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Abstract: - In a previous work we presented an algorithm inspired in the Strong Artificial Intelligence and in the 
minimax optimization that imitates the human being in the solution of the magic square and we showed that in 
most cases its performance was better than the human’s performance and even better than the performance of the 
best genetic algorithms to solve the magic square, in terms of number of changes. 
    In this paper we adapt and transform this algorithm to solve the optimization of an AGVs network problem, 
using as a first test case 9 workstations in fixed positions and 9 operations to be executed, and the optimization 
problem is translated in the search of which of the 9! possible manners to distribute 9 operations by the 9 
workstations that minimizes the total production time for a given plan of production. 
       As a final validation test, using random search, in 1000 runs it never reached the optimal solution at the end 
of 100000 iterations. 
    Finally we considered the more general case where the number of workstations is greater than the number of 
operations, and so there are some workstations that make the same operation, and we will have a layout with 
repetitions and multiple trajectories that implement the same product. This turns the problem more complex 
since when a product has operations that are executed by various workstations we must search all the possible 
combinations and find the average distance over all possible trajectories associated to a product. Furthermore the 
generation of all ‘permutations with repetitions’ is more complex and in the literature there are no published 
algorithm to generate this type of combinatorial entities. The Mixed Integer Programming approach proves to be 
impractical even for a simple test case of two products defined as sequences of four operations since the 
implementation of the division of the total distance over all trajectories that implement a product by their number 
turns the MIP model very big and combinatorial explosive. Again our algorithm adapted to layouts with 
repetitions presented very good results for this simple test case of 9 machines, 4 operations and 2 products. 
 
Key-Words: - AI Minimax Algorithm to Solve the Magic Square, Optimization of AGVs Networks, Improved 
Hybrid Algorithm to Optimize AGVs Networks, Evolutionary Algorithm to Optimize AGVs Networks. 
 
1 Introduction 
The layout optimization is a difficult and complex 
problem due to the combinatorial explosive number of 
possible solutions and due to the dependence and 
interaction of the layout optimal solution with the 
optimal solution of production planning and 
scheduling.  
In this first approach we will only study the 
optimization of an AGVs network with 9 workstations 
and 9 operations and then for 4 operations, for a given 
production plan of a set of products defined as linear 
sequences of subsets of the 9 operations and then of the 
4 operations. 
A possible solution will be a permutation of the 
nine operations. Since 9! it is not a too big number 
in terms of iterations of a computer program, as a 

preliminary exercise we generated all the 9! 
permutations and we got four optimal solutions. 
We began to solve the problem with mixed integer 
programming (MIP) with the need of a lot of 
artificious tricks to linearize the model, but the 
final result was a deception: even for 9 
workstations our optimization software package 
presented a runtime of the order of 2 days in a 1 
GHz PC. 
The algorithm that we present is an intermediary 
pass towards a more efficient evolutionary 
algorithm to optimize AGVs networks and then to 
optimize FMS layouts with AGVs networks. It is 
the result of a process of adaptation and 
transformation of our AI minimax algorithm to 
solve the magic square which presented a better 
performance than the best published evolutionary 
algorithms to solve the magic square [1]. 
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2 Generation of All Optimal Solutions 
Let’s first of all to define exactly our AGVs 
network with 9 workstations, the production plan, 
the products and the operations. The AGVs 
network is a 3x5 matrix, where the first and last 
columns correspond to automatic warehouse 
accesses, being the lines equally separated as well 
as the columns. The production plan is simply the 
definition of the number of units to be produced of 
each product. In table 1 we show the production 
plan used in our model. Each product is defined by 
a linear sequence of a subset of the 9 operations. In 
table 2 we show the sequences of operations that 
define each product. In table 3 we show the 
duration of each operation. Note that changing the 
execution time of the operations will not change 
the optimal solution since it is independent of 
machine positions. Finally in table 4 we show the 
four optimal solutions that we got through the 
exhaustive generation of all the 9! permutations of 
9 operations. 
 
 

Parameters 
Prod_Plano(k)  production plan 

product_i->n_unities_i 
/p1 5 
p2 7 
p3 8 
p4 6 
p5 3 
p6 4/ 

Table 1. Production plan used in this 
work. 

