innovate. 

Following the Systems Theory approach [9] we 
focus on the organization as a whole, at the 
structural level, and consider the interrelationships 
between the different sub-systems and the 
importance of environmental influences [8]. Thus, 
we focus on the topology of the interactions between 
elements [3][9] and, using a general model of 
quantifying information transfer, show which 
structures optimize information propagation and 
retention through its elements. On the context of 
human organizations, this applies to organizations 
focused on research, but certainly not to a 
organization where the goal is not a free exchange of 
information through all members. 

This optimization problem is also crucial in other 
systems, such as gene regulatory networks [32], 

where genes exchange information between them 
and with their environment.  

Here, we study the influence of structural 
organization by computing mutual correlations (here 
measured by the pMI between time series of the 
elements) and knowledge acquirement (here 
computed with the LZ complexity [18] of each 
element, averaged over all elements). 

Distinction between information and knowledge 
is not easy [19]. Information is understood as flow 
of signals [15], while knowledge is not just the 
storing of such information, but depends on the 
receiver’s interpretation of the information [14]. 

Here, we do not deal with the problematic of 
converting information into knowledge, which as 
been extensively studied (see [10] e.g.).  Rather, we 
focus in information propagation and retain, from 
which knowledge arises. 

This article is organized as follows: after we 
introduce the measures of correlation of the system 
as a whole and the information retained by each 
elemen, we present and justify our modeling 
strategy in the context of human organizations. We 
then present the results for information propagation 
and retention for the tested topologies, as the 
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network dynamics go from ordered to critical to 
chaotic [20]. We do this by varying connectivity, the 
influence of noise in communication and retention 
and the dependence on the network’s local 
properties.  

We then show that, for constant connectivity, the 
cause is the variation of the average clustering 
coefficient as the size of the network grows [28]. 

Next, we introduce a more complex model of 
organizations where the internal state of the system 
elements are no longer Boolean variables, thus 
allowing much more complex dynamics. We 
propose the functions by which they interact and the 
method for measuring correlations on their temporal 
patterns and information retained. Finally, we 
present our conclusions and future developments.  
 
 
2   Problem Formulation 

Although the model here proposed is general in 
the sense that it can be applied in any system where 
elements exchange information and have the ability 
to retain information, we shall use the human 
organizations model as a specific example of such 
systems. 

Optimizing human organizations information 
propagation and retention is very complex. The 
knowledge an organization retains in its elements is 
a fundamental resource [11][12], expressed by how 
efficiently the organization functions. One problem 
is choosing what parameters to optimize. Many have 
to be optimized simultaneously, and some might 
“compete” with one another. 

Most previous works on optimizing knowledge 
sharing in organizations focuses on the individuals’ 
characteristics and how information sharing can be 
improved given human behavior ([19] e.g.). Here we 
focus at the structural level, disregarding elements’ 
internal properties. 

Several mechanisms allow communication 
among people within an organization.. “Regular” 
communication mechanisms, which provide the 
opportunity to share knowledge and data, creation of 
empathy and trust, facilitating exchange of 
information, and, face-to-face meetings that provide 
opportunities to share experience and focus 
explicitly on common problems and their solutions 
have been broadly studied [5]. Variables such as the 
building structure, and orientation within a building, 
are features to consider for an optimized work 
environment [1][2]. 

Through the process of transfer of learning, both 
among its members and with outside information 
sources, organizations develop their competitive 

advantages [4]. Several studies measure the effects 
of organizational structure on the learning process, 
suggesting that organizational structure is 
fundamental for enhancing learning, and affecting 
organization performance (e.g., [5][6][7]). 

To define the structure of the system we focus on 
direct work relations, where proximity is high and 
interactions more stable. We consider such relations 
as those of direct dependency (“boss”–employee) 
and (college-college), and disregard less stable and 
indirect interactions. We model this structure as a 
directed graph between elements. 

The system dynamics are represented by a 
synchronous Boolean network. The element states 
(which define the system state) are Boolean 
variables and, at time t+1 are defined by a random 
Boolean function, assigned to each element, given 
the state of its inputs at time t. 

The relation between this model and the system 
we wish to model is the following: each message, 
sent from one element to another, has an information 
content (in this model, either 0 or 1), and, regardless 
of the content, is perceived,.  This content will act 
on the receiving element, according to internal 
properties (such as mimicking individual levels of 
perception for each element), and is here modeled 
by assigning to each element a random Boolean 
function which, given the combination of inputs 
values, determines the output value. 

