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Abstract: - Nanofiber technology is an important branch of the growing discipline - nanotechnology. Nanofiber textiles 
are finding increasing number of applications in filtration industry, particularly in processes involving remediation 
technologies. Materials in nanofiber form do not only lead to superior functions due to the nano-effect, but also provide 
a means to deliver additional qualities to higher order structures. Model described in this article was developed to solve 
tasks of coupled heat and moisture transfer. By this model, can be tested the influence of different parameters (material 
of fibers, design of fiber structure) on the textile performance and get a lot of information without producing the real 
textile. 
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1   Introduction 

In this study, the mathematical model is introduced to 
describe the moisture migration and thermal transport 
through porous textiles in order to evaluate the thermal 
clothing comfort and the interaction between heat and 
moisture transportation. 
 

Comparing to the others, mostly one-dimensional 
models, our model goes much further and takes the 
structure of the textile fabric into account. It allows the 
study of the influence between the textile fabric structure 
and the thermal closing comfort and gives new 
possibilities for the design process of new textiles. 
 
 
2   Problem Formulation 
Heat and mass transportation parameters and the 
distribution of moisture and temperature within porous 
textiles are based on the energy and moisture 
conservation equations during the transportation. 
The transfer is described by partial differential equations 
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where are: T temperature, Ca water vapor concentration 
in air, Cf water vapor concentration in fiber, t time, 
cv volumetric heat capacity, λ heat of sorption 
or adsorption of water vapor by fiber (it gives 
information on interaction forces between the water 
vapor molecules and the sorbent surface-binding 
energy), K thermal conductivity, ε porosity of fiber, 

Figure 1 Nanofiber structure 
The authors thank to colleagues from Department of Nonwoven 
Textiles at Technical University of Liberec for permit to published 
this picture 
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Da diffusion coefficient of water vapor in air, τ effective 
tortuosity (it is related to the hindrance imposed on 
diffusing particle by the fibers), C100

a water vapor 
concentration for 100% relative humidity (RH) in air, 
C100

f  water vapor concentration for 100% RH in fiber 
and γ is a general function, for example [4] 
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The assumption of instantaneous thermal equilibrium 
between the fibers and the air in the inter-fiber space 
does not therefore lead to a significant error. Equations 
(1a) and (1b) are not linear and they contain three 
unknowns T, Ca and Cf. The equation (1c) was derived 
by Henry [5] to obtain an analytical solution by 
assuming Cf to be linearly dependent on T and Ca, and 
also that fibers reach equilibrium with adjacent air 
instantaneously. 
The set of boundary conditions (BC) is added, where 
Dirichlet BC are 
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Neumann BC are 
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Newton BC are 
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3Γ∈xr  in time ),0( *t  , 
 
For initial conditions (IC) the constant functions are 
usually chosen 
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2.1 Weak formulation 
To use the finite element method, the weak formulation 
has to be derived. The problem is discreted in the space 
variable x={x,y,z}. Let be H0(Ω)={f ∈ W1

2(Ω), f|Γ=0} the 
space of testing functions. Further, is denoted the scalar 
products as ( ) ∫

Ω

Ω= dϕψψϕ , , ∫
Γ

Γ= dϕψψϕ , . 

Equations (1a), (1b) and (1c) are multiplied by testing 
function w ∈ H0(Ω), integrated over Ω . Then a Green 
formula is used and substitution of boundary conditions 
gives integral identities 
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The problem is solved in time interval I = < 0, t* >. 
Then T*,C*

a,C*
f ⊂ AC( I, W1

2(Ω) ) is denoted as the 
function fulfilling the Dirichlet BC (3). Let 
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where T0, Ca0, Cf0 ∈ AC( I, H0 (Ω) ). Then functions T, 
Ca, Cf are the weak solution of (1a), (1b) and (1c) with 
boundary conditions (3), (4) and (5) and initial 
conditions (6) in time interval I, if they fulfil the 
identities (7) for arbitrary w ∈ H0(Ω). Existence of 
integrals in (7) is allowed by finiteness of functions ε, τ, 
Da, K a γ. 
 
 

 
 
Figure 2 Element of discretization 
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2.2 Spatial discretization 
For spatial discretization the tetrahedrons with linear 
base functions are used (see figure 2). 
 
Area Ω is then approximated by the set Ωh, 
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where Eh is the set of all discretization nodes. On every 
simplex e with nodes (s1,s2,s3,s4), four base functions are 
established, wi=αi

0+ αi
1x1+ αi

2x2+ αi
3x3, i=1,2,3,4. They 

fulfill the condition wi(sj)=δij. The approximation of 
weak solution is looked for in the form (r is number of 
nodes) 
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Coefficients Ti(t), Ci

a(t), Ci
f(t) are values of unknowns at 

the nodes of discretization in time t. The approximations 
(9) are entered into identities (7). Then is searched for 
their fulfilment for all base functions wj, j ∈ r. The 
resulting system of ordinary differential equations has 
the block structure 
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Values of functions Da, K, γ in given time are chosen to 
be piecewise constant on each element (in the manner 
described further). Values of functions ε, τ, are also 
chosen to be piecewise constant on each element, but as 
material characteristic, independent on time. 

