
From the Magic Square to the Optimization of Networks of AGVs and
from MIP to an Improved Hybrid Tabu-Genetic Optimization

Algorithm

JOSÉ BARAHONA DA FONSECA
Department of Electrical Engineering and Computer Science

New University of Lisbon
Monte de Caparica, 2829-516 Caparica

PORTUGAL

Abstract: - In a previous work we presented an algorithm inspired in the Strong Artificial Intelligence and in the
minimax optimization that imitates the human being in the solution of the magic square and we showed that in
most cases its performance was better than the human’s performance and even better than the performance of the
best genetic algorithms to solve the magic square, in terms of number of changes.
 In this paper we adapt and transform this algorithm to solve the optimization of an AGVs network problem,
using as a first test case 9 workstations in fixed positions and 9 operations to be executed, and the optimization
problem is translated in the search of which of the 9! possible manners to distribute 9 operations by the 9
workstations that minimizes the total production time for a given plan of production.
 As a final validation test, using random search, in 1000 runs it never reached the optimal solution at the end
of 100000 iterations.
 Finally we considered the more general case where the number of workstations is greater than the number of
operations, and so there are some workstations that make the same operation, and we will have a layout with
repetitions and multiple trajectories that implement the same product. This turns the problem more complex
since when a product has operations that are executed by various workstations we must search all the possible
combinations and find the average distance over all possible trajectories associated to a product. Furthermore the
generation of all ‘permutations with repetitions’ is more complex and in the literature there are no published
algorithm to generate this type of combinatorial entities. The Mixed Integer Programming approach proves to be
impractical even for a simple test case of two products defined as sequences of four operations since the
implementation of the division of the total distance over all trajectories that implement a product by their number
turns the MIP model very big and combinatorial explosive. Again our algorithm adapted to layouts with
repetitions presented very good results for this simple test case of 9 machines, 4 operations and 2 products.

Key-Words: - AI Minimax Algorithm to Solve the Magic Square, Optimization of AGVs Networks, Improved
Hybrid Algorithm to Optimize AGVs Networks, Evolutionary Algorithm to Optimize AGVs Networks.

1 Introduction
The layout optimization is a difficult and complex
problem due to the combinatorial explosive number of
possible solutions and due to the dependence and
interaction of the layout optimal solution with the
optimal solution of production planning and
scheduling.
In this first approach we will only study the
optimization of an AGVs network with 9 workstations
and 9 operations and then for 4 operations, for a given
production plan of a set of products defined as linear
sequences of subsets of the 9 operations and then of the
4 operations.
A possible solution will be a permutation of the
nine operations. Since 9! it is not a too big number
in terms of iterations of a computer program, as a

preliminary exercise we generated all the 9!
permutations and we got four optimal solutions.
We began to solve the problem with mixed integer
programming (MIP) with the need of a lot of
artificious tricks to linearize the model, but the
final result was a deception: even for 9
workstations our optimization software package
presented a runtime of the order of 2 days in a 1
GHz PC.
The algorithm that we present is an intermediary
pass towards a more efficient evolutionary
algorithm to optimize AGVs networks and then to
optimize FMS layouts with AGVs networks. It is
the result of a process of adaptation and
transformation of our AI minimax algorithm to
solve the magic square which presented a better
performance than the best published evolutionary
algorithms to solve the magic square [1].

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 606

2 Generation of All Optimal Solutions
Let’s first of all to define exactly our AGVs
network with 9 workstations, the production plan,
the products and the operations. The AGVs
network is a 3x5 matrix, where the first and last
columns correspond to automatic warehouse
accesses, being the lines equally separated as well
as the columns. The production plan is simply the
definition of the number of units to be produced of
each product. In table 1 we show the production
plan used in our model. Each product is defined by
a linear sequence of a subset of the 9 operations. In
table 2 we show the sequences of operations that
define each product. In table 3 we show the
duration of each operation. Note that changing the
execution time of the operations will not change
the optimal solution since it is independent of
machine positions. Finally in table 4 we show the
four optimal solutions that we got through the
exhaustive generation of all the 9! permutations of
9 operations.