Each element stores all the states experienced 
over time.  This constitutes the messages received, 
mimicking the information received and from which 
knowledge acquisition arises (when the element 
provides meaning to such information [10][19], here 
not modeled). We focus only on the quantity of 
distinct messages. 

Information loss as a message, transmitted and/or 
stored, is modeled introducing a probability that the 
element will, at each time step, do the opposite of 
what the inputs states and Boolean function 
determine. 

Given the model, we now focus on how to 
measure the system’s ability to propagate 
information through the elements and store 
information in each element from the time series of 
the elements’ states. 

When a person receives information, his 
“internal state” changes, provided that there is 
something new in such message. Namely, a message 
can be “irrelevant” given what the person previously 
knew. Here, an “irrelevant message” is one already 
received. 

Also, the elements that send the information 
(inputs) and the receiver (output) should be more 
correlated if the information is relevant. pMI 
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captures this correlation, since it is zero between two 
elements if one of the elements time series is 
“frozen” (no relevant information being propagated, 
thus, no state change), and for random or 
uncorrelated time series (no information being 
propagated in such a way that the elements states 
become correlated via information transfer). Yet, it 
is high when inputs and output states change over 
time in a correlated manner.  

Notice that “changing state”, due to receiving a 
message, in all time steps in not necessarily good. 
That is, if one element has a periodic behavior with 
a small period, no new information is being 
transmitted, although states vary in time. The 
diversity of messages sent should be maximized in a 
system that has as its primary purpose effective 
information transmission between its elements with 
relevant meaning (messages from which the receiver 
can extract new knowledge). 

To measure the diversity of messages sent, we 
compute the normalized (also called relative) 
Lempel Ziv complexity [17] (LZ) of each element 
time series. This quantity increases with the 
diversity of messages sent, independent of the size 
of the time series. To measure the influence of 
structural local properties, we use the average 
clustering coefficient [24] (Cp) of the structure. 

In the next section, we describe in detail how 
these quantities are computed from the model here 
proposed. 
 
2.1 Measure of information transmission 
Mutual information [15] (MI) measures correlation 
between variables. Applied to Boolean networks 
(BNs), mutual information can be used to measure 
the correlation between nodes time series of states. 
Here, we restrict to pMI, i.e., between pairs of 
nodes. 

This measure can be used to solve the inverse 
problem [22], i.e., given the elements time series, 
find the structure and logic of the network. Yet, in 
our framework, the structure is known and one is 
interested in the average global correlation among 
all elements, whether they are directly connected or 
not. We can compute such correlation as a function 
of the minimum distance, i.e., the minimum path 
length (L) between the two elements (see, e.g., [24]), 
attained using Dijkstra’s algorithm [23]. If two 
elements are L steps apart, the correlation should be 
measured as a function of such distance, since that is 
the time that a message takes to travel within the 
network between the two elements.  

We use this quantity as a measure of correlation 
between pairs of elements’ time series. Given the 

distance Lij between elements i and j, we compute 
their pMI with (1): 
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From this we compute the average pMI, as a 

function of path length, using formula (2), in a 
network of n elements: 
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We measured the average pMI of the time series 

of elements states, obtained from the model 
simulator, using the algorithm developed in [22]. 
 

 
2.2   Measure of information retention and 

complexity of transmitted messages  
Lempel-Ziv (LZ) measures [17] an individual 
sequence complexity over a finite alphabet (here 
{0,1}) counting the number of new sub-strings 
(words) found as the sequence is read from left to 
right. The algorithm separates the sequence into 
shortest words that haven’t occurred previously and 
the complexity equals the number of such unique 
words, except the last word, which may not be 
unique [18]. 

For example (described in [18]), consider the 
sequence 01100101101100100110. The first digit, 0, 
is a new word since it hasn’t been seen before. So is 
the second digit, 1. The third digit, also a 1, has been 
seen before, so one must increase the length of the 
word by one, resulting in a new word “10”, and so 
on. Repeating this process, the sequence gets parsed 
as follows: 0•1•10•010•1101•100100•110, where the 
dots delimit new words. Thus, the LZ complexity of 
this word is 7. All words, except the last one, are 
unique and, using this definition of LZ complexity, 
the search for previous occurrences of a word can 
span across previously seen word boundaries [18]. 
Repetition results in lower LZ; e.g., the complexity 
of the sequence 01010101010101010101 is 3. In 
general, time series with repetitive or simple 
patterns have a low LZ, whereas series with a 
complex pattern structure exhibit high LZ. 