 
 

Table Product_ops(k,opi) definition of the seq of ops of 
each product 

 
     Nop op1 op2 op3 op4 op5 op6 op7 op8 op9 

p1  7     5     6    2      0    1      3    0     7     4 
p2  4     4     3    0      0    0      2    0     0     1 
p3  8     1     7    5      8    3      6    4     0     2 
p4  9     6     4    5      3    2      7    1     9     8 
p5  6     5     6    2      1    0      0    3     0      4 

 p6  8     0     5    2      6    8      7    3     4      1; 
 

Table 2. Definition of each product. 
 
 

t_exec_op(opi) tempo de execucao das 
operacoes em segs 

  /Nop 0 
   op1 5 
   op2 7 

    op3 10 
    op4 15 
    op5 13 
    op6 12 
    op7 11 
    op8 10 

      op9  9/; 
 

Table 3. Definition of the duration of 
each operation. 

 
 

Tprodution=2058 s 
 

Permutation=1373 
Distribution of Operations by the Workstations: 

0     2     3     5     0     0    10     7     4     0     0     9     6     8 
Execution Time of each Product: 
180    69   186   268   151   237 

 
Permutation=39673 

Distribution of Operations by the Workstations: 
0     2    10     9     0     0     3     7     4     0     0     5     6     8 

Execution Time of each Product: 
180    75   186   236   177   255 

 
Permutation=39673 

Distribution of Operations by the Workstations: 
0     2    10     9     0     0     3     7     4     0     0     5     6     8 

Execution Time of each Product: 
180    75   186   236   177   255 

 
Permutation=266016 

Distribution of Operations by the Workstations: 
0     8     6     9     0     0     4     7    10     0     0     5     3     2 

Execution Time of each Product: 
180    69   186   268   151   237 

 
Table 4. All the 4 Optimal Solutions obtained through 

the generation of all the 9! permutations of  9 
operations. 

 
 

3 Optimal Solution Obtained with MIP 
The great difficulty that we had to solve during the 
solution of the optimisation of the AGVs network with 
9 workstations with MIP was that we cannot make 
nonlinear operations over the variables of the model.  
    We solved the problem of permutation generation 
with a binary variable with two indexes, the 
workstation and the operation executed by it, and in this 
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way we defined the logic of permutation generation 
with only arithmetic operations and iterative sums.  
    The problem of the need of a logical AND operation 
between two of these binary variables was solved with 
a new binary variable with 4 indexes, each pair of 
indexes signifying that that the operation i was 
attributed to the workstation j, and we have to create a 
set of constraints to guarantee the coherence between 
this binary variable and the previous binary variable 
that defined the permutation of operations or, by other 
words, the disposition of machines in the 3x3 matrix.  
    In table 5 we show the optimal solution obtained 
with this MIP model after two days of computation in a 
1 GHz PC.  
 
----    292 VARIABLE t_production.L          =     2058.0 
PARAMETER n_agvs               =        1.745 
----    292 VARIABLE est_q_ex.L 
              e2          e3          e4          e5          e6          e7 
op1       1.000 
op2                   1.000 
op3                                                                         1.000 
op4                               1.000 
op6                                                           1.000 
op9                                            1.000 
+         e8         e9         e10 
op5                1.000 
op7                              1.000 
op8    1.000 
----    292 VARIABLE t_exec_product.L 
p1 180.000,    p2  69.000,    p3 186.000,    p4 268.000,    
p5 151.000, vp6 237.0 
 

Table 5. Optimal solution obtained with MIP that 
corresponds to the first solution obtained with 

exhaustive search. 
  
 
4 Improved Hybrid Algorithm for the 
Optimization of AGVs Networks 
We will make only a qualitative description of this 
algorithm.  
    Having as departure point a given permutation of 
operations, it search a new one changing randomly two 
operations and that new permutation is accepted if the 
production time associated to it is significantly less than 
the previous; if the first tabu flag is on then the new 
permutation is saved in the first tabu list. If at the end of 
a given limit number of change trials it has not found a 
better permutation, then if the second tabu flag is on the 
last permutation is saved in the second tabu list and 
after this is accepted the change that maximizes the 
production time increase over a set of operations pairs 
randomly generated.  