Parameters
Prod_Plano(k) production plan

product_i->n_unities_i
/p1 5
p2 7
p3 8
p4 6
p5 3
p6 4/

Table 1. Production plan used in this
work.

Table Product_ops(k,opi) definition of the seq of ops of
each product

 Nop op1 op2 op3 op4 op5 op6 op7 op8 op9

p1 7 5 6 2 0 1 3 0 7 4
p2 4 4 3 0 0 0 2 0 0 1
p3 8 1 7 5 8 3 6 4 0 2
p4 9 6 4 5 3 2 7 1 9 8
p5 6 5 6 2 1 0 0 3 0 4

 p6 8 0 5 2 6 8 7 3 4 1;

Table 2. Definition of each product.

t_exec_op(opi) tempo de execucao das
operacoes em segs

 /Nop 0
 op1 5
 op2 7

 op3 10
 op4 15
 op5 13
 op6 12
 op7 11
 op8 10

 op9 9/;

Table 3. Definition of the duration of
each operation.

Tprodution=2058 s

Permutation=1373
Distribution of Operations by the Workstations:

0 2 3 5 0 0 10 7 4 0 0 9 6 8
Execution Time of each Product:
180 69 186 268 151 237

Permutation=39673

Distribution of Operations by the Workstations:
0 2 10 9 0 0 3 7 4 0 0 5 6 8

Execution Time of each Product:
180 75 186 236 177 255

Permutation=39673

Distribution of Operations by the Workstations:
0 2 10 9 0 0 3 7 4 0 0 5 6 8

Execution Time of each Product:
180 75 186 236 177 255

Permutation=266016

Distribution of Operations by the Workstations:
0 8 6 9 0 0 4 7 10 0 0 5 3 2

Execution Time of each Product:
180 69 186 268 151 237

Table 4. All the 4 Optimal Solutions obtained through

the generation of all the 9! permutations of 9
operations.

3 Optimal Solution Obtained with MIP
The great difficulty that we had to solve during the
solution of the optimisation of the AGVs network with
9 workstations with MIP was that we cannot make
nonlinear operations over the variables of the model.
 We solved the problem of permutation generation
with a binary variable with two indexes, the
workstation and the operation executed by it, and in this

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 607

way we defined the logic of permutation generation
with only arithmetic operations and iterative sums.
 The problem of the need of a logical AND operation
between two of these binary variables was solved with
a new binary variable with 4 indexes, each pair of
indexes signifying that that the operation i was
attributed to the workstation j, and we have to create a
set of constraints to guarantee the coherence between
this binary variable and the previous binary variable
that defined the permutation of operations or, by other
words, the disposition of machines in the 3x3 matrix.
 In table 5 we show the optimal solution obtained
with this MIP model after two days of computation in a
1 GHz PC.

---- 292 VARIABLE t_production.L = 2058.0
PARAMETER n_agvs = 1.745
---- 292 VARIABLE est_q_ex.L
 e2 e3 e4 e5 e6 e7
op1 1.000
op2 1.000
op3 1.000
op4 1.000
op6 1.000
op9 1.000
+ e8 e9 e10
op5 1.000
op7 1.000
op8 1.000
---- 292 VARIABLE t_exec_product.L
p1 180.000, p2 69.000, p3 186.000, p4 268.000,
p5 151.000, vp6 237.0

Table 5. Optimal solution obtained with MIP that
corresponds to the first solution obtained with

exhaustive search.

4 Improved Hybrid Algorithm for the
Optimization of AGVs Networks
We will make only a qualitative description of this
algorithm.
 Having as departure point a given permutation of
operations, it search a new one changing randomly two
operations and that new permutation is accepted if the
production time associated to it is significantly less than
the previous; if the first tabu flag is on then the new
permutation is saved in the first tabu list. If at the end of
a given limit number of change trials it has not found a
better permutation, then if the second tabu flag is on the
last permutation is saved in the second tabu list and
after this is accepted the change that maximizes the
production time increase over a set of operations pairs
randomly generated.

