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Abstract -This paper describes a mathematical model for all path length parameters (APL: Average Path Length, 
LPL: Longest Path Length, and SPL: Shortest Path Length) of Binary Decision Diagrams (BDDs). The proposed 
model is based on an empirical analysis of randomly generated Boolean functions. The formal core of the 
developed model is a unique equation for the path-related objective functions over the set of BDDs derived from 
Boolean functions with given number of variables and Sum of Products (SOP) terms. Simulation results show 
good correlation between the theoretical results and those predicted by the mathematical model. This model 
provides an estimation of the performance of a circuit prior to its final implementation, and can be applied to 
Boolean functions with any number of variables, any number of product terms, and any variable ordering method. 
 
Key-Words: Evaluation time estimation, Binary Decision Diagram (BDD), Path Length of BDDs, Boolean 
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1  Introduction 
Advanced Computer-Aided Design (CAD) systems 
are essential tools in the design of modern Very 
Large Scale Integration (VLSI) circuits. One of the 
most important functions of CAD tools is to provide 
robust and efficient data structures to represent 
Boolean functions as well as fast algorithms to 
manipulate these data structures. During the last two 
decades, BDDs have achieved great popularity as 
data structures in the synthesis and verification of 
digital systems. 
BDD in general is a direct acyclic graph 
representation of Boolean functions initially proposed 
by Bryant and Akers [1]. Analysis of the complexity 
of Boolean functions can be performed through the 
BDDs that represent these functions [2].  
Evaluation of time complexity of Boolean functions 
using BDDs is one of the important factors in the 
evaluation of logic circuits, which is an important 
step in the design of digital systems and the 
verification of their efficiency [3]. The time 
complexity of Boolean functions is proportional to 

the path length of their BDDs. Therefore, 
minimization of the path length can improve the 
overall performance of the circuit implementing 
Boolean functions [5], [6]. Many research works 
have analyzed the behavior of path-related objective 
functions [4], [5], [6]. Among these works, the 
minimization of the number of paths [9] which is an 
important task in the test of BDD circuits, and the 
minimization of Disjoint SOPs [7] used in computing 
the spectra of Boolean functions. The methods 
proposed for the APL minimization are based on 
either Static variable ordering [8] or dynamic variable 
ordering techniques [9]. The minimization of APL 
leads to circuits with smaller depth of paths from the 
root to the terminal node of the BDD. The resulting 
circuit will be optimized for speed on one hand and 
on the other hand the number of very long paths in 
the BDD will be reduced [10]. The minimization of 
APL is of great importance in embedded systems, 
real time operating system applications [11].  
Minimization of the LPL [4] and the SPL in BDDs is 
motivated by the synthesis of digital circuits in order 
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to optimize their delays, which is an important task in 
Pass Transistor Logic (PTL) [12], [13]. The 
minimization of Minimum Path Length (MPL) has 
been discussed in [9]. One of the main problems with 
PTL is the presence of long paths: the delay of a 
chain of n pass transistors is proportional to n2. 
Inserting buffers can reduce the path length, but this 
increases the silicon area. Consequently the 
minimization of the longest path will definitely 
improve the performance of the resulting circuit in 
term of speed [12].  
In all path length minimizations we need to create the 
whole BDD representing the Boolean function with 
the best possible variable ordering. Building the 
whole BDD may lead to an increase in the time 
complexity of the design process. It will be useful to 
have an estimation of the BDD complexity prior to 
build it [14], [15]. 
Therefore, it is important to develop a mathematical 
model that predicts the path length of a BDD. Over 
the past two decades most of the problems in the 
synthesis, design and testing of combinational 
circuits have been solved using various mathematical 
methods [16]. For any combinational circuit the only 
available initial information is the Boolean function 
that represents this circuit and the number of its 
variables. This information is usually considered to 
design and verify circuits using well known 
mathematical methods. A mathematical model to 
predict the complexity of Boolean functions, 
XOR/XNOR min-terms and the path length of BDDs 
using empirical fit were introduced in [17], [18], [19], 
[20], and [21]. 
The main objective of this paper is to introduce an 
improved mathematical model of path-related 
objective functions compared to the methods 
proposed in [22]. The proposed model will provide 
exact parameters for the path length complexity for 
any number of variables and for any variable ordering 
method which allows the analysis of circuit 
performance without building its BDD. The model is 
also capable of predicting the number of product 
terms in the Boolean function that leads to the 
maximum time complexity. The remaining of this 
paper is divided as follows: Section two provides a 
brief explanation of the mathematical model based on 
an empirical analysis of the path length. The 
proposed method with simulation results followed by 
the mathematical model are given in section three and 
four respectively. Finally, in section five we conclude 
this research work with a summary of our future 
developments. 
 
