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Abstract: - The principal contribution of this paper is to develop a numerical tool to calculate the bifurcation 
lines of the fundamental ferroresonance (i.e., period-1). The developed process uses the same methods for 
construction of the bifurcation diagrams : Galerkin method and continuation by the pseudo-arclength method. 
The obtained  Galerkin algebraic equations are nonlinear. The applied iterative method of resolution is that of 
Newton-Raphson. The determination of Jacobien of this problem requires computation of the matrix 
determinant derivatives. Except for a few simple cases, it is difficult to express this derivation analytically. To 
solve this difficulty, a numerical relation is developed. 
Applied to a series ferroresonant circuit, describing an opening operation of a circuit-breaker supplying a 
voltage transformer, we could continue the bifurcation point in a plan with two parameters. With this type of 
curve, it is possible to estimate the associated safety margin, and thus to operate the electrical supply network 
with total safety. Several results obtained numerically, starting from a real case, are illustrated and discussed. In 
addition, to validate these results, a simplified analytical method is developed. 
 
 
Key-Words: - Transformer, Nonlinear, Ferroresonance, Bifurcation,  Galerkin method, Continuation method, 
Bifurcation line. 
 
1   Introduction 
Ferroresonance is a nonlinear resonance 
phenomenon that can affect power networks. The 
main problem with ferroresonance is that an 
overvoltage (as for fundamental ferroresonance), or 
an overcurrent (as for subharmonics) is generated. 
This is often dangerous for the electrical equipement 
[1]. These phenomena are not transient and are 
present during normal operation [2, 3, 4]. 
The engineer's practical problem is to know whether 
these dangerous phenomena may appear in his 
circuit. Simple simulation of the representative 
equations is not suited to the problem. Indeed, many 
parameters are poorly known in a real circuit : losses, 
saturation curves, switching-in instants, etc. To 
ensure that there is no risk, many variants must be 
simulated before any conclusion can be drawn -and 
transient states are long to simulate. In addition there 
is a risk of being at the limit of the dangerous zone 
without knowing it. This is why the engineer wants 
to have an overall view of his circuit's behavior. He 
wants to know whether he has a good safety margin 
or not. To have an overall view of the phenomenon, 
the latter must be placed within an appropriate 
mathematical framework. 
Modeling this problem results in a system of time 
differential, nonlinear equations (known as the 
dynamic system) which depends on various physical 
parameters. The mathematical framework adapted to 

the study of these dynamic systems is the bifurcation 
theory [2, 5, 7]. 
We are especially interested here in the study of the 
dynamic system of figure 1, which describes the 
practical problems of series ferroresonance. Most 
commonly, this type of situation is achieved when a 
magnetic voltage transformer (the nonlinear 
inductance) is connected to a busbar separated by the 
grading capacitance of an open circuit-breaker (the 
series capacitance) [4, 6, 8]. 
      R1  C 
  i=f(ϕ) 
 

 

 

Fig.1 : Series, single-phase, nonlinear  
ferroresonant circuit. 

The physical parameters of this circuit are:   
E : amplitude of the sinusoidal voltage source 
e(t) = E sin (100πt), 
C : equivalent capacitance of the circuit, 

corresponding to the capacitance of the open 
circuit breaker and to all the capacitances to 
earth of the voltage transformer and the 
connexion 

R1 : series losses of the circuit, and 
R2 : parallel losses of the circuit.   

   e(t)

      
R2
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The magnetic characteristic of nonlinear inductance 
i(φ), where i is the inductance current and φ, its flux, 
is modeled by a polynomial function with an odd 
power:   

1
n

ni( ) k kϕ ϕ ϕ= +   ; n , (kN∈ 1, kn)              (1) +∈R

Numerical data, corresponding to the parameters of 
the circuit illustrated in figure 1, are: 