 When it is generated a permutation that already exists
in the first tabu list, that permutation is rejected and it
reaches a permutation that exists in the second tabu list it
returns to a previous solution that exists in the first tabu
list.
 Although simple this algorithm presented a
performance in terms of the iterations number always
much less than 9! or even 9!/1000.
 Next we show some results of computational
experiences with this algorithm. In table 6 we present na
example of a trace of a run with the two tabu flags off,
departing from a sequential filling. As a curiosity,
although it passes two times by the same solution that
corresponds to a production time of 2121s, in the second
time it travels a different path that leads to the optimal
solution. In the next tables we show the statistics over
1000 runs, where it can be seen a significant improvement
of the performance as the tabu flags got activated.

TprodutionMin= %2735 @ Niterations=1,
0 2 3 4 0 0 5 6 7 0 0 8 9 10 0

TprodutionMin= %2611 @ Niterations=4,
 0 2 4 3 0 0 10 6 7 0 0 5 9 8 0

TprodutionMin= %2442 @ Niterations=8,
0 2 4 6 0 0 3 10 7 0 0 5 9 8 0

TprodutionMin= %2353 @ Niterations=9,
0 2 4 9 0 0 3 10 7 0 0 5 6 8 0

TprodutionMin= %2269 @ Niterations=17,
0 2 4 9 0 0 3 7 10 0 0 5 8 6 0

TprodutionMin= %2259 @ Niterations=18,
0 2 3 9 0 0 4 7 10 0 0 5 8 6 0

TprodutionMin= %2241 @ Niterations=37,
0 2 7 10 0 0 4 3 5 0 0 9 8 6 0

TprodutionMin= %2223 @ Niterations=93,
0 5 6 8 0 0 3 4 2 0 0 9 7 10 0

TprodutionMin= %2219 @ Niterations=124,
0 5 6 8 0 0 3 4 7 0 0 9 10 2 0

TprodutionMin= %2156 @ Niterations=125,
0 5 6 8 0 0 3 4 7 0 0 9 2 10 0

TprodutionMin= %2139 @ Niterations=127,
0 5 8 6 0 0 3 4 7 0 0 2 9 10 0

TprodutionMin= %2121 @ Niterations=256,
0 5 6 8 0 0 3 7 4 0 0 9 2 10 0

TprodutionMin= %2086 @ Niterations=271,
0 5 6 8 0 0 3 7 4 0 0 9 10 2 0

TprodutionMin= %2121 @ Niterations=372,
0 5 6 8 0 0 3 7 4 0 0 9 2 10 0

TprodutionMin= %2097 @ Niterations=442,
0 5 8 6 0 0 3 4 7 0 0 9 2 10 0

TprodutionMin= %2058 @ Niterations=661,
0 5 6 8 0 0 3 7 4 0 0 2 10 9 0

Table 6. Exemple of a run with initial sequential filling

and the two tabu flags off.

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 608

Niters_max=6177, over 1000 Runs
 For Niters < 100, Nruns=37

For 100 < Niters < 200, Nruns=82
For 200 < Niters < 300, Nruns=73
For 300 < Niters < 400, Nruns=82
For 400 < Niters < 500, Nruns=88
For 500 < Niters < 600, Nruns=69
For 600 < Niters < 700, Nruns=44
For 700 < Niters < 800, Nruns=35
For 800 < Niters < 900, Nruns=51

For 900 < Niters < 1000, Nruns=37
For 1000 < Niters < 1100, Nruns=34
For 1100 < Niters < 1200, Nruns=33
For 1200 < Niters < 1300, Nruns=35
For 1300 < Niters < 1400, Nruns=33
For 1400 < Niters < 1500, Nruns=22
For 1500 < Niters < 1600, Nruns=21
For 1600 < Niters < 1700, Nruns=21
For 1700 < Niters < 1800, Nruns=17
For 1800 < Niters < 1900, Nruns=13
For 1900 < Niters < 2000, Nruns=16
For 2000 < Niters < 2100, Nruns=9

For 2100 < Niters < 2200, Nruns=15
For 2200 < Niters < 2300, Nruns=7

For 2300 < Niters < 2400, Nruns=14
For 2400 < Niters < 2500, Nruns=7
For 2500 < Niters < 2600, Nruns=7
For 2600 < Niters < 2700, Nruns=6
For 2700 < Niters < 2800, Nruns=5
For 2800 < Niters < 2900, Nruns=8
For 2900 < Niters < 3000, Nruns=9

For Niters > 3000, Nruns=70

Table 7. Statistic over 1000 runs in terms of the
iterations number with the two tabu flags off.