Previous work [18] showed that “networks in the 
ordered or critical regimes exhibit lower LZ 
complexities of the sequences generated by each 
node due to their pattern-like behavior over time, as 
compared to networks in the chaotic regime, which 
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give rise to more random gene behavior”. We 
measured the average LZ complexity (<(LZ)> of the 
time series of elements states, using the algorithm 
suggested in [25]. 

As shown here, the <pMI> decreases 
significantly in the chaotic regime, since nodes 
become uncorrelated, thus a compromise must be 
reached to maximize both quantities. To measure the 
efficiency of both information propagation and 
retention, one can combine the <pMI> and <LZ> in 
the following relation: 

 
 (LZ)m.  pMIn.  X ><+><=   (3) 

 
The constants n and m depend on the relevance 

of information transmission between elements and 
information storage in each element for a particular 
system. Notice that, the way to combine these 
quantities depends on the system in question and 
what one intends to maximize. Here we analyze 
these measures independently, as a function of 
several network parameters. 

As we shall see, these quantities are very 
sensitive to “how” the nodes are connected at a 
“local level”, that is, to their nearest neighbors. 
Therefore, we need a measure that captures such 
characteristics. 

Here, we propose and show that the network 
clustering coefficient captures this important feature. 
 
 
2.3   Clustering Coefficient  

From its definition [24], with Ei representing the 
number of connections between the ki elements 
connected to a certain element i, the network 
clustering coefficient, C(p), is: 
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This quantity is smaller for random than for 

small world topologies. A perfectly random 
structure should have a null clustering coefficient. 

Therefore, we use this quantity to explain why 
the average connectivity k for which pMI is 
maximized varies as the network number of nodes 
grows (for small number of nodes).  

In the following section we present the results. 
 
 
3   Results 
We generate networks initialized at random states, 
and the average pMI as a function of path length, 

average LZ complexity, and average Cp are 
computed for 1000 runs of 1000 time steps each so 
that the results represent an average behavior, 
following the ensemble approach procedure [20]. 

Notice that, given such time series length, in the 
cases where there is no noise, for most of the time 
the system is in an attractor. 

We study the variation of <LZ> and <pMI> for 
two topologies: [i] random, as connectivity varies 
(Fig. 1); and [ii] small world [24][26][27], as the 
probability p of rewiring regular connections 
randomly varies (Fig.s 2a and 2b). The first one is 
chosen since it allows the generation of a wide 
variety of networks, and the second is a topology 
present in many known natural networks 
[28][29][30]. 

We then study the influence of noise (Fig.s 3a 
and 3b) for random networks with connectivities of 
1, 2 and 3. Finally, we analyze the influence of the 
size of the network, i.e., total number of nodes (Fig. 
4), maintaining all other parameters constant and the 
effects of local structural connectivity by analyzing 
the connectivity for which pMI is maximum, as the 
Cp varies with the network number of elements 
increase, maintaining average connectivity (k). 

Random Topology, no noise, varying 
connectivity 

0
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0.4

0.6

0.8

1

0 1 2 3 4 5 k

Avg LZ Complexity
Sum of Avg MI of path lengths

 
Fig. 1: <pMI> and <LZ> for random topology, 

variable connectivity and no noise. Maximum pMI 
occurs for k = 2.4, while LZ “phase transition” 
begins at k = 2, when the network dynamics goes 
from ordered to critical, and then chaotic [20]. 

 
From Fig. 1, for a system where no noise exists, 

both pMI between elements and the diversity of 
messages received by each element (LZ) are 
maximum for nearly chaotic dynamics (the phase 
transition from ordered to chaotic occurs for an 
average connectivity of 2.0 [20]). We show (in Fig 
5) that this maximum occurs each time “closer” to 
the phase transition as the size of the network grows, 
and Cp diminishes, making loops of connections 
among small numbers of elements less common. 

From Fig.1 it is clear that a network with the 
purpose of propagating and retaining information 
should be at the “edge of chaos” [32]. 
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pMI as p varies, SW topology, no noise
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Fig. 2a: <pMI> as the ratio p of random 

connections varies in a Small World topology, 
where p is the probability of rewiring a regular 
connection randomly, for k=1,2 and 3. 

 

LZ complexity as p varies, SW topology, 
no noise
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Fig. 2b: <LZ> as the ratio of random connections 

varies in a small world topology, for k=1, 2 and 3. 
 