R1 = 32 kΩ ; R2 = 714 MΩ ; C = 0.4 nF. 
          8 310 2.34 10i( ) 4 9ϕ ϕ−= + ⋅ ϕ− , corresponding to a 

real voltage transformer 400/20 kV.  
This paper aims at a global response to the 
ferroresonance phenomenon in permanent state. For 
a specific circuit, this answer is given by the 
continuation of the bifurcation points when two or 
several parameters vary simultaneously. The 
obtained curve is called bifurcation line. Then it will 
be possible to study the limits of the existence zones 
of singular phenomena, to take a safety margin, 
between the studied case and the close dangerous 
solutions, and to operate the network under totally 
safe conditions.  
In this study, our effort is mainly devoted to the 
development of a numerical tool, based on the 
Galerkin method and the pseudo-arclength 
continuation method. It is a tool for computation of 
bifurcation lines of the fundamental series 
ferroresonance case (i.e., period-1), in plans with two 
parameters.  Our objective is to determine the critical 
borders between the ferroresonant and normal zones 
in the two plans (losses, applied voltage) and 
(capacitance, applied voltage).   
 
2   Construction of the bifurcation lines 
The fundamental ferroresonance is a periodic 
phenomenon of the same frequency as the source.  
That is why a model equation is adopted by the 
Galerkin method [2].  To validate the results of this 
method, a simplified analytical approach is 
developed. 
 
2.1   Analytical method 
Fundamental ferroresonance is essentially 
characterized by discontinuous variations of the flux 
amplitude when the source voltage is constantly 
modified. These variations - commonly called 
“ferroresonnant jumps” - occur at different source 
voltages according to the variation direction (figure 
2). 
On this figure, one sees that the values E1 and E2  are 
limiting values or critical values of the supply 
voltage parameter. The two corresponding solutions 
PL1 and PL2 are called bifurcation points of the limit 
or turning point type. These points divide the 

diagram  into three branches :  a normal branch from 
the origin (0,0) to point PL1, an unstable branch from 
PL1 to PL2, and a ferroresonant branch beyond PL2 
[2, 4, 5]. 

Fig.2 : S-curve bifurcation diagram of flux amplitude 
versus applied voltage for the fundamental 

ferroresonant phenomenon. 
Computation of voltages E1 and E2 is easily 
performed if the harmonics of flux are neglected and 
only the fundamental component is considered.  
These voltages correspond to a null derivative of the 
source voltage in relation to the flux, i.e., 

 0dE
dϕ

=                     (2)  

We propose to express these jump voltages by 
considering the sinusoidal flux of the form : 

                  ( ) cos( )t tϕ φ ω θ= −    (3) 

The differential equation governing the study circuit 
(figure 1) as follows : 

          1 1 1
1 sin( )dR i i dt E t
C dt

ϕ ω+ + =∫   (4) 

After derivation of equation (4), with suppression of 
the current, the following equation (5) is obtained :   

( )

( )

2
11

1 12
2 2

1

11

1 cos( )

n
n

n
n

R d dR k nk
R R Cd t

k k E t
C

dt
ϕ ϕϕ

ϕ ϕ ω ω

−⎛ ⎞ ⎡ ⎤
+ + + +⎜ ⎟ ⎢ ⎥

⎝ ⎠ ⎣ ⎦

+ =

+
    (5) 

which gives the following equation (6), after 
replacement φ by its expression (3) and keeping only 
the fundamental terms (which suppresses time t) :  

 ( )
2

22 BE A φφ
ω

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

                               (6)  

where A and B are functions of 1nφ −  : 

0 2 4 6 8 10 12 14

x 10
5

0

1000

2000

3000

4000

5000

6000

E  source (V) 

Normal branch  

Unstable branch  

Ferroresonant branch  

PL* 2 (E2, Ф 2) 

* PL1 (E1,Ф1) 

E1 E2 Enom 

Ф
  t

ra
ns

fo
 (W

b)
 

Proceedings of the 6th WSEAS International Conference on Power Systems, Lisbon, Portugal, September 22-24, 2006         47



( )12
1 1

nR
A R k αφ −= + +

( )1 2 1
1

2

1 1n

C
R

B k
C R

αφ ω− ⎛ ⎞
= + − +⎜ ⎟

⎝ ⎠

 

and α  is a constant of value:   

1

2 1 ( 1) 2
1n n

n nk Cα −
−= . 

