
Automatic Diagnosis of Pathological Voices
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Abstract: Spasmodic dysphonia (SD) is a voice disorder characterized by voice breaks. Muscle tension dysphonia
(MTD) is a form of voice misuse characterized by excessive muscular effort. While the first pathology is not a
psychological condition and has a neurological origin, the last one does not include a neurological disorder and
is correctable with voice therapy. Patients with SD are often not identified for treatment. These two pathologies
are only correctly differentiated by experts. The importance of a correct diagnosis is directly related with the
application of the suitable treatment. Our goal is to provide voice pathologists with a new tool to confirm their
diagnosis. In the present work, we present a preliminary approach to this problem, building an automatic classifier
using acoustical measurements on registered sustained vowels /a/ and pattern recognition tools based on neural
networks. As long as we know, there are not previous published works in automatic classification of these two
pathologies. However, there are works on automatic classification between normal and pathological voices. Our
results overcome the best reported classification between pathological and normal voices, and have a good dis-
crimination between SD and MTD.

Key–Words: spasmodic dysphonia, muscle tension dysphonia, pattern recognition.

1 Introduction

Spasmodic dysphonia (SD) is a term applied to pa-
tients with specific voice problems. Symptoms of in-
terruptions in fluency may be misdiagnosed as spas-
modic dysphonia. Over the last decade, the term spas-
tic dysphonia has been replaced with the term spas-
modic because the phonatory characteristics are more
consistent with speech spasm than with spasticity or
rigidity. Onset occurs slowly over a period of months
or years. SD is divided into three types: adductor
spasmodic dysphonia (AdSD), abductor spasmodic
dysphonia (AbSD), and mixed dystonia. The AdSD is
a most common problem than AbSD. AdSD is char-
acterized by hyperadduction of the vocal folds, irreg-
ular interrupted, effortful, strangled, strained, stac-
cato voice. AbSD is characterized by contraction
of the posterior cricoarytenoids muscles and produce
breathy interruptions. SD, a neurological disorder of
muscle tonicity, is a true dystonia, which some times
coexists with tremor, usually obvious during sustain

vowels. Thus it needs to be differentiated of severe
muscular tension dysphonia (MTD), also called mus-
cle tension dysphonia, a psychogenic dysphonia wich
may be misdiagnosed.

SD needs to be diagnosed with basic history,
physical examination, voice pathologist assessment,
objective voice analysis, MRI of the brain, laryn-
geal EMG, and laboratory tests. Laryngeal assess-
ment needs to be done with videostrolaryngoscopy
with flexible and rigid endoscope. It helps in detecting
other neurological problems, that sometimes appear
mimicking SD.

SD speech is characterized by intermittent voice
offsets in the middle of the vowels and the essential
symptom is voice breaks.

MTD is a form of voice abuse characterized by
excessive muscular effort, and usually by pressed
phonation. A diagnosis of MTD suggests that such
patients do not have a neurological motor control dis-
order, but a functional voice production disorder due
to excessive laryngeal tension.
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SD is clearly not a psychological condition; how-
ever, as most of other voice disorders, stress can make
SD worse, and voice therapy can make it better. The
underlying condition may easily be confused with
MTD, which is correctable with voice therapy. It must
be emphasized that SD is actually organic (neurologi-
cal).

Traditional objective voice measures for patients
with SD may not always be helpful in the differential
diagnosis for the wide variation of findings across sub-
jects. Acoustical analysis may help to diagnose a SD.
Fundamental frequency from conversational sample
may be useful in identifying each patient’s compen-
satory strategy for managing his or her vocal spasms
with extreme muscle tension [1, 2].

Acoustical measures of vocal function are rou-
tinely used in the assessments of disordered voice.
They are very appealing due to their noninvasive na-
ture. The extraction of such measures from sus-
tained vowel samples is common because of its sim-
pler acoustic structure. In recent years, the use of
these measures, in combination with pattern recog-
nition techniques, has motivated the appearance of
several works concerning the automatic discrimina-
tion between pathological and normal voices. Re-
cent works deal with the classification between nor-
mal and pathological voices [3–7], however in them
the pathologies are grouped in the same set. The best
classification was obtained by Parma and Jamieson [5]
using nine acoustic measures and achieving an accu-
racy of 96.5 %. As previously stated, it is an inter-
esting challenge to develop an automatic tool in or-
der to help voice pathologists in the diagnosis of SD
and MTD. With this in mind, in the present work we
attempt to separate normal from pathological voices
and additionally to obtain a classification in SD or
MTD for the pathological cases. In this preliminary
approach, we use only one sample speech of each pa-
tient. Eight well–known acoustic parameters are ex-
tracted for each voice, conforming a pattern. These
patterns are then classified into three categories: Nor-
mal, SD, and MTD.

