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Abstract: - Genetic algorithms have gained popularity as effective search procedures for obtaining solutions to 
traditionally difficult space mission optimization problems. In this paper, a real-coded genetic algorithm is used 
together with calculus of variations to optimize a trajectory for rendezvous problem. The global search 
properties of genetic algorithm combine with the local search capabilities of calculus of variations to produce 
solutions that are superior to those generated with the calculus of variations alone, and these solutions require 
less user interaction than previously possible. The genetic algorithm is not hampered by ill-behaved gradients 
and is relatively insensitive to problems with a small radius of convergence. The use of calculus of variations 
within the genetic algorithm optimization routine increases the precision of the final solution to levels 
uncommon for a genetic algorithm alone. 
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1 Introduction 
Techniques for optimizing spaceflight trajectory 
problems have become increasingly important as 
pressure to reduce the costs of space missions has 
increased. Both direct and indirect methods, known 
as “hill-climbing” methods, have been used to 
optimize space trajectories; however, for some 
scenarios, convergence to optimal solution is time-
consuming, tedious, and sometimes not even 
possible.  

Direct methods that solve for controls to optimize 
the objective function directly, often via a gradient-
based search, suffer from two major drawbacks. 
First, because search direction is ultimately driven by 
the local value of the gradient vector, the solution 
can converge on local, rather than global, minima, 
resulting in a final solution that is not globally 
optimal and cannot be further optimized [1]. Second, 
the optimal solution often has a small radius of 
convergence, requiring that the guesses for the initial 
parameters be close to the optimal answer [2]. 

Indirect methods, such as calculus of variations, 
obtain optimal results by solving for the costates of a 
related two point boundary value problem (TPBVP) 
and not for the controls directly. Although indirect 
methods are generally more likely to find a true, 
rather than local, optimum both direct and indirect 
approaches share many of the same drawbacks, most 
notably a small radius of convergence [3]. 

The “hill-climbing” methods exploit all local 
information in an efficient way, provided that certain 
conditions are fulfilled and, in particular, that the 
function to be minimized is “well-conditioned” in 
the neighborhood of the unique optimum [4]. Such a 
high level of exploitation requires a lot of local 
information to be known (gradient and, sometimes, 
Hessian matrix): the more intensive the exploitation, 
the stronger the need of specialized information 
about the function to be minimized. Moreover, if the 
basic requirements are not satisfied, the reliability of 
the “hill-climbing” methods is greatly jeopardized. 

Therefore, it is vital to choose initial parameter 
values intelligently; failure to do so will either 
dramatically increase the required computation or 
preclude obtaining a solution entirely. When indirect 
methods are used, where the optimization parameters 
are generally not related to the trajectory in an 
intuitive or straightforward manner, there may not be 
knowledge of the parameter bounds or their 
sensitivity. A common strategy to improve initial 
parameter selection uses previously optimized 
parameter values from a similar problem as an initial 
guess [1]. If no closely related solutions exist, initial 
values are found by optimization of an entire series 
of intermediate problems relating the new scenario to 
one with a known solution, a procedure known as 
homotopy analysis [5]. 
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Fig. 1. Nomenclature for rendezvous problem [10]. 

 
 

In recent years many techniques have been 
suggested for the avoidance of these shortcomings. A 
survey of these methods can be found in [6]. 
Evolutionary algorithms (EAs) are the best known. 
The usefulness of the genetic algorithms (GAs), for 
solving impulsive trajectories is well documented [7, 
8, 9]. The purpose of this study was to investigate the 
GA's effectiveness at determining a near optimal 
trajectory.   
 
 
2 Problem Definition 
The Rendezvous problem is a case that many authors 
use for demonstrating efficiency of diverse 
numerical methods, see, e.g., [10, 11]. This problem 
is summarized as follows:  

“For a launch vehicle with a constant-thrust 
rocket engine, a, we wish to find the thrust-direction 
sequence, θ(i), that maximizes final orbital velocity, 
u(tf), with zero final radial velocity, v(tf), and 
specified final position xf, yf, for zero initial 
conditions and given flight time, tf (Fig. 1).”  