1 2 nn −+
Bifurcations occur when the relation (2) is verified, 
i.e. 

0dE
dφ

=                                            (7) 

which gives for equation (8): 
2 2 1n na b dφ φ 0− − =         (8) 

where a, b and d are constants ep nding 

+ +

d e on the 
circuit’s parameters and on the coefficients of the 
non-linear element : 

( )

2 2 2
1 2

1a n Rα ω⎛ ⎞= +

2
2 1 1

1 1 1
2 2

2 22 2
2 41 1 1

1 12
2 2

11 1

21 1 1
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R k
b n R R k

R C C R C

k R k R
d R k
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ωα ω

ω
ω ω 1

2

⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞
= + + − + +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + + + + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
Equation (8) is a quadratic equation in 1nφ − . Both 
solutions, if available, are the values 1φ and 2φ  of the 
flux at the turning points.  The orres onding 
voltages E

c p

ding an approximate 

1 and E2 are given by relation (6).  
To specify the critical borders between the two zones 
in which the network behavior is either 
ferroresonnant or normal, it is necessary to trace the 
bifurcation lines in spaces at two parameters. That 
enables us to specify the values domains of different 
parameters controlling the physical model, where the 
solution will have the desired behavior.  
We apply this method to the study of the circuit of 
the figure1; it has enabled us to draw certain 
bifurcation lines (figures 3). 
 

.2   Galerkin method 2
 

.2.1   Model and equations 2
This method consists in fin
periodic solution of the nonlinear differential 
equation (4) by minimizing the error associated with 
this solution . The idea is to seek this solution in the 
form of Fourier series [2]. Here the method is 
exposed only for the case of the first harmonic, but it 
can be generalized for an unspecified harmonic rate. 

 

 
Fig.3 : Bifurcation lines – Analytical method. 

 
For that, a network modeling is adpted, without the 
nonlinear element, based on the equivalent Thévenin 
model (figure 4). 
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Fig.4 : Equivalent study circuit. 
 
The complex equation of circuit (figure 4) for the 
fundamental one is as follows :   

1 1 1 1 0j Z I Eωφ + − =                       (9) 

where ω is the pulsation at 50 Hz of the excitation, 
1φ , E1, Z1 and I1 represent respectively the complex 

components at this pulsation of the flux in the 
nonlinear element, of the supply voltage, the 
equivalent impedance of Thevenin  and the current 
traversing the circuit . 
Flux φ(t) is supposed sinusoidal (3) and by adopting 
the following complex notations :   

1 1 1

1 1 1

1 1 1

1 1 1

c s

c s

c s

c s

j
I I jI
E E jE
Z R j X

φ φ φ

φ

= −
= −
= −
= +

    (10) 

equation (9) is converted into a nonlinear algebraic 
system of 2 equations, as follows :   

1 1 1 1 1 1 1

1 1 1 1 1 1 1

0
0

s c s c c

c c s s s

R I X I E
X I R I E

ωφ ξ
ωφ ξ

+ + − ≡ =

+ + + ≡ =
             (11) 

Since we know the nonlinear characteristic i(φ), it is 
possible to compute the harmonic components of the 
current in terms of flux components. The system of 
equations to be solved is thus as follows :   

( , ) 0Eξ φ =    (12) 

where φ is the unknown vector formed by the 
fundamental component of flux and E is the 
amplitude of the supply voltage.  
To solve this system (12), the Newton-Raphson 
method is used which requires the computation of 
the Jacobien J of the system, i.e.,   

1 1

1 1

1 1

1 1

c c

c s

s s

c c

J

ξ ξ
φ φ
ξ ξ
φ φ

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥=
⎢ ⎥∂ ∂
⎢ ⎥∂ ∂⎣ ⎦

        (13) 

of which the elements are expressed in a general way 
by : 

( , )I I
I

ξ φ ξ ξ
φ φ φ

∂ ∂ ∂
= + ⋅

∂ ∂ ∂
∂
∂

                       (14) 