2 Materials and Methods
The analyzed voices were obtained from 89 speakers
divided into 36 dysphonics (15 patients with MTD
and 21 with SD, more specifically AdSD) and 53
normal speakers. These speech signals are registers
of the sustained vowel /a/. The subjects were in-
structed to sustain the vowel, /a/, for at least 3 s at
a comfortable pitch and loudness. The samples were
recorded at a rate of 22 kHz and with a resolution of
16 bits. Acoustic measures are then extracted from

the sustained vowels, including short–term perturba-
tions of fundamental frequency and intensity (termed
jitter and shimmer, respectively), and glottal noise
measures. A consensus does not exist on the util-
ity of these measures for discriminating between nor-
mal and pathological voices [7]. We build an eight–
dimensional vector associated with each patient, and
we use the nonlinear properties of NN for classifica-
tion [8, 13]. As will be seen, the inclusion of these
measures in combination with nonlinear techniques
allow us to attain accurate discriminations. Due to the
small number of available data, we have applied the
Leave–One–Out method in all the cases. This means
that the classification space is computed with every
case in the database except the one that is being clas-
sified. In this way, the classification results are more
realistic and close to the true classification rates [8,9].
We present here the parameters considered in order
to construct the vector associated to each patient. The
estimation of fundamental frequency (F0) is of special
importance, since the calculation of other parameters
is based on its good estimation. Due to its robustness,
the Waveform Matching (WM) algorithm is the one
of choice for pathological voices or in the presence
of moderate levels of background noise [10], thus we
adopted it for F0 extraction.

1. Degree of Voice Breaks or Unvoiceness [3].
This parameter is the total duration of the breaks
between the voiced parts of the signal, divided
by the total duration of the analyzed part of the
signal. Silences at the beginning and at the end
of the signal are not considered breaks.

2. Period Perturbation Quotient (Jitter) [11].

(a) Jitter Ratio (Local) or jitt. This is the sim-
plest form of F0 adjusted perturbation in-
dex. By definition:

jitt = 1000
1

n−1

∑n−1
i=1 |Pi − Pi+1|

1
n

∑n
i=1 Pi

, (1)

where Pi is the period of the ith cycle, in
ms, and n is the number of periods in the
sample.

(b) Relative Average Perturbation (RAP).

RAP =
1

n−2

∑n−1
i=2
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n
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(2)
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(c) Five–point Period Perturbation Quotient
(ppq5).

ppq5 =

1
n−4
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∣∣∣∣∣
∑2

j=−2
Pi+j
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n

∑n
i=1 Pi

.

(3)

3. Amplitude Perturbation Quotient (Shimmer)
[11].

(a) Shimmer (shimm).

shimm =
1

n−1

∑n−1
i=1 |Ai − Ai+1|

1
n

∑n
i=1 Ai

. (4)

where Ai is the amplitude of the ith cycle,
in ms, and n is the number of periods in the
sample.

(b) Three–point Amplitude Perturbation Quo-
tient (apq3).

apq3 =
1

n−2

∑n−1
i=2
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1
n
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.

(5)
(c) Eleven–point Amplitude Perturbation Quo-

tient (apq11).

apq11 =

1
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4. Harmonics–to–Noise Ratio (HNR).
This parameter quantifies the amount of glot-
tal noise in the vowel waveform. In contrast to
perturbation measures, it attempts to resolve the
vowel waveform into signal and noise compo-
nents, computing their energies ratio. In order
to obtain this measure, we adopted the algorithm
described in [12].

2.1 Neural Networks
Neural networks (NN) are broadly used in the field
of pattern recognition [8, 13]. In the present work
Multilayer Perceptron (MLP) has been applied. The
resilient backpropagation algorithm was chosen for
training, due to its excellent performance for pattern
recognition problems [14].

In order to reduce the number of input units in
the neural network, we performed a principal com-
ponent analysis (PCA). In our case, six components
contributed with 99.5% of the variance in the data set,

meaning that the size of the NN input vectors was re-
duced from eight to six.