    When it is generated a permutation that already exists 
in the first tabu list, that permutation is rejected and it 
reaches a permutation that exists in the second tabu list it 
returns to a previous solution that exists in the first tabu 
list.  
    Although simple this algorithm presented a 
performance in terms of the iterations number always 
much less than 9! or even 9!/1000.  
    Next we show some results of computational 
experiences with this algorithm. In table 6 we present na 
example of a trace of a run with the two tabu flags off, 
departing from a sequential filling. As a curiosity, 
although it passes two times by the same solution that 
corresponds to a production time of 2121s, in the second 
time it travels a different path that leads to the optimal 
solution. In the next tables we show the statistics over 
1000 runs, where it can be seen a significant improvement 
of the performance as the tabu flags got activated. 
 

TprodutionMin= %2735 @ Niterations=1,  
0  2  3  4  0  0  5  6  7  0  0  8  9 10  0 

TprodutionMin= %2611 @ Niterations=4, 
 0  2  4  3  0  0 10  6  7  0  0  5  9  8  0 

TprodutionMin= %2442 @ Niterations=8,  
0  2  4  6  0  0  3 10  7  0  0  5  9  8  0 

TprodutionMin= %2353 @ Niterations=9,  
0  2  4  9  0  0  3 10  7  0  0  5  6  8  0 

TprodutionMin= %2269 @ Niterations=17,  
0  2  4  9  0  0  3  7 10  0  0  5  8  6  0 

TprodutionMin= %2259 @ Niterations=18,  
0  2  3  9  0  0  4  7 10  0  0  5  8  6  0 

TprodutionMin= %2241 @ Niterations=37,  
0  2  7 10  0  0  4  3  5  0  0  9  8  6  0 

TprodutionMin= %2223 @ Niterations=93,  
0  5  6  8  0  0  3  4  2  0  0  9  7 10  0 

TprodutionMin= %2219 @ Niterations=124,  
0  5  6  8  0  0  3  4  7  0  0  9 10  2  0 

TprodutionMin= %2156 @ Niterations=125,  
0  5  6  8  0  0  3  4  7  0  0  9  2 10  0 

TprodutionMin= %2139 @ Niterations=127,  
0  5  8  6  0  0  3  4  7  0  0  2  9 10  0 

TprodutionMin= %2121 @ Niterations=256,  
0  5  6  8  0  0  3  7  4  0  0  9  2 10  0 

TprodutionMin= %2086 @ Niterations=271,  
0  5  6  8  0  0  3  7  4  0  0  9 10  2  0 

TprodutionMin= %2121 @ Niterations=372,  
0  5  6  8  0  0  3  7  4  0  0  9  2 10  0 

TprodutionMin= %2097 @ Niterations=442,  
0  5  8  6  0  0  3  4  7  0  0  9  2 10  0 

TprodutionMin= %2058 @ Niterations=661, 
0  5  6  8  0  0  3  7  4  0  0  2 10  9  0 

 
Table 6. Exemple of a run with initial sequential filling  

and the two tabu flags off. 
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Niters_max=6177, over 1000 Runs 
                 For Niters < 100, Nruns=37 

For 100 < Niters < 200, Nruns=82 
For 200 < Niters < 300, Nruns=73 
For 300 < Niters < 400, Nruns=82 
For 400 < Niters < 500, Nruns=88 
For 500 < Niters < 600, Nruns=69 
For 600 < Niters < 700, Nruns=44 
For 700 < Niters < 800, Nruns=35 
For 800 < Niters < 900, Nruns=51 

For 900 < Niters < 1000, Nruns=37 
For 1000 < Niters < 1100, Nruns=34 
For 1100 < Niters < 1200, Nruns=33 
For 1200 < Niters < 1300, Nruns=35 
For 1300 < Niters < 1400, Nruns=33 
For 1400 < Niters < 1500, Nruns=22 
For 1500 < Niters < 1600, Nruns=21 
For 1600 < Niters < 1700, Nruns=21 
For 1700 < Niters < 1800, Nruns=17 
For 1800 < Niters < 1900, Nruns=13 
For 1900 < Niters < 2000, Nruns=16 
For 2000 < Niters < 2100, Nruns=9 