2.2.2   Bifurcation lines – Galerkin method 
To determine a fundamental ferroresonnant state, 
system (12) has to be solved;  this can be written as 
follows : 

( , , ) 0E Pξ φ =    (15) 

where : 
φ , state variable : vector formed by the two Fourier 
components of the flux ; 
E, first parameter :  scalar representing the supply 
voltage ;  
P, second parameter : scalar representing for 
example the capacitance of the circuit or the losses, 
etc.  
Using the pseudo-arclength continuation method [9], 
curve φ =f(E) will be followed, where E is variable 
and P is constant.   
If we assume that the conditions of derivability are 
satisfied, by derivation of system (15), we get : 

0d dE
E

ξ ξφ
φ
∂ ∂

⋅ + ⋅ =
∂ ∂

                                (16) 

Like at the limit point (figure 2), there are 0dE = , 
whereas 0dφ ≠ , the Jacobien J is singular when its 
determinant is null, i.e.: 

1

det ( , , ) 0E Pξ φ
φ

⎡ ∂
=⎢∂⎣ ⎦

⎤
⎥                          (17) 

Thus, when this condition is met, the local solution is 
not unique; and this marks the emergence of a 
bifurcation. 
To determine all bifurcation  points for each value of 
P, it is possible to solve the new system (18) with 
three variables (φ , E) : 

1

( , , ) 0

det ( , , ) 0d

E P

E P

ξ φ

ξ φ ξ
φ

=

⎡ ⎤∂
≡ =⎢ ⎥∂⎣ ⎦

            (18) 

by the Newton-Rapson method which requires the 
computation of the new Jacobien J1 : 

1

1
1

1 1

c

s

d d d d d

c s

EJJ
E

J
E

E E

ξ
ξ

ξ

ξ ξ ξ ξ ξ
φ φ φ

∂⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥∂⎢ ⎥ ∂⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ∂∂ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= = ⎣ ⎦⎣ ⎦ ⎢ ⎥∂⎢ ⎥ ⎢ ⎥∂ ∂⎢ ⎥ ∂ ∂ ∂⎢ ⎥⎢ ⎥∂ ∂ ⎢ ⎥⎣ ⎦ ∂ ∂ ∂⎣ ⎦

         (19) 

All elements of the last column, representing 
derivatives in relation to unknown E, are simple to 
calculate. To express J1 in its entirety, the elements 
of the last line must be computed. 

    Eth

  i(ϕ)
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2.2.3   Computation of the last line of matrix J1
The elements of the last line of the matrix J1, 
representing the derivatives of the Jacobien J 
determinant in relation to the unknown parameters of 
the problem, are expressed numerically by the 
following theorem:  

 Theorem:   Let us suppose that the elements of 
matrix  ( ) ( )ijJ Jφ φ⎡= ⎣ ⎤⎦ (square of order m) are 
derivable functions of the unknown variable  φ , then 
the derivative in relation to φ of [ ]det ( )J φ , that is to 

say  [(det ( )d J
d

])φ
φ

, is the sum of m determinants 

obtained by replacing in all possible ways the 
elements of the one of the lines (columns) of  

[ ]det ( )J φ  by their derivatives in relation to φ . 

Based this theorem, the elements of the last line are 
expressed in a general way by:   

[ ]( ) '

1

det ( ) det ( )
m

i
i

d J
d

Jφ φ
φ =

⎡= ⎣∑ ⎤⎦                   (20) 

where ' ( )iJ φ  is the matrix obtained starting from J by 
replacing each element ( )ijJ φ of line i by its 

derivative ( )( )ij
d J

d
φ

φ
. 