The first order, two dimensional coupled 
nonlinear differential equations of motion for this 
problem are  
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where =d( )/dt, and g gravity acceleration. The 
initial and final conditions for Eqs. (1) are: 
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If θ  is held constant for time intervals of length ∆T,it 
is straightforward to show that  
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3 Problem Solution 
3.1 Analytical Solution 
At first for studying numerical methods' efficiency, 
an analytical solution is derived. The augmented 
terminal cost function is 
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where υ is Lagrange multiplayer. If we measure time 
in units of tf, (u, v) in units of atf, (x, y, xf, yf) in units 
of atf

2, then we can put a=1, ∆T=1/N in Eq. (3). The 
H(i) sequence is then 
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where λ is Lagrange multiplayer. The discrete Euler 
equations are then 
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and the optimality condition Hθ(i)=0 yields 
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The adjoint equations are easily solved in this 
case 
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Substituting (7) in (6) and using N∆T=1 gives 
bilinear tangent law 

)].i(T[
)].i(T[

)i(tan
x

yv

50+-1+1
50+-1+

=
∆υ
∆υυ

θ )8(                                

The constants υv, υy, and υx must be determined 
to satisfy final conditions. The MATLAB function 
FSOLVE is used for this propose. 
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3.2 Genetic algorithms 
It is clear that we face a parameter optimization 
problem. Many different numerical methods have 
been suggested for solution of these problems, 
especially in space trajectories applications, that can 
be found in the Betts’s excellent survey [3]. In this 
paper, a case of genetic algorithms (GAs), known as 
floating-point or real-coded GA (RGA), is used. The 
RGAs are a compromise between binary-coded GAs 
and Evolution strategies [12], since they use most of 
the classical Genetic Algorithms mechanisms 
whereas they work directly at the phenotypic level 
like Evolution Strategies. This RGA generally offers 
the advantages of being better adapted to numerical 
optimization for continuous problems, of speeding 
up the search and of making easier the development 
of approaches “hybridized” with other methods; but 
it requires the development of new “genetic-
inspired” operators that can be found in [13-15]. 

Whereas traditional methods proceed by 
deterministically improving an iteration point, GAs 
use a random “population” of solution candidates, 
called “individuals,” over the entire search space. 
The features of the best candidates are used for 
generating new populations, called a “generation,” 
with the intent of producing new and better 
candidates. The search aims at optimizing a user-
defined function (the function to be optimized) 
called the fitness function. This new generation 
generally consists of individuals which fit better than 
the previous ones into the external environment as 
represented by the fitness function. As the population 
iterates through successive generations, the 
individuals will in general tend toward the optimum 
of the fitness function. This process iterates until one 
condition in a set of convergence criteria is met.  

To generate a new population on the basis of 
previous one, GA performs three steps [15]: a) it 
evaluates the fitness score of each individual of the 
old population, b) it selects individuals on the basis 
of their fitness score, and c) it recombines these 
selected individuals using “genetic operators” such 
as mutation, and crossover, which can be considered  
as means to change locally the current solutions and 
to combine them. 

Three important features distinguish the GA 
approach [15]: a) GA works in parallel on a number 
of search points and not on a unique solution, which 
means that the search method is not local in scope 
but rather global over the search space; b) GA 
requires from the environment only an objective 
function measuring the fitness score of  each 
individual and no other information nor assumptions 

such as derivatives; and c) both selection and 
recombination steps are performed by using 
probability rules rather than deterministic ones; this 
aims at maintaining the global explorative properties 
of the search. 
The convergence of the repeated selection–
crossover–mutation procedure to the optimal 
solution is based on the schema theorem [21], and 
Markov chain [22]. However, the convergence of 
GAs is slow, compared to “hill-climbing” methods, 
when the problem is sufficiently smooth for “hill-
climbing” methods to be applicable. This has led to 
the idea of combining the methods, see e.g., [15]. 
The GA can be used for generating a starting point 
for the “hill-climbing” search. Alternatively, the 
genetic search can be enhanced by performing local 
“hill-climbing” searches on the members of the 
population. 

The use of GAs to determine optimal space 
trajectories has only recently gained popularity. The 
applications range from trajectory planning for 
launch vehicles to the trajectory design of 
interplanetary missions [1, 11, 16-19]. 

The RGA used in this study is similar to that 
described in an orbit transfer problem [19], and 
simulated with the Genetic Algorithm and Direct 
Search Toolbox V. 2 [20] (with some modifications) 
in MATLAB 7.1. The number of nodes, N, for 
control vector θ(i), i=1,…, N through entire 
trajectory must be defined. As [10] has assumed, we 
choose N=10. The RGA task is to find θ(i) to 
maximize fitness function. 

For satisfying constraint, using penalty function 
approach, the fitness function is designed to evaluate 
the final position and velocity of vehicle at final time 
as: 
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The term wi are nonnegative penalty factors that are 
chosen by trial and error to be w0=1, w1=6, w2=2, 
and w3=1.025. The basic idea is to assign individuals 
that have small gi(x) a better fitness (or higher 
|u(tf)|), thereby providing them more opportunity to 
survive. 