Niters_max=2911, over 1000 Runs
For Niters < 100, Nruns=53

For 100 < Niters < 200, Nruns=89
For 200 < Niters < 300, Nruns=102
For 300 < Niters < 400, Nruns=101
For 400 < Niters < 500, Nruns=107
For 500 < Niters < 600, Nruns=96
For 600 < Niters < 700, Nruns=81
For 700 < Niters < 800, Nruns=86
For 800 < Niters < 900, Nruns=53

For 900 < Niters < 1000, Nruns=63
For 1000 < Niters < 1100, Nruns=38
For 1100 < Niters < 1200, Nruns=34
For 1200 < Niters < 1300, Nruns=23
For 1300 < Niters < 1400, Nruns=16
For 1400 < Niters < 1500, Nruns=13
For 1500 < Niters < 1600, Nruns=9
For 1600 < Niters < 1700, Nruns=7
For 1700 < Niters < 1800, Nruns=7
For 1800 < Niters < 1900, Nruns=4
For 1900 < Niters < 2000, Nruns=3
For 2000 < Niters < 2100, Nruns=3
For 2100 < Niters < 2200, Nruns=3
For 2200 < Niters < 2300, Nruns=0
For 2300 < Niters < 2400, Nruns=1
For 2400 < Niters < 2500, Nruns=2
For 2500 < Niters < 2600, Nruns=0
For 2600 < Niters < 2700, Nruns=2
For 2700 < Niters < 2800, Nruns=1
For 2800 < Niters < 2900, Nruns=2
For 2900 < Niters < 3000, Nruns=1

For Niters > 3000, Nruns=0

Table 8. Statistic over 1000 runs with only the first
tabu flag on.

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 609

Niters_max=2987, over 1000 Runs
For Niters < 100, Nruns=53

For 100 < Niters < 200, Nruns=93
For 200 < Niters < 300, Nruns=106
For 300 < Niters < 400, Nruns=96
For 400 < Niters < 500, Nruns=98
For 500 < Niters < 600, Nruns=77
For 600 < Niters < 700, Nruns=74
For 700 < Niters < 800, Nruns=82
For 800 < Niters < 900, Nruns=68

For 900 < Niters < 1000, Nruns=55
For 1000 < Niters < 1100, Nruns=45
For 1100 < Niters < 1200, Nruns=26
For 1200 < Niters < 1300, Nruns=29
For 1300 < Niters < 1400, Nruns=19
For 1400 < Niters < 1500, Nruns=21
For 1500 < Niters < 1600, Nruns=18
For 1600 < Niters < 1700, Nruns=7
For 1700 < Niters < 1800, Nruns=7
For 1800 < Niters < 1900, Nruns=3
For 1900 < Niters < 2000, Nruns=6
For 2000 < Niters < 2100, Nruns=2
For 2100 < Niters < 2200, Nruns=7
For 2200 < Niters < 2300, Nruns=0
For 2300 < Niters < 2400, Nruns=1
For 2400 < Niters < 2500, Nruns=3
For 2500 < Niters < 2600, Nruns=0
For 2600 < Niters < 2700, Nruns=1
For 2700 < Niters < 2800, Nruns=2
For 2800 < Niters < 2900, Nruns=0
For 2900 < Niters < 3000, Nruns=1

For Niters > 3000, Nruns=0

Table 9. Statistic over 1000 runs with only the second
tabu flag on.