For 2100 < Niters < 2200, Nruns=15 
For 2200 < Niters < 2300, Nruns=7 

For 2300 < Niters < 2400, Nruns=14 
For 2400 < Niters < 2500, Nruns=7 
For 2500 < Niters < 2600, Nruns=7 
For 2600 < Niters < 2700, Nruns=6 
For 2700 < Niters < 2800, Nruns=5 
For 2800 < Niters < 2900, Nruns=8 
For 2900 < Niters < 3000, Nruns=9 

For Niters > 3000, Nruns=70 
 

Table 7. Statistic over 1000 runs in terms of the 
iterations number with the two tabu flags off. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Niters_max=2911, over 1000 Runs 
For Niters < 100, Nruns=53 

For 100 < Niters < 200, Nruns=89 
For 200 < Niters < 300, Nruns=102 
For 300 < Niters < 400, Nruns=101 
For 400 < Niters < 500, Nruns=107 
For 500 < Niters < 600, Nruns=96 
For 600 < Niters < 700, Nruns=81 
For 700 < Niters < 800, Nruns=86 
For 800 < Niters < 900, Nruns=53 

For 900 < Niters < 1000, Nruns=63 
For 1000 < Niters < 1100, Nruns=38 
For 1100 < Niters < 1200, Nruns=34 
For 1200 < Niters < 1300, Nruns=23 
For 1300 < Niters < 1400, Nruns=16 
For 1400 < Niters < 1500, Nruns=13 
For 1500 < Niters < 1600, Nruns=9 
For 1600 < Niters < 1700, Nruns=7 
For 1700 < Niters < 1800, Nruns=7 
For 1800 < Niters < 1900, Nruns=4 
For 1900 < Niters < 2000, Nruns=3 
For 2000 < Niters < 2100, Nruns=3 
For 2100 < Niters < 2200, Nruns=3 
For 2200 < Niters < 2300, Nruns=0 
For 2300 < Niters < 2400, Nruns=1 
For 2400 < Niters < 2500, Nruns=2 
For 2500 < Niters < 2600, Nruns=0 
For 2600 < Niters < 2700, Nruns=2 
For 2700 < Niters < 2800, Nruns=1 
For 2800 < Niters < 2900, Nruns=2 
For 2900 < Niters < 3000, Nruns=1 

For Niters > 3000, Nruns=0 
 

Table 8. Statistic over 1000 runs with only the first 
tabu flag on. 
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Niters_max=2987, over 1000 Runs 
For Niters < 100, Nruns=53 

For 100 < Niters < 200, Nruns=93 
For 200 < Niters < 300, Nruns=106 
For 300 < Niters < 400, Nruns=96 
For 400 < Niters < 500, Nruns=98 
For 500 < Niters < 600, Nruns=77 
For 600 < Niters < 700, Nruns=74 
For 700 < Niters < 800, Nruns=82 
For 800 < Niters < 900, Nruns=68 

For 900 < Niters < 1000, Nruns=55 
For 1000 < Niters < 1100, Nruns=45 
For 1100 < Niters < 1200, Nruns=26 
For 1200 < Niters < 1300, Nruns=29 
For 1300 < Niters < 1400, Nruns=19 
For 1400 < Niters < 1500, Nruns=21 
For 1500 < Niters < 1600, Nruns=18 
For 1600 < Niters < 1700, Nruns=7 
For 1700 < Niters < 1800, Nruns=7 
For 1800 < Niters < 1900, Nruns=3 
For 1900 < Niters < 2000, Nruns=6 
For 2000 < Niters < 2100, Nruns=2 
For 2100 < Niters < 2200, Nruns=7 
For 2200 < Niters < 2300, Nruns=0 
For 2300 < Niters < 2400, Nruns=1 
For 2400 < Niters < 2500, Nruns=3 
For 2500 < Niters < 2600, Nruns=0 
For 2600 < Niters < 2700, Nruns=1 
For 2700 < Niters < 2800, Nruns=2 
For 2800 < Niters < 2900, Nruns=0 
For 2900 < Niters < 3000, Nruns=1 

For Niters > 3000, Nruns=0 
 

Table 9. Statistic over 1000 runs with only the second 
tabu flag on. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Niters_max=3210, over 1000 Runs 
For Niters < 100, Nruns=35 