3   Numerical model 
System (10) with initial conditions (6) can be solved 
e.g. by the Euler method. Its advantage is, that it can be 
used for case when the system has coefficients 
depending on unknown quantities (Da, K, γ). 
 
 
2.1 Time discretization 
The implicit scheme for approximation of time 
derivatives is used, 
 

t
ff

t
f nn

nt ∆
−≡

∂
∂ +

=

1    ,   (11) 

 
This scheme provides sufficient numerical stability. 
Then the system (10) can be rewriten more simply, 
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Values Da, K, γ in nth time step were implicitly chosen by 
substituting the guess )1(~ +nX  in time step (n+1). Matrix 
D~  and right hand side R  are time-dependent, more 
accurately, they depend on values Da, K, γ, which consist 
in X . For nth time step, they are having form 
 

)~(~~ )1()( += nn XDD ,   )~( )1()( += nn XRR    . (15) 
 
Consequently, the problem 
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was solved and the variation between the solution 1+nX  
and the guess 1~ +nX  was watched. For the large variation, 
the solution 1+nX  was used as new estimate 1~ +nX  (for 
first iteration is used nn XX ~~ 1 ≡+ ). This process was 
repeated several times until only small variation are 
reached. Then the new initial problem for time step 
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(n+2) was solved. In particular iteration in nth time step, 
the linear system is solved, 
 

( ) )()()1()(~ nnnn tt DXRXDD +∆=∆+ +    .  (17) 
 
If denoted 
 

)()()( ~ nnn t RDXR =+∆    ,  (18) 
 
the linear system can be written in block structure, 
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3   Tuned Solution of SLE 
For solution of nanofiber structures, very small elements 
for spatial discretization of area Ω (see figures 3 and 4) 
must be used. This requirement leads to fine 
computation mesh and to the need of solving the large 
linear system. Applicability of FEM systems primarily 
depends on the effectiveness of solution this large set of 
linear equations (SLE).  
This model leads to large, nonsymmetrical, sparse SLE. 
Solvig of this type of SLE is complicated and very time 

consuming. Any possibility to save the time of solution 
is useful. 
Big change in approach to solve SLE was done by [2]. 
Application of ideas published in this article allows 
parallelism, decreases the time required to solve SLE 
and increases the precision of results. Solution of three 
smaller tasks is better then solution of the one large. 
In the first step, equation (19) is simplified, then blocks 
of global matrix and vectors of solution and right hand 
side is relabeled as 
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Blocks A1, A2, A3, B1, B2 and B3 have the same structure, 
the same positions of nonzero items. Blocks A1, A2, A3 
are positive definite. 
The block X3 can be formalized from 3rd row and put it 
to 2nd row. Then is obtained 
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The inversion of matrix 1

3
−A  can be obtained by Cholesky 

factorization 11
3 33

−−− = A
T

A LLA  [3]. Then the equation (21) 
can be rewriten to the final form, 
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Parenthesis on the left side is known as the Schur’s 
complement. The Schur’s complement is a slightly 
denser than original blocks. There are more nonzero 
items and structure of these items is general. The 
iterative method for solution of the unknown block X2 is 
used. Very good results (short time, good stability of 
solution) were achieved by successive over relaxation 
method. 
Because there is insufficient information about behavior Figure 3 F

Figure 4 M
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ull mesh 
of the product in parenthesis, better method could not be 
used. 

 Solve X2

Solve X3

Cholesky’s 
decomposition A1 Solve X1

 
 
Figure 5 Solution of set of linear equations – schema of 
splitting of task and distribution of calculation 

 
esh without air elements 



 

 

Concurrently, in the same time, the block X3 can be 
solved. The same consecution is used for block X2 to 
obtain 
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and the equation is solved by the same sequence as block 
X2, where 1

2
1
22

−−− = ALL A
T

A . 
First row of equation (19) can be modified as 
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where 1

1
1
11
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T

A . 
Equations (22) and (23) can be solved concurrently. 
Equations (24) depend on variable X3, but Cholesky 
factorization of block 11

1 11

−−− = A
T

A LLA  can be prepared at 
the same time (with solution of equations (22) and (23)). 
Then unknown X1 can be solved by forward and back 
substitution. 
This sequence is shown on the figure 5. 
 
 
4   Conclusion 
In this contribution, the model for solving of the problem 
of coupled heat and moisture diffusion with sorption in 
textiles is introduced. Results (see figures 6 to 8) 
obtained by this model help to understand the processes 
in textiles. 
Special consideration is given to solution of large set of 
equations. For implementation of numerical model was 
chosen language JAVA. This project takes advantage of 
transparent multithreading and easy use of technology 
RMI – remote method interface – for distribution of the 
calculations to other computers. 
There are areas for further increase of speed in solution 
of the linear system. Multiplication of matrix can be 
distributed to more computers. Mentioned algorithms are 
state-of-the-art. 
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