Niters_max=3210, over 1000 Runs
For Niters < 100, Nruns=35

For 100 < Niters < 200, Nruns=109
For 200 < Niters < 300, Nruns=89

For 300 < Niters < 400, Nruns=102
For 400 < Niters < 500, Nruns=108
For 500 < Niters < 600, Nruns=88
For 600 < Niters < 700, Nruns=75
For 700 < Niters < 800, Nruns=78
For 800 < Niters < 900, Nruns=50

For 900 < Niters < 1000, Nruns=49
For 1000 < Niters < 1100, Nruns=39
For 1100 < Niters < 1200, Nruns=39
For 1200 < Niters < 1300, Nruns=35
For 1300 < Niters < 1400, Nruns=28
For 1400 < Niters < 1500, Nruns=23
For 1500 < Niters < 1600, Nruns=16
For 1600 < Niters < 1700, Nruns=9

For 1700 < Niters < 1800, Nruns=10
For 1800 < Niters < 1900, Nruns=5
For 1900 < Niters < 2000, Nruns=5
For 2000 < Niters < 2100, Nruns=4
For 2100 < Niters < 2200, Nruns=1
For 2200 < Niters < 2300, Nruns=0
For 2300 < Niters < 2400, Nruns=0
For 2400 < Niters < 2500, Nruns=0
For 2500 < Niters < 2600, Nruns=2
For 2600 < Niters < 2700, Nruns=0
For 2700 < Niters < 2800, Nruns=0
For 2800 < Niters < 2900, Nruns=0
For 2900 < Niters < 3000, Nruns=0

For Niters > 3000, Nruns=1

Table 10. Statistic over 1000 runs with the two tabu
flags on.

5 Layout with Repetitions of Operations

In this section we will consider a simpler situation to
reduce the combinatorial explosion, since with repetition
of operations there will exist much more possible layouts.
We will consider only four operations and two products,
p1 and p2, defined by op2->op4->op1->op3 and
op4->op1->op3->op2, respectively, and the production
plan defined by 10 unities of p1 and 20 unities of p2, and
we will consider that the operation execution times are all

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 610

much less than the traveling time between two machines,
so we will consider them all equal zero.
First we will find all the optimal solutions for the same
3x3 layout as we considered in the previous section by
exhaustive search considering only p1. In table 11 we
present the 8 optimal solutions found by exhaustive
search generating all possible layout and for each one all
the possible trajectories that implement p1.

Average Distance for Layout n.53416:23
New Optimal Layout 53416:2 1 3 2 4 2 2 2 2

Average Distance for Layout n.62355:23
New Optimal Layout 62355:2 2 2 2 4 2 2 1 3

Average Distance for Layout n.62358:23
New Optimal Layout 62358:2 2 2 2 4 2 3 1 2

Average Distance for Layout n.89147:23
New Optimal Layout 89147:2 4 3 3 1 3 3 3 3

Average Distance for Layout n.97334:23
New Optimal Layout 97334:3 1 2 2 4 2 2 2 2

Average Distance for Layout n.124123:23
New Optimal Layout 124123:3 3 3 3 1 3 2 4 3

Average Distance for Layout n.124126:23
New Optimal Layout 124126:3 3 3 3 1 3 3 4 2

Average Distance for Layout n.133065:23
New Optimal Layout 133065:3 4 2 3 1 3 3 3 3

Table 11- All 8 optimal layouts for one product
defined by op2->op4->op1->op3 obtained by

exhaustive search. Each number represents the
operation executed by the associated machine in a

matrix 3x3.

Previously we have tried to solve the addition-
multiplication magic square problem with MIP
considering a matrix nxn with distinct integers between
1..n2. When we tried to run the model we always got the
answer ‘Model Integer Infeasible’. As a matter of fact the
addition-multiplication magic square only has solution
relaxing the constraint of the limit of the elements being
n2 [3-6]. Nevertheless the tricky solution we found to
implement the product of the elements of lines and
columns and main diagonals can be adapted to the
solution of the generation of trajectories for each product
and to the implementation of the division of the total
distance over all trajectories by the number of trajectories.

---- 307 VARIABLE t_producao.L = 23.000

---- 307 VARIABLE est_q_ex.L
 e2 e3 e4 e7 e8 e9
op1 1.000
op2 1.000
op3 1.000 1.000 1.000
op4 1.000
 + e12 e13 e14
op3 1.000 1.000 1.000
---- 307 VARIABLE t_exec_produto.L
p1 23.000
---- 307 PARAMETER Produto
INDEX 1 = p1 INDEX 2 = op2
 op3
op4.op1 1.000
---- 307 VARIABLE n_trajs.L number of trajectories
of product k
p1 6.000

---- 307 VARIABLE traj.L

INDEX 1 = p1 INDEX 2 = e4

 e2 e7 e9 e12 e13 e14

e3 .e8 1 1 1 1 1 1

Table 12- Optimal layout obtained with MIP after
about 15hours with a PC @ 1GHz. The solution

corresponds to the eight layout obtained by exhaustive
search.