For 100 < Niters < 200, Nruns=109 
For 200 < Niters < 300, Nruns=89 

For 300 < Niters < 400, Nruns=102 
For 400 < Niters < 500, Nruns=108 
For 500 < Niters < 600, Nruns=88 
For 600 < Niters < 700, Nruns=75 
For 700 < Niters < 800, Nruns=78 
For 800 < Niters < 900, Nruns=50 

For 900 < Niters < 1000, Nruns=49 
For 1000 < Niters < 1100, Nruns=39 
For 1100 < Niters < 1200, Nruns=39 
For 1200 < Niters < 1300, Nruns=35 
For 1300 < Niters < 1400, Nruns=28 
For 1400 < Niters < 1500, Nruns=23 
For 1500 < Niters < 1600, Nruns=16 
For 1600 < Niters < 1700, Nruns=9 

For 1700 < Niters < 1800, Nruns=10 
For 1800 < Niters < 1900, Nruns=5 
For 1900 < Niters < 2000, Nruns=5 
For 2000 < Niters < 2100, Nruns=4 
For 2100 < Niters < 2200, Nruns=1 
For 2200 < Niters < 2300, Nruns=0 
For 2300 < Niters < 2400, Nruns=0 
For 2400 < Niters < 2500, Nruns=0 
For 2500 < Niters < 2600, Nruns=2 
For 2600 < Niters < 2700, Nruns=0 
For 2700 < Niters < 2800, Nruns=0 
For 2800 < Niters < 2900, Nruns=0 
For 2900 < Niters < 3000, Nruns=0 

For Niters > 3000, Nruns=1 
 

Table 10. Statistic over 1000 runs with the two tabu 
flags on. 
 

 
 
 
5 Layout with Repetitions of Operations 
 
In this section we will consider a simpler situation to 
reduce the combinatorial explosion, since with repetition 
of operations there will exist much more possible layouts. 
We will consider only four operations and two products, 
p1 and p2, defined by op2->op4->op1->op3 and       
op4->op1->op3->op2, respectively, and the production 
plan defined by 10 unities of p1 and 20 unities of p2, and 
we will consider that the operation execution times are all 
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much less than the traveling time between two machines, 
so we will consider them all equal zero. 
First we will find all the optimal solutions for the same  
3x3 layout as we considered in the previous section by 
exhaustive search considering only p1. In table 11 we 
present the 8 optimal solutions found by exhaustive 
search generating all possible layout and for each one all 
the possible trajectories that implement p1. 
 
Average Distance for Layout n.53416:23 
New Optimal Layout 53416:2  1  3  2  4  2  2  2  2 
 
Average Distance for Layout n.62355:23 
New Optimal Layout 62355:2  2  2  2  4  2  2  1  3 
 
Average Distance for Layout n.62358:23 
New Optimal Layout 62358:2  2  2  2  4  2  3  1  2 
 
Average Distance for Layout n.89147:23 
New Optimal Layout 89147:2  4  3  3  1  3  3  3  3 
 
Average Distance for Layout n.97334:23 
New Optimal Layout 97334:3  1  2  2  4  2  2  2  2 
 
Average Distance for Layout n.124123:23 
New Optimal Layout 124123:3  3  3  3  1  3  2  4  3 
 
Average Distance for Layout n.124126:23 
New Optimal Layout 124126:3  3  3  3  1  3  3  4  2 
 
Average Distance for Layout n.133065:23 
New Optimal Layout 133065:3  4  2  3  1  3  3  3  3 
 

Table 11- All 8 optimal layouts for one product 
defined by op2->op4->op1->op3 obtained by 

exhaustive search. Each number represents the 
operation executed by the associated machine in a 

matrix 3x3. 
 
 
Previously we have tried to solve the addition-
multiplication magic square problem with MIP 
considering a matrix nxn with distinct integers between 
1..n2. When we tried to run the model we always got the 
answer ‘Model Integer Infeasible’. As a matter of fact the 
addition-multiplication magic square only has solution 
relaxing the constraint of the limit of the elements being 
n2 [3-6]. Nevertheless the tricky solution we found to 
implement the product of the elements of lines and 
columns and main diagonals can be adapted to the 
solution of the generation of trajectories for each product 
and to the implementation of the division of the total 
distance over all trajectories by the number of trajectories. 
  