We used hyperbolic tangent activation function in
the hidden layer and in the output layer. In order to
select the best number of neurons at the hidden layer,
its size has been varied from 8 to 34, running 100 ex-
periments in each case. The output layer had three
neurons, one for each class (SD, MTD and Normal).
The “winner” output was the neuron with the high-
est value, and the input vector was classified with the
class associated with that output.

3 Results
In this section we present the results obtained with
proposed approach. By means of a statistical test, we
quantify the results obtained for different number of
neurons at the hidden layer.

For the purpose of comparing the performance of
different network sizes we ran 100 experiments with
each configuration registering the mean classification
error for each network size. The mean percentage of
misclassifications and the corresponding standard de-
viation for each number of hidden units is depicted in
Fig. 1. As it can be seen, the error seems to be stabi-
lized after 14 hidden units.

In order to contrast these mean errors and to ob-
tain information about which mean errors pairs are
significantly different and which ones are not, Tukey
test with a significance level α = 0.05 was performed.
It is recommended as multiple comparison test for the
family of all pairwise comparisons [15].

In Table 1 we show the results obtained with
Tukey test. Each group is labeled using the number of
hidden units of the corresponding NN. The first col-
umn corresponds to the group. The mean error (mean
of the percentage of misclassifications) is presented
in the second column. The third column shows the
groups that are not significantly different from the one
indicated in the first one, with a significance level of
α = 0.05. From the analysis of this table, we can con-
clude that when the number of hidden units in the NN
is increased above 14, the error is not significantly re-
duced, in agreement with the results observed in Fig.
1.

In Tables 2, 3, and 4 we show, as an example,
the best confusion matrices obtained for each one of
the three different numbers of hidden units: 14, 16,
and 22 neurons, respectively. We can appreciate that
in the three cases the best results reach a 93.26% of
correct classifications, and 100% of correct discrimi-
nation between pathological and normal voices, even
if some pathological ones have been confused. Al-
though the total percentage of discrimination obtained
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Figure 1: Percentage of misclassifications (three classes). Errors and standard deviation plotted as function of the number of
hidden units of the NN.

Table 1: Results of the Tukey multiple comparison test.
Groups are labeled using the number of hidden units of the
neural network. Second column: Mean error of the per-
centage of misclassifications. Third column: groups that
are not significantly different from the “group” in the first
column, with a significance level of α = 0.05.

Group Mean (%) Groups with means

(hidden units) not significantly different

32 11.01124 32 28 34 24 26 22 30 20 18 16 14

28 11.13483 32 28 34 24 26 22 30 20 18 16 14

34 11.21348 32 28 34 24 26 22 30 20 18 16 14

24 11.24719 32 28 34 24 26 22 30 20 18 16 14

26 11.32584 32 28 34 24 26 22 30 20 18 16 14

22 11.35955 32 28 34 24 26 22 30 20 18 16 14

30 11.38202 32 28 34 24 26 22 30 20 18 16 14

20 11.41573 32 28 34 24 26 22 30 20 18 16 14

18 11.51685 32 28 34 24 26 22 30 20 18 16 14

16 11.73034 32 28 34 24 26 22 30 20 18 16 14

14 11.79775 32 28 34 24 26 22 30 20 18 16 14

12 12.64045 12 10 8

10 12.83146 12 10 8

8 13.42697 12 10 8

Table 2: Best confusion matrix for 14 hidden units.
Classifications Correct

Class SD MTD Normal Classifications

SD 20 1 0 95.24 %

MTD 5 10 0 66.67 %

Normal 0 0 53 100.00 %

TOTAL 93.26 %

Table 3: Best confusion matrix for 16 hidden units.
Classifications Correct

Class SD MTD Normal Classifications

SD 17 4 0 80.95 %

MTD 2 13 0 86.67 %

Normal 0 0 53 100.00 %

TOTAL 93.26 %

in the three tables are equal, we can see that those
corresponding to each class (pathology) are different.
The highest percentage of correct classifications of SD
voices was obtained with 14 hidden units (see Table
2.) However the best result for MTD recognition was
achieved using 16 hidden neurons (Table 3.) It can be
observed that an intermediate result was obtained with
22 hidden units (Table 4.)