>> generate_all_layouts_traj(4,9,[4 2 4 1 3;4 4 1 3 2],[10
20])
Average Distance for Layout n.1:1345
New Optimal Layout 1:1 1 1 1 1 1 2 3 4
Average Distance for Layout n.3:1295
New Optimal Layout 3:1 1 1 1 1 1 3 2 4
Average Distance for Layout n.26:1145
New Optimal Layout 26:1 1 1 1 1 3 1 4 2
Average Distance for Layout n.44:1065
New Optimal Layout 44:1 1 1 1 1 4 1 3 2
Average Distance for Layout n.53:1065
New Optimal Layout 53:1 1 1 1 1 4 3 2 1
Average Distance for Layout n.171:1060
New Optimal Layout 171:1 1 1 1 3 1 1 2 4
Average Distance for Layout n.183:1060
New Optimal Layout 183:1 1 1 1 3 1 4 2 1
Average Distance for Layout n.189:1030
New Optimal Layout 189:1 1 1 1 3 2 1 1 4
Average Distance for Layout n.192:1030
New Optimal Layout 192:1 1 1 1 3 2 1 4 1
Average Distance for Layout n.245:990
New Optimal Layout 245:1 1 1 1 3 4 1 2 1

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 611

Average Distance for Layout n.722:930
New Optimal Layout 722:1 1 1 2 3 4 1 1 1
Average Distance for Layout n.1182:930
New Optimal Layout 1182:1 1 1 3 2 4 1 1 1
Average Distance for Layout n.1853:930
New Optimal Layout 1853:1 1 1 4 3 2 1 1 1
Average Distance for Layout n.8510:894
New Optimal Layout 8510:1 1 4 2 3 2 2 2 2
Average Distance for Layout n.35488:884
New Optimal Layout 35488:1 4 1 2 3 2 2 2 2
Average Distance for Layout n.38401:878
New Optimal Layout 38401:1 4 2 2 3 2 2 2 2
Average Distance for Layout n.38832:810
New Optimal Layout 38832:1 4 2 3 1 2 2 2 2
Average Distance for Layout n.39088:770
New Optimal Layout 39088:1 4 2 3 2 2 2 2 2
Average Distance for Layout n.56608:745
New Optimal Layout 56608:2 1 4 2 3 2 2 2 2
Average Distance for Layout n.62553:718
New Optimal Layout 62553:2 2 2 3 1 4 2 2 2

Average Distance for Layout n.63086:690
New Optimal Layout 63086:2 2 2 4 1 3 2 2 2

Table 13. The single optimal solution obtained by
exhaustive search for two products, the first defined as

the previous one and the second defined by
op4->op1->op3->op2 and production plan 10 of p1

and 20 of p2.

 d224 d304

---- 342 VARIABLE t_producao.L = 752.000
---- 342 VARIABLE est_q_ex.L
 e2 e3 e4 e7 e8 e9
op1 1.000
op2 1.000 1.000 1.000
op3 1.000
op4 1.000
 + e12 e13 e14
op2 1.000 1.000
op4 1.000
---- 342 VARIABLE t_exec_produto.L
p1 30.400, p2 22.400
---- 342 PARAMETER Produto
INDEX 1 = p1 INDEX 2 = op2
 op3
op4.op1 1.000
INDEX 1 = p2 INDEX 2 = op4
 op2
op1.op3 1.000
---- 342 VARIABLE n_trajs.L number of
trajectories of product k
p1 10.000, p2 10.000
---- 342 VARIABLE traj.L
INDEX 1 = p1 INDEX 2 = e2
 e8
e4 .e9 1.000