By using the development of Laplace according to 
line i, the expression of 'det ( )iJ φ⎡ ⎤⎣ ⎦  is given by the 
scalar product of line i of  ' ( )iJ φ  by the vector of the 
corresponding cofactors:   

( ) ( )'

1
det ( ) ( ) ( )

m

i ij
j

dJ J cofactor J
d

φ φ
φ=

⎡ ⎤⎡ ⎤ = ⋅⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ij φ     (21) 

with ( ) ( )'( ) ( 1) ( )i j
ij ij icofactor J M Jφ φ+= − ⋅  

where ( ' ( )ij iM J )φ  represents the minor of the 
coefficient  ( )ijJ φ . 
That makes it possible to conclude, by using the 
relation (21), that the elements of the last line of the 
matrix J 2 are given by the following relation:   

[ ]( ) ( ) (
1 1

det ( ) ( ) ( )
m m

ij ij
i j

d dJ J cofactor J
d d

)φ φ φ
φ φ= =

= ⋅∑∑ (22) 

To draw a bifurcation line, we need simply the apply 
a continuation method to system (18). Given solution 
( 0φ , E0) with value P0 in the 2nd parameter, it is 
possible to seek the solution for P0+∆P by 
initializing with ( 0φ , E0). The parameter P  is used as 
a continuation parameter.   
 
 

2.2.4   Results obtained 
This method is applied to draw the branches of the 
bifurcation lines of the circuit, illustrated in figure 1,  
in the plan (E, R1). Figures 5 represent the obtained 
results. Classically these branches meet and they 
coincide perfectly with those obtained by the 
analytical method (figure 3). 

 

 
Fig.5 : Bifurcation Lines – Galerkin method. 

 
When the determinant of the Jacobien J1 becomes 
null (corresponding to the limiting value of the 
parameter R1), the Galerkin method does not 
converge.  Bifurcation point "C" corresponding to 
this value is called " Cusp ". 
It is possible to overcome the difficulties due to the 
non-inversibility of J1 and, consequently, wholly 
draw the bifurcation lines. We need simply apply  
Galerkin and pseudo-arclength methods [2] 
simultaneously. The problem can thus be solved. 
 
2.3   Pseudo-arclength method 
A continuation principle is still applied. However, 
instead of going from a point M to M+1 moving 
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length ∆P along the parameter axis, we move by 
length S on the tangent to point M.   
The principle of this method is to add an equation to 
system (18) so that the Jacobien of the new system 
becomes inversible. In this new system, 0φ  and E are 
no longer the only unknowns, since parameter P is 
also unknown. Additional parameter S is used as a 
continuation parameter. 
The principle used to determine the additional 
equation is similar to that used in [2].  We need 
simply express the tangent to the curve in ( 0φ , E0, 
P0) which is : 

0 0 0 0 0 00 0 0 ( , , ) ( , , )( , , )

0
E P E PE P

U V
E Pφ φφ

ξ ξ ξ
φ
∂ ∂ ∂

⋅ + ⋅ + ⋅ =
∂ ∂ ∂

W

0

   (23) 

where (U, V, W) is a tangent vector.  
The additional equation is given by :   

0 0 0( ) ( ) ( )U V E E W P P Sφ φ⋅ − + ⋅ − + ⋅ − − =        (24) 

The new system to be solved is composed of 
equations (18) and (24), i.e.,   

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1

0 0 0

0
0

det ( , , ) 0

( ) ( ) ( )

s c s c c

c c s s s

d

p

R I X I E
X I R I E

E P

U V E E W P P S 0

ωφ ξ
ωφ ξ

ξ φ ξ
φ

φ φ ξ

+ + − ≡ =
+ + + ≡ =

⎡ ⎤∂
≡ =⎢ ⎥∂⎣ ⎦

⋅ − + ⋅ − + ⋅ − − ≡ =

    (25) 

for which the Newton-Raphson method will be used, 
thus requiring computation of the Jacobien J2 of 
system (25), i.e.,   

1

1
1 1

2

1 1

c

s

d

d

p p p

p p p p

c s

P
PJ J

P
J

P
P

E P
E P

ξ
ξ

ξ
ξ

ξ
ξ ξ ξ

ξ ξ ξ ξφ
φ φ

∂⎡ ⎤⎡ ⎤⎢ ⎥∂ ⎢ ⎥ ∂⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥⎢ ⎥ ∂∂⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥= =⎣ ⎦ ⎢ ⎥⎢ ⎥ ∂∂ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎢ ⎥ ∂ ∂ ∂ ∂∂ ∂ ∂⎣ ⎦ ⎢
⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

⎥

(26) 

J1 is already determined. The last line of J2  
represents the components of the tangent vector, i.e. 
(U, V, W). Finally, computation of the elements of 
the last column of J2  does not involve any difficulty. 