----    307 VARIABLE t_producao.L          =        23.000   

----    307 VARIABLE est_q_ex.L 
             e2          e3          e4          e7          e8          e9 
op1                                                       1.000 
op2                               1.000 
op3       1.000                               1.000                   1.000 
op4                   1.000 
  +         e12         e13         e14 
op3       1.000       1.000       1.000 
----    307 VARIABLE t_exec_produto.L 
p1 23.000 
----    307 PARAMETER Produto 
INDEX 1 = p1  INDEX 2 = op2 
                op3 
op4.op1       1.000 
----    307 VARIABLE n_trajs.L  number of trajectories 
of product k 
p1 6.000 
 
 
----    307 VARIABLE traj.L 
 
INDEX 1 = p1  INDEX 2 = e4 
 
                 e2          e7          e9         e12         e13         e14 
 
e3 .e8        1           1            1            1            1              1 
 

Table 12- Optimal layout obtained with MIP after 
about 15hours with a PC @ 1GHz. The solution 

corresponds to the eight layout obtained by exhaustive 
search. 

 
 
>> generate_all_layouts_traj(4,9,[4 2 4 1 3;4 4 1 3 2],[10 
20]) 
Average Distance for Layout n.1:1345 
New Optimal Layout 1:1  1  1  1  1  1  2  3  4 
Average Distance for Layout n.3:1295 
New Optimal Layout 3:1  1  1  1  1  1  3  2  4 
Average Distance for Layout n.26:1145 
New Optimal Layout 26:1  1  1  1  1  3  1  4  2 
Average Distance for Layout n.44:1065 
New Optimal Layout 44:1  1  1  1  1  4  1  3  2 
Average Distance for Layout n.53:1065 
New Optimal Layout 53:1  1  1  1  1  4  3  2  1 
Average Distance for Layout n.171:1060 
New Optimal Layout 171:1  1  1  1  3  1  1  2  4 
Average Distance for Layout n.183:1060 
New Optimal Layout 183:1  1  1  1  3  1  4  2  1 
Average Distance for Layout n.189:1030 
New Optimal Layout 189:1  1  1  1  3  2  1  1  4 
Average Distance for Layout n.192:1030 
New Optimal Layout 192:1  1  1  1  3  2  1  4  1 
Average Distance for Layout n.245:990 
New Optimal Layout 245:1  1  1  1  3  4  1  2  1 
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Average Distance for Layout n.722:930 
New Optimal Layout 722:1  1  1  2  3  4  1  1  1 
Average Distance for Layout n.1182:930 
New Optimal Layout 1182:1  1  1  3  2  4  1  1  1 
Average Distance for Layout n.1853:930 
New Optimal Layout 1853:1  1  1  4  3  2  1  1  1 
Average Distance for Layout n.8510:894 
New Optimal Layout 8510:1  1  4  2  3  2  2  2  2 
Average Distance for Layout n.35488:884 
New Optimal Layout 35488:1  4  1  2  3  2  2  2  2 
Average Distance for Layout n.38401:878 
New Optimal Layout 38401:1  4  2  2  3  2  2  2  2 
Average Distance for Layout n.38832:810 
New Optimal Layout 38832:1  4  2  3  1  2  2  2  2 
Average Distance for Layout n.39088:770 
New Optimal Layout 39088:1  4  2  3  2  2  2  2  2 
Average Distance for Layout n.56608:745 
New Optimal Layout 56608:2  1  4  2  3  2  2  2  2 
Average Distance for Layout n.62553:718 
New Optimal Layout 62553:2  2  2  3  1  4  2  2  2 
 
Average Distance for Layout n.63086:690 
New Optimal Layout 63086:2  2  2  4  1  3  2  2  2 
 

Table 13. The single optimal solution obtained by 
exhaustive search for two products, the first defined as 

the previous one and the second defined  by                
op4->op1->op3->op2 and production plan 10 of p1 

and 20 of p2. 