Using a small world topology constructed using 

the algorithm proposed in [24], we began our tests, 
starting with ring lattice of k = 1, 2 and 3 
(corresponding approximately to the three 
dynamical regimes, order, critical and chaotic) and 
rewiring probability varying from 0 to 0.95 (Fig.s 2a 
and 2b).  

For an average k of 1, the network is always in 
the ordered regime, and both pMI and LZ are low, 
as expected from the previous results on random 
networks. Randomization of connections (increase 
of p) is not enough to increase LZ and pMI due to 
several nodes with no inputs (“frozen”). 

For an average k of 3, the network has, for small 
values of p, a behavior near the critical regime, and 
as p grows, the network goes deep into the chaotic 
regime and pMI drops to near null. 

Using a average connectivity of 2, one observes 
that the network goes from ordered to chaotic, 
having the highest pMI between all nodes. It is 
between k = 2 and 3 that the both LZ and pMI are 
maximized, as in random networks. 

Random Topology, varying noise,  pMI
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Fig. 3a: pMI values for random topology, 

connectivity 1, 2 and 3, varying noise. 
Random Topology, varying noise. LZ
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Fig. 3b: LZ complexity for random topology, k = 

1, 2 and 3, varying noise. 
 
In Figs. 3a and 3b we study the effect of noise in 

random topologies of average k of 1, 2 and 3. As 
noise increases, the elements of the network become 
more and more uncorrelated (shown with the 
decrease of pMI). Yet, for low connectivity values, 
noise (smaller then 0.05) allows “unfreezing” of 
elements, increasing both LZ and pMI. Above that 
threshold, noise level pMI decreases since elements 
become more and more uncorrelated. 

Variable size random networks - 
no noise

0
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0.4
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0 200 400 600 800 1000Size

Avg LZ Complexity
Sum of Avg MI of path lengths

 
Fig. 4: Random topology, varying the size of the 

network (number of nodes), with average k of 2 and 
no noise. 

 
For networks with more than 200 nodes, the two 

quantities do not vary significantly (Fig 4) for a 
large variation in the number of nodes, while for 
smaller networks, the small size allows high 
fluctuations, even though these results are averages 
of 1000 independent runs. We computed the 
standard deviation of pMI of Fig. 4, and, for small 
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size networks, it has the same magnitude as those of 
the pMI itself, confirming the high fluctuations. 

These fluctuations in smaller networks are 
explained by the highest probability, for nodes 
connected to another node, to share a connection 
between themselves, thus creating small “cycles” 
that are responsible for “un-correlating” more nodes 
than if such “local loop structures” did not exist. 

Also, higher Cp for small networks causes the 
maximum pMI to occur for higher connectivities 
than 2, since for k =2 the network is still ordered, 
and the phase transition between order and chaos 
occurs for higher k values (between 2.4 and 2, as we 
show below) than 2.0 (the predicted value for 
random networks). 

To prove these statements, we now study the 
variation of Cp with the size of random networks 
whose connection distribution follows a Poisson 
distribution (Fig. 5a). 

Fig. 5a: Cp average values for random 
topologies, k =1,2, 3 and 4, where connections are 
placed following a Poisson distribution due to a 
uniform probability of connectivity for all nodes. 

  
From Fig. 5a, one observes that, for small sized 

networks, the Cp value is relevant and its relevance 
is higher for networks with higher average 
connectivity. This, as seen is Fig. 5b, explains why 
the maximum of the <pMI> shifts to higher 
connectivity values for smaller sized networks, since 
higher Cp allows a higher chance of “closed 
circuits” which tend to “freeze” in a steady state. 

It is, therefore, important to show for which 
connectivity values pMI is maximized, as the size of 
the network grows (Fig 5b). 

Connectivity where pMI is maximized for 
random topologies with  Poisson 

distribution of inputs

0

1

2

3

50 100 150 200 250 300 350 400 450 500 #nodes

k

 

Fig. 5b: Values of connectivity for random 
topologies of networks as size varies, for which the 
pMI is maximum.  
 

As expected, but only for large networks (N > 
200), the k for which pMI is maximized corresponds 
to the critical regime. 

To show if the reason pMI is maximized for 
different k values is Cp variation we kept Cp 
constant for variable size networks. The pMI 
maximum occurred for k = 2.0 in all cases. Also, 
using regular ring lattices where Cp is constant, pMI 
is constant as size varies (Fig 6).  

  

<LZ> and <pMI> as N varies, for 
constant Cp structures
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Cp variation with Number of nodes for 
random topologies with inputs Poisson 

distribution
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0 200 400 600 800 1000 Size

Cp k1
k2
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k4 Fig. 6: <pMI> and <LZ> for ring topology 

networks of varying size but equal Cp. 
 