By Rank method, the raw fitness scores are scaled 
to values in a range that is suitable for the selection 
function. This method scales the raw scores based on 
the rank of each individual instead of its score. The 
rank of an individual is its position in the sorted 
scores. The rank of the fittest individual is 1, the next 
fittest is 2, and so on. Rank fitness scaling removes 
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the effect of the spread of the raw scores. 
The other RGA parameters are considered as: 

stochastic uniform selection with elitism, scattered 
crossover with 0.8 probability, uniform mutation 
with 0.1 probability, population size 100, and 50 
generations for termination. 

The selection function as stochastic uniform lays 
out a line in which each parent corresponds to a 
section of the line of length proportional to its scaled 
value. The algorithm moves along the line in steps of 
equal size. At each step, the algorithm allocates a 
parent from the section it lands on. The first step is a 
uniform random number less than the step size. 

The scattered crossover creates a random binary 
vector and selects the genes where the vector is a 1 
from the first parent, and the genes where the vector 
is a 0 from the second parent, and combines the 
genes to form a child. The crossover fraction 
specifies the fraction of the next generation, other 
than elite children, that are produced by crossover. 

The uniform mutation is a two-step process. First, 
the algorithm selects a fraction of the vector entries 
of an individual for mutation, where each entry has a 
probability rate of being mutated. In the second step, 
the algorithm replaces each selected entry by a 
random number selected uniformly from the range 
for that entry. 

The operator known as elitism copies the best 
individual from the previous generation into the new 
generation if a better individual was not created in 
the new generation, i.e., elitism was chosen to 
prevent the current best solution from gettining lost. 
If the individual with the largest value of f in the new 
generation does not outperform the preceding 
generation's elite individual, then the old elite 
individual is copied over the worst performing 
member of the new generation. The elite count 
specifies the number of individuals that are 
guaranteed to survive to the next generation. 

The generations, stopping criteria, specifies the 
maximum number of iterations the genetic algorithm 
will perform. 

The calculations were repeated several times 
using different seeds to check the repeatability of the 
optimal parameters. However, a detailed Monte 
Carlo study to determine their distribution was not 
performed. 

 
 

3.3 Hybrid approach 
GA convergence typically occurred in fewer than 50 
generations. After convergence, we have good initial 
guess for beginning any gradient methods such as 

DOPC (Discrete Optimization with Constraints) 
algorithm [10]. DOPC program performs additional 
calculations to refine the RGA's solution and more 
precisely define the optimal trajectory. This 
optimization technique consisted of the RGA and 
DOPC program working together to find the 
approximate location of the global minimum, which 
was further refined by the DOPC program to 
determine a precise solution. It is not possible to 
prove that the final solution obtained is a true global 
minimum [1], but the result can be compared against 
one obtained with different optimization routines, 
especially the DOPC algorithm with the assumption 
that we have very good initial guess, to show that 
they are superior to or at least equally optimal 
solution. 
 
 
3.4 Simulation results 
With the assumption of xf=0.15, yf=0.2, and g/a=1/3, 
the optimal trajectories for analytic, GA, and hybrid 
methods are shown in Fig. 2. The thrust angle 
histories obtained from these methods are compared 
and shown in Fig. 3. This comparison was repeated 
for state histories in Figures 4 and 5. Table 1 shows 
final conditions reached by them. A good harmony 
can be seen from these figures. The hybrid and GA 
methods reach almost the same position at the same 
time and satisfy final constraints.  
 
 

Table 1. Trajectory boundary conditions 
Method u f /at f v f /at f x f /at f

2 y f /at f
2

Analytic 0.4538 0 0.15 0.2 
GA 0.4521 6.7e-4 0.148 0.2 
Hybrid 0.4538 0 0.15 0.2 

 
 

 
Fig. 2. Trajectory comparisons.  
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Fig. 3. Control comparisons.  

 
 
 

 
Fig. 4. Orbital velocity comparisons.  

 
 
 

 
Fig. 5. Radial velocity comparisons.  

 
 
 

4 Conclusion 
A real-coded genetic algorithm was used in 
conjunction with a gradient method (DOPC 
algorithm) to optimize a rendezvous trajectory. The 
reliance of the gradient method on earlier solutions 
and its sensitivity to the quality of the initial guesses 
were eliminated by relying on the genetic algorithm 
to search the parameter space to find the location of 
the globally optimal solution. The DOPC algorithm 
was used to refine the parameter set found by the 
RGA, improving the precision of the final answer 
beyond what would be possible by the use of the 
RGA alone. To prove that the final solution obtained 
by hybrid method is a true global minimum, and for 
investigation of the genetic algorithm solution, the 
results were compared against one obtained with the 
analytical method. All methods reached almost the 
same position at the same time, satisfied final 
constraints, and had similar control and state 
histories. Hybrid method proposed here is efficient 
and robust in achieving global optimal solution when 
boundary conditions were treated as equality 
constraints.  
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