Z
P Z P
ξ ξ∂ ∂ ∂
= ⋅

∂ ∂ ∂
                            (27) 

Matrix J2  is then fully determined.   
Applied to the study circuit of figure 1, the proposed 
method gives good results.  Indeed, the bifurcation 
lines obtained (figure 6) perfectly coincide with 
those of the analytical method. 

 

 

 
Fig.6 : Bifurcation lines – Pseudo-arclength method. 
 
2.4   Interpretation of results 
The results obtained by these various methods 
(analytical, Galerkin and pseudo-arclength 
continuation)  perfectly coincide with each other.     
With the pseudo-arclength method, we have a tool 
well suited to the study of ferroresonance in the 
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electrical networks, in particular, the plotting of 
bifurcation lines. These lines make it possible to 
obtain a more global view of the system's behavior. 
They correspond to state stability limits. They also 
provide the existence of various zones in the 
parameters' plan where diverse states can occur. In 
the case of fundamental ferroresonance, these lines 
actually show the zones corresponding to a normal 
state and a ferroresonnant one. We can observe 
(figure 6) that, beyond certain values of the applied 
voltage, the state shows fundamental ferroresonance 
and that, below certain values, the state is normal. 
There is also an intermediate zone where the state is 
either normal or fundamental ferroresonance. The 
occurrence of one or the other depends on the initial 
conditions.   
Taking into account the great sensitivity of the 
phenomenon of the circuit parameters, it is 
interesting to release a third parameter to see how 
bifurcation lines evolve in a plan, so as to anticipate 
ferroresonance risks with a wider safety margin. The 
result of this parametric study is shown by figures 7. 

 

 
Fig.7 : Evolution of the bifurcation lines 

in relation to circuit parameters. 

We notice that the bifurcation lines in plan (E, C) are 
isolates and have no intersection with banal 
solutions. 
Figure 7a shows that as the lower threshold values of 
the voltage for the occurrence of fundamental 
ferroresonance get smaller the circuit's series losses 
get weaker. We also observe that, for a given series 
resistance, the ferroresonance phenomenon 
disappears altogether when the circuit capacitance 
exceeds a certain value (C>66.3 nF for R1=64 kΩ 
and C>132.6 nF for R1=32 kΩ). 
Iron losses of the nonlinear element have little 
influence on the existence limits of  ferroresonance.  
Figure 7b shows that, for a given capacitance value, 
the lower voltage thresholds are driven up to values 
which become higher as R2  is smaller (i.e. for larger 
losses).   
 
3   Conclusion 
To study a ferroresonant circuit, simple temporal 
simulation is not enough to understand the general 
behavior of the circuit. The phenomena of jumps, the 
multiplicity of solutions for a given set of 
parameters, the sensitivity to initial conditions, etc. 
make it difficult to apply such a method or , at least, 
lead to excessive computation. 
The mathematical framework which must be applied 
to understand ferroresonance is the bifurcation 
theory. 
The answers to concrete problems faced by the 
system operator can be obtained with diagrams and, 
above all, with bifurcation lines. The numerical 
methods described (Galerkin's method and the 
pseudo-arclength continuation method) here permit 
efficient construction of these curves. For the 
determination of the Jacobien of this problem, a 
numerical relation is developed allowing the 
calculation of derived from a determinant of a 
matrix.   
Using these lines, it is possible to learn the values of 
parameters which guarantee the non-occurrence of 
dangerous phenomena. A safety margin is chosen in 
relation to these values to operate the network with 
total safety. 
The application of the methods presented in this 
paper covers fundamental ferroresonance with 
satisfactory results. The extension of this study to 
more complex cases of ferroresonance (subharmonic, 
harmonic ferroresonance) is currently being studied.   
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