e14.e9 1.000
INDEX 1 = p1 INDEX 2 = e3
 e8
e4 .e9 1.000
e14.e9 1.000
INDEX 1 = p1 INDEX 2 = e7
 e8
e4 .e9 1.000
e14.e9 1.000
INDEX 1 = p1 INDEX 2 = e12
 e8
e4 .e9 1.000
e14.e9 1.000
INDEX 1 = p1 INDEX 2 = e13
 e8
e4 .e9 1.000
e14.e9 1.000
INDEX 1 = p2 INDEX 2 = e4
 e2 e3 e7 e12 e13
e9 .e8 1.000 1.000 1.000 1.000
1.000
INDEX 1 = p2 INDEX 2 = e14
 e2 e3 e7 e12 e13
e9 .e8 1.000 1.000 1.000 1.000
1.000
---- 342 VARIABLE d.L

p1 1.000
p2 1.000
---- 342 VARIABLE n.L
 n10
p1 1.000
p2 1.000
---- 342 VARIABLE nd.L
 d224 d304
p1.n10 1.000
p2.n10 1

Table 14. The sub-optimal layout obtained with MIP

after about 5 hours of computation in a Pentium IV @
3.6GHz and 2G RAM and just before had exhausted

the memory. Note that the optimal solution is 690s and
this solution corresponds to 752s of production time.

**
Niters_max=1790, over 1000 Runs
**
For Niters < 100, Nruns=0
For 100 < Niters < 200, Nruns=103
For 200 < Niters < 300, Nruns=178
For 300 < Niters < 400, Nruns=168
For 400 < Niters < 500, Nruns=160
For 500 < Niters < 600, Nruns=138
For 600 < Niters < 700, Nruns=99

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 612

For 700 < Niters < 800, Nruns=55
For 800 < Niters < 900, Nruns=39
For 900 < Niters < 1000, Nruns=26
For 10000 > Niters > 1000, Nruns=34

Table 15. Statistics over 1000 runs for the first Tabu
flag On. There were no failures and the number of

iterations was always less than 1791.

**
Niters_max=1451, over 1000 Runs
**
For Niters < 100, Nruns=0
For 100 < Niters < 200, Nruns=112
For 200 < Niters < 300, Nruns=171
For 300 < Niters < 400, Nruns=178
For 400 < Niters < 500, Nruns=173
For 500 < Niters < 600, Nruns=127
For 600 < Niters < 700, Nruns=87
For 700 < Niters < 800, Nruns=60
For 800 < Niters < 900, Nruns=33
For 900 < Niters < 1000, Nruns=28
For 10000 > Niters > 1000, Nruns=31

Table 16. Statistics over 1000 runs for the two Tabu
flags On. There were no failures and the number of

iterations was always less than 1452. Note that there is
a slight improvement over the situation of only the

first Tabu flag On.

6 Conclusions and Future Work
Although very promising, we need a good reference to
compare our algorithm, and we are implementing the
OmeGA algorithm [2] and it is also planned the
application of various commercial programs to design the
layout of FMS also to the same AGVs network with 9
workstations and the same production plan.

References:
[1] J. Barahona da Fonseca, “The Magic Square as a

Benchmark: Comparing Manual Solution to MIP
Solution and to AI Algorithm and to Improved
Evolutionary Algorithm”, in Proceedings of WSEAS
Evolutionary Computation Conference, Lisboa, 2005,
pp. 486-492.

[2] D. Knjazew, OmeGA: A Competent Genetic
Algorithm for Solving Permutation and Scheduling
Problems, Kluwer Academic Publishers, 2002.

[3] N. N. Horner, “Addition-Multiplication Magic
Squares”, Scripta Math., 18, 1952, pp. 300-303.

[4] N. N. Horner, Addition-Multiplication Magic Squares
of Order 8, Scripta Math., 21, 23-27, 1955.

[5] L. Peiji, S. Rongguo, K. Tongshin and Z. Lie, “A

construction of addition-multiplication magic
squares using orthogonal diagonal Latin squares”,
J.C.M.C.C, 11, 173-181, 1992.

[6] Z. Jiacheng, S. Rongguo and C. Murong, “A
construction of addition-multiplication magic square
of order 18”, Journal of Statistical Planning and
Inference 51, 331-337, 1996.

[7] T. Ray, R. Sarker and J. Barahona da Fonseca, “An
Evolutionary Algorithm for Machine Layout Problems
in Flexible Manufacturing Environments”,
unpublished. draft paper.

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 613