 

2  Mathematical model based on 
Empirical analysis of Path length 
behavior  
The work in [21] improves the methodologies 
proposed in [5] and [19] for the estimation of path 
length complexities. Analysis of the time complexity 
in BDDs based on SPL and APL is presented in [20]. 
For each variable count n between 1 and 14 inclusive 
and for each term count between 1 and 2n-1, 100 SOP 
terms were randomly generated and the Colorado 
University Decision Diagram (CUDD) package [31] 
was used to determine the SPL and APL. This 
process was repeated until the average size of the 
SPL and APL complexities (i.e. number of nodes) 
became 1. Then the simulated graphs for APL and 
SPL complexities (Figure 1 and figure 2) were 
plotted against the product term count for each 
number of variables.  
Analysis of the APL and SPL graphs shows that the 
path length complexity may be modeled by an 
expression of the form of equation (1): 
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where, t is the number of product terms in the 
Boolean function, α  and β  are constants that shape 
the peak of the graph. We determined the α  and β  
as follows: 
  For the SPL, 1,7 11 == βα and 102 =α lead to a 
close fit, 32 =β  for a number of variables v  less 
than 11 ( 11≤v ) and 52 =β  for 12≥v . The 
following equation (7) was used in order to 
compute 2β  for SPL, 
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For the APL, 7.0,7 11 == βα  and 102 =α  lead to a 
close fit, 1.22 =β   for 11≤v  and 5.32 =β  
for 12≥v . The following equation (3) was used in 
order to compute constant 2β for APL, 
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Finally, the APL and SPL curves can be obtained 
using the following single equation (4): 
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In this mathematical model, the peaks ),( ii yx for both 
the APL and SPL curves were found by performing 
an empirical fit. 

Fig. 1: APL complexity variation for 10 Variables 

Fig. 2: SPL complexity variations for 10 Variables 

3  LPL, SPL and APL Complexities 
The mathematical model explained in the previous 
section is repeated here in order to find the graphs for 
the path-related objective functions (i.e. LPL, SPL 
and APL) complexities. The graphs of LPL, SPL and 
APL will be plotted against the product term count 
for each number of variables.  
Figures 1, 2 and 3 illustrate the APL, SPL and LPL 
complexities for Boolean functions with product 

terms having n=10 variables and using the Symmetric 
Sift reordering technique of the CUDD tool.  Due to 
its efficiency compared to other reordering 
techniques of the CUDD, the Symmetric Sift 
reordering technique is used here as the base variable 
ordering method. The graphs indicate that the 
complexity of the path length in general (LPL, SPL 
and APL) increases as the number of product terms 
increases. This is clear from the rising edge of the 
curve shown in Figures 1, 2 and 3. At the end of the 
rising edge in the graphs, the size of the APL, LPL 
and SPL reaches a maximum 
( 10,735.7 ≅≅ LPLAPL , and 4.5≅SPL  in this case). 
This peak indicates the maximum APL, LPL and SPL 
complexities that any Boolean function with 10 
variables can have independently of the number of 
product terms. Apart of that the peak also specifies 
the number of product terms (critical limit) of a 
Boolean function that leads to the maximum 
complexities of APL, LPL and SPL for any Boolean 
function with 10 variables. 
The number of product terms that leads to the 
maximum complexities of APL, LPL and SPL is 66, 
17 and 50 respectively. If the number of product 
terms increases above the critical limit, as expected, 
the product terms starts to simplify and the BDD will 
reduce, which will reduce the path lengths size. The 
APL, SPL and LPL complexity graphs shown in 
Figures 1, 2 and 3 indicate that as the number of 
product terms increases the complexity of the APL, 
SPL, and LPL decreases in a slower rate and 
ultimately reaches 0.  
Figure 3 shows that the LPL graph behaves a bit 
different than the other complexity graphs shown in 
Figures 1 and 2 where the overt features of the curve, 
an initial sharp rise, a peak, a plateau, and a roll-off 
were observed to be independent of the variable 
count. The location and height of the peak, the width 
and height of the plateau and the slope of the 
logarithm of the roll-off varied.  
  Even though the rising edge of the SPL complexity 
variation graph is similar to the APL graph, slope of 
the logarithm of the roll-off varied and might have 
more than one peak in the roll-off. The location and 
height of the peak and the slope of the logarithm of 
the roll-off varied.  Reduction of the APL, SPL and 
LPL complexities implies that all the product terms 
simplify to logic 1.  A simple algebraic expression for 
these curves is developed, unifying all the cases.  
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Fig. 3: LPL complexity variation for 10 Variables 

 
4  Mathematical model for the Path 
length Complexities 
A large variety of curves with closed forms (for 
example: a power series with enough terms) can be 
fitted to the empirical APL, SPL, and LPL curves as 
shown in figures 4-6. But, if the curve does not 
reflect the real behavior, it is likely that the number 
of parameters will increase at least linearly with the 
number of curves being fitted. A model [28] 
developed by the same authors had exactly this 
property, for each variable count, a curve was fitted 
requiring around 6 parameters per variable. The 
model presented here has two c-parameters, and two 
s-parameters for each class of curve (LPL, APL, and 
SPL) rather than each variable count. The fitting is 
global and requires at most 6 parameters per class of 
curves. The model presented here is definitely 
empirical, but based on a theoretical justification of 
possibility being developed. The current work of the 
authors includes the firming and extending of this 
argument as far as possible. Part of this argument 
suitable for publication is included here for 
completeness. 