The minimum mean error (11.01 %, see Table 1)
along the 100 experiments with the different numbers
of hidden neurons was obtained with 32 units. The
averaged confusion matrix for this case is shown in
Table 5. With this network configuration, the mean
of correct classifications was 88.99 %. It is important
to add that, in this case, the mean of normal voices
correctly classified was 99.96 % and joining SD and
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Table 4: Best confusion matrix for 22 hidden units.
Classifications Correct

Class SD MTD Normal Classifications

SD 18 3 0 85.71 %

MTD 3 12 0 80.00 %

Normal 0 0 53 100.00 %

TOTAL 93.26 %

Table 5: Average of the 100 confusion matrices for 32 hid-
den units. Pathological voices are classified as pathological
(SD or MTD) in the 97.63 % of cases, and normal voices
in 99.96 % are correctly classified.

Classifications Correct

Class SD MTD Normal Classifications

SD 15.78 4.48 0.74 75.14 %

MTD 4.45 10.44 0.11 69.60 %

Normal 0.01 0.01 52.98 99.96 %

TOTAL 88.99 %

MTD in a single class (pathological voices), a
97.63 % of correct classifications was achieved.

In order to compare our results with previous
works, we tested the ability of our classifier for dis-
crimination between pathological and normal voices.
For this purpose we changed the output layer, leav-
ing now two output neurons. Increasing the number
of hidden units from one to 14, and running 100 real-
izations in each case, we obtained the minimum mean
error while working with eight hidden neurons. Fur-
thermore, in many realizations (even in those ran with
only one hidden unit) the classification was perfect. In
Table 6 we present an averaged confusion matrix for
the 100 realizations. The percentage of correct clas-
sifications reached 98.94 % (97.58 % of pathological
voices and 99.87 % of normal voices correctly classi-
fied). This result is better than the highest percentage
of correct classifications found in the literature (96.5
% of correct detections, presented in [5]).

In Fig. 2 the mean percentage of misclassifica-
tions is depicted. The minimum error was obtained
with eight neurons. A Tukey test with a significance
level of α = 0.05 was applied, indicating that the
MLP with 2 or more neurons in the hidden layer are
not significantly different.

4 Discussions and Conclusions
In the previous section we have presented a new ap-
proach for the automatic classification of pathological
voices. In particular we have focused our attention on

Table 6: Classification in two categories. Average of the
100 confusion matrices for 8 hidden units.

Classifications Correct

Class Pathological Normal Classifications

Pathological 35.13 0.87 97.58 %

Normal 0.07 52.93 99.87 %

TOTAL 98.94 %

two different aspects: i) to discriminate between nor-
mal and pathological voices and ii) to discriminate be-
tween normal, spasmodic dysphonia and muscle ten-
sion dysphonia, two pathologies for which it did not
exist till now a proper automatic differential diagnosis
and misdiagnoses is quite often.

These preliminary results obtained in this work
suggest that a voice pathology classification is pos-
sible using only acoustical measures that are well–
known by both the speech physicians and the thera-
pists. This is a very important characteristic of our ap-
proach due to the knowledge that the specialists have
on these parameters. However, further studies are in
progress in order to incorporate the information that
can be extracted of read text in order to improve the
automatic classification.

The SD pathology was recognized in a 95.24 %
(see Table 2.) In the case of MTD, it arrived to a
86.67 % of correct classifications (see Table 3.) For
normal voices, a perfect recognition was achieved, for
example see Tables 2, 3, and 4. Considering the per-
centage of correct classifications in the three classes,
the best result was obtained reaching a 93.26 % of
successful classifications (for example, in Tables 2, 3,
and 4.) In case of separating pathological and normal
voices, it is also possible to reach a perfect discrimi-
nation and, as it can be seen in Table 6, these results
overcome those published to date. The results with
a MLP with eight hidden neurons averaged 98.94 %
of correct classifications in 100 realizations, overcom-
ing the best reported percentage of correct classifica-
tions (96.5 %, [5].) classifiers for pathological and
normal voices, the obtained results allow to conclude
that in the present application the Multilayer Percep-
tron neural networks, with eight hidden unites, are
more successful than SVM. The contribution of this
work lies in that it is possible to distinguish between
two pathologies that often cause erroneous diagnosis
by not highly specialized professionals. As long as
we know, there are not previous works for automatic
discrimination between the analyzed pathologies. In
order to introduce the presented automatic classifica-
tion tools in the clinical usage it would be necessary
to refine and test it on a higher number of normal
and pathological voices. In future works, these results
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Figure 2: Percentage of misclassifications (two classes). Errors and standard deviations plotted as function of the number of
hidden units of the NN.

could be improved using read text. obtained results
are very promising and suggest that to achieve this
goal is close. Nevertheless, the presented preliminary
results are very promising and suggest that it is close
to reach our goal.
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