The results (Fig 6) show that ring lattices where 
Cp is conserved, do not vary <pMI> or <LZ> with 
size, except for 50 nodes, where the network is so 
small that large deviations occur for small network 
topology differences. 

We investigated the reason for this. The Cp is a 
measure of small loop structures occurrence in the 
network. Only “small” loops of a few nodes will 
affect the pMI average. The probability of those 
loops to occur diminishes as size grows. Yet, 
keeping Cp constant only takes in consideration 3 
nodes loops.  

Larger loops, of 4 or 5 nodes still affect pMI 
average. That’s the reason why, using random 
topologies where we forced Cp to be null, although 
Cp is constant, for the k = 3, pMI still varies for 
sizes smaller then 100 nodes, significantly. 

Finally, the <LZ> quantity had no significant 
variation with size, was expected. Its mainly 
constant with very small variations In fact, from all 
cases here analyzed we observed that, unlike the 
pMI, this quantity is independent of Cp, varying 
only with average k (see Figs 4 and 6). 
 
4   Conclusion 
We proposed a model of information transmission 
and retention in Boolean networks, and its 
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application on human organizations, by representing 
humans as the elements of the network, and 
communication among people as connections in the 
network. 

Using pMI as a function of the minimum path 
length from one node to the other, we studied how 
information propagates through the network. The LZ 
complexity of the resulting time series of states for 
each element, quantifies how the structure affects 
information retention. 

Testing different topologies (random and small 
world), we have shown that pMI is highest in a 
network with rich dynamics, where k is high enough 
to allow complex interactions (corresponding to the 
critical regime in Boolean networks), but not too 
high so that the other nodes don’t drown a node out. 

The maximum pMI occurs, in all cases, in the 
network critical regime, between order and chaos, 
while LZ grows continuously from order to chaotic. 

Varying the level of noise in the dynamics of 
random topologies of k = 1, 2 and 3 we observed 
that as noise increases, pMI diminishes. Yet, small 
noise levels (pnoise < 0.05) allows “unfreezing” 
elements, increasing both LZ and pMI 

By computing the standard deviation, we showed 
that small random networks have high fluctuations 
in pMI and LZ, and proved that the property that 
causes not only these variations, but also differences 
in systems of equal connectivities (but different 
sizes) of dynamical regime, is the clustering 
coefficient.   

We showed how the average Cp varies with the 
size of the random networks, of equal connectivity 
where the connections are placed following a 
Poisson distribution. By generating ring topology 
networks of different size but maintaining the Cp 
constant, the maximum of the pMI occurred always 
for k = 2, given that no noise existed in the 
dynamics. The effect of noise is to shift the pMI 
maximum for smaller k values, and, invariably, 
increase of LZ. 

When we tested the same using random 
topologies of constant Cp value, we observed that 
larger loops of 4 and 5 nodes, are still capable of 
varying pMI as the network size varies. 

The results and conclusions are general in the 
sense of being a property of Boolean networks and 
applicable in any context where these networks are 
used to model systems.  

Under the context of gene regulatory networks 
[20], the results attained here show under which 
conditions these networks become more capable of 
transmitting information, while retention, in this 
framework, takes the meaning of complex patterns 

of genes activity, being maximized according to the 
LZ maximization conditions. 

A more advanced model would be able to give 
results that are better correlated with the real world, 
depending on the system being modeled. In the 
future, we intend to incorporate more realistic 
features into the model of human organizations and 
stochastic gene regulatory networks [33]. 

 
 
5 Final Remarks and Future Work 
Any message can be coded in binary code. Yet 
humans respond to messages in an extremely wide 
variety of ways, not fully captured using only binary 
variables. Also, they combine messages in more 
complex way then Boolean logic. Allowing more 
complex states of activity is a necessity for realistic 
models of information transmission and retention. 

It is also necessary to consider each element with 
a different rate of “misinterpretation” and degree of 
“error” (how different from the initial message will 
the perceived message be) depending on each 
person’s characteristics.  More specifically, the 
interpretation of messages by humans should be 
improved such that it includes the person’s beliefs 
system (e.g. [31]). Using the “belief networks” 
framework will allow modeling the “noise” due to 
personal interpretation more realistically, while here 
this was modeled by assigning a random Boolean 
function to each node. 

These generalizations are also relevant to deal 
with other information propagation networks, such 
as gene regulatory networks, or, protein interaction 
networks and other metabolic networks. 
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