 
Fig. 4: Simulation/Mathematical APL complexity 

variation for 10 Variables 
 

Three styles of curve fitting are illustrated. For LPL, 
the fitting of a sigmoidal curve to the roll-off, 
showing how the choice of parameters varies linearly 
with the variable count.  
For the APL, the logarithmic rise is also fitted, 
showing that its essential shape does not change with 
the variable count, but the peak shape is not 
attempted. For the SPL, the entire curve, including 
the peak, is fitted. This will result in some less 
intuitive algebraic behavior, but a closer fit to the real 
behavior. 
 

 
 

Fig. 5: Simulation/Mathematical LPL complexity 
variation for 10 Variables 

 

 
Fig. 6: Simulation/Mathematical SPL complexity 

variation for 10 Variables 
 

For each class of curves, either the minimum or the 
product of three functions with parameters affine in v 
is indicated. The functions are )(log x for the rise 

(Figure 7), 
2)()( xex ee

−−− ⋅ for the peak and 
)1(1 xe+ for the roll-off, where the second function 

is the composition of )( xe − and )2( xe ⋅− . Each target 
function is modeled by a function similar to (5), for 
lower values of t and function (6) for higher values of 
t, where t is the number of product terms, v the 
number of variables and the vertical scaling a(v), 
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horizontal shift c(v) and the horizontal scaling s(v) 
are affine functions of v. The parameter v)32( in 
function (6) defines the global scaling that normalizes 
all the curves and )1(1),,( )( sctesctg −+= . 

)1(log 5.1 +t      (5) 

))(,)(,)32(()( vsvctgva v⋅⋅    (6)   
 

 
Fig. 7: Mathematical fit for the SPL complexity 

behavior   
 
It can be seen from figures 4-6 that the mathematical 
models match well the curves obtained by simulation, 
with relatively simple functions, and relatively few 
parameters. All path lengths (i.e. APL, SPL, and 
LPL) are fitted globally with at most 6 parameters for 
each type, rather than the fitting of the empirical 
analysis [20] that had a similar number of parameters 
for each value of v. This is a major improvement in 
this mathematical model. 
Further verification of the mathematical model is 
done for Boolean functions with 2 to 14 variables. It 
can be inferred that the simulated and mathematical 
curves are following similar patterns for any number 
of variables. Figures 8-13 illustrates the simulated 
and mathematical models for APL, SPL and LPL for 
variables 13 and 8 respectively. 
 

 
Fig. 8: Simulation/Mathematical APL complexity 

variation for 13 Variables 

 
Fig. 9: Simulation/Mathematical APL complexity 

variation for 8 Variables 
 

 
Fig. 10: Simulation/Mathematical SPL complexity 

variation for 13 Variables 
 

 
Fig. 11: Simulation/Mathematical LPL complexity 

variation for 8 Variables 
 

 
Fig. 12: Simulation/Mathematical LPL complexity 

variation for 13 Variables 
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Fig. 13: Simulation/Mathematical LPL complexity 

variation for 8 Variables 
 

 
Fig. 14: SPL complexity error variation for 12 

Variables 
 

 
Fig. 15: LPL complexity error variation for 12 

Variables 
 
Figure 14-16 shows the efficiency of the proposed 
mathematical model, which produces complexity 
estimation error for SPL, LPL and APL. It can be 
inferred that the mathematical expression was able to 
match the simulated curve with minimum error, 
which is less then 1.0±  for most of the product 
terms. 
However, after cleaning up the curves a bit 
algebraically, our next step is to try to get some 

numerical measures, such as max absolute error, to be 
significantly smaller. 
 

 
Fig. 16: APL complexity error variation for 12 

Variables 
                                                                                                          

5.  Conclusion 
We have discussed in this paper the idea of using 
BDDs to model a relationship between the path-
related objective functions; namely the APL, SPL, 
and LPL, and the number of product terms in 
Boolean functions. Analyzing the simulation results, 
we have introduced a simple and unique 
mathematical model with the theoretical justification 
for the whole process. The three curves for APL, SPL 
and LPL were fitted with slightly different methods, 
but with only a few global parameters. Future work 
will be mainly concentrated on having wider range of 
variables to check that the affine fitting is correct and 
to verify the proposed method with real benchmark 
circuits. 
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