                d224        d304 

----    342 VARIABLE t_producao.L =   752.000 
----    342 VARIABLE est_q_ex.L 
             e2          e3          e4          e7          e8          e9 
op1                                                                   1.000 
op2       1.000       1.000                   1.000 
op3                                                       1.000 
op4                               1.000 
  +         e12         e13         e14 
op2       1.000       1.000 
op4                               1.000 
----    342 VARIABLE t_exec_produto.L 
p1 30.400,    p2 22.400 
----    342 PARAMETER Produto 
INDEX 1 = p1  INDEX 2 = op2 
                   op3 
op4.op1       1.000 
INDEX 1 = p2  INDEX 2 = op4 
                    op2 
op1.op3       1.000 
----    342 VARIABLE n_trajs.L  number of 
trajectories of product k 
p1 10.000,    p2 10.000 
----    342 VARIABLE traj.L 
INDEX 1 = p1  INDEX 2 = e2 
                 e8 
e4 .e9        1.000 

e14.e9        1.000 
INDEX 1 = p1  INDEX 2 = e3 
                 e8 
e4 .e9        1.000 
e14.e9        1.000 
INDEX 1 = p1  INDEX 2 = e7 
                 e8 
e4 .e9        1.000 
e14.e9       1.000 
INDEX 1 = p1  INDEX 2 = e12 
                 e8 
e4 .e9        1.000 
e14.e9       1.000 
INDEX 1 = p1  INDEX 2 = e13 
                 e8 
e4 .e9        1.000 
e14.e9        1.000 
INDEX 1 = p2  INDEX 2 = e4 
                 e2          e3          e7         e12         e13 
e9 .e8        1.000       1.000       1.000       1.000       
1.000 
INDEX 1 = p2  INDEX 2 = e14 
                 e2          e3          e7         e12         e13 
e9 .e8        1.000       1.000       1.000       1.000       
1.000 
----    342 VARIABLE d.L 

p1                   1.000 
p2       1.000 
----    342 VARIABLE n.L 
           n10 
p1       1.000 
p2       1.000 
----    342 VARIABLE nd.L 
              d224        d304 
p1.n10                   1.000 
p2.n10       1 
 
Table 14. The sub-optimal layout obtained with MIP 

after about 5 hours of computation in a Pentium IV @ 
3.6GHz and 2G RAM and just before had exhausted 

the memory. Note that the optimal solution is 690s and 
this solution corresponds to 752s of production time. 

 
 

****************************************** 
Niters_max=1790, over 1000 Runs 
****************************************** 
For Niters < 100, Nruns=0 
For 100 < Niters < 200, Nruns=103 
For 200 < Niters < 300, Nruns=178 
For 300 < Niters < 400, Nruns=168 
For 400 < Niters < 500, Nruns=160 
For 500 < Niters < 600, Nruns=138 
For 600 < Niters < 700, Nruns=99 
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For 700 < Niters < 800, Nruns=55 
For 800 < Niters < 900, Nruns=39 
For 900 < Niters < 1000, Nruns=26 
For 10000 > Niters > 1000, Nruns=34 
 
Table 15. Statistics over 1000 runs for the first Tabu 
flag On. There were no failures and the number of 

iterations was always less than 1791. 
 
****************************************** 
Niters_max=1451, over 1000 Runs 
****************************************** 
For Niters < 100, Nruns=0 
For 100 < Niters < 200, Nruns=112 
For 200 < Niters < 300, Nruns=171 
For 300 < Niters < 400, Nruns=178 
For 400 < Niters < 500, Nruns=173 
For 500 < Niters < 600, Nruns=127 
For 600 < Niters < 700, Nruns=87 
For 700 < Niters < 800, Nruns=60 
For 800 < Niters < 900, Nruns=33 
For 900 < Niters < 1000, Nruns=28 
For 10000 > Niters > 1000, Nruns=31 

Table 16. Statistics over 1000 runs for the two Tabu 
flags On. There were no failures and the number of 

iterations was always less than 1452. Note that there is 
a slight improvement over the situation of only the 

first Tabu flag On. 
 
 
6 Conclusions and Future Work 
Although very promising, we need a good reference to 
compare our algorithm, and we are implementing the 
OmeGA algorithm [2] and it is also planned the 
application of various commercial programs to design the 
layout of FMS also to the same AGVs  network with 9 
workstations and the same production plan.  
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