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Abstract: - Based on the mathematical model presented in [1], this paper presents a new algorithm to decide the on/off 
schedule in Unit commitment by using Lagrangian Relaxation method. Theoretical analysis of the presented algorithm is 
provided. A simple search scheme, which avoids the forward searching and back tracing used by dynamic programming 
(DP) algorithm, is developed. Theoretical analysis and numerical test results show that the presented algorithm can be 
the substitute of the existing DP algorithm. 
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1   Introduction 
 

NOMENCLATURE 
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ii PF   Generator fuel cost function in a 
quadratic form 
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 N Total number of generator units 
min,iP  Minimum real power generation of 

unit i 
max,iP  Maximum real power generation of 

unit i 
t

iP  Generation output power of unit i at 
hour t 

t
loadP  Load demand at hour t 

 Rt Spinning reserve at hour t 
t

iST  startup cost of unit i at hour t 
T  Total number of hours. 
 Ti,down Minimum down time of unit i 
 Ti,off Continuously off time of unit i 
 Ti,on Continuously on time of unit i 
 Ti,up Minimum uptime of unit i. 

t
iU  Status of unit ( on=1, off=0) 

tt µλ ,  Lagrangian multipliers at hour t 
 
     
     Unit commitment (UC) is an important 
application which schedules the generations in an 
economic way that the total system production cost 
over the scheduled time horizon is minimized under 
the constraints of the spinning reserve and 
operational constraints of generator units. Generally, 

UC problem is a nonlinear, mixed integer 
combinatorial optimization problem. Many 
approaches have been developed to try to solve UC 
problem.  
     Many methods such as priority list, Dynamic 
Programming (DP) [2], [3], [4], and Lagrangian 
Relaxation (LR) method[1], [5], [6], [7] have been 
developed to solve the combinatorial optimization 
problem. Recently, Artificial Neural Networks 
(ANN) [8],[9], Simulated Annealing (SA)[10],[11], 
fuzzy logic [12], [13] and Genetic Algorithms (GA) 
[14], [15] are also applied to solve this problem. 
     Up to now Lagrangian Relaxation (LR) method is 
still the most popular method for solving the unit 
commitment problem. The basic idea of LR is to 
relax system constraints in the objective function by 
using Lagrangian multipliers. The relaxed problem is 
then decomposed into N sub-problems for each unit. 
The dynamic programming process is used to search 
optimal commitment for single units. The Lagrangian 
multipliers are updated based on violations of 
systems constraints. For the UC problem, the primal 
function is always greater than or equal to the 
function which is defined as weak duality. The 
difference in value between the primal and dual 
function yields the duality gap which provides the 
measure of the sub-optimality of the solution. Most 
of the LR research has been concentrating on finding 
an appropriate technique for updating the Lagrangian 
multipliers, while minimizing the duality gap. Most 
of the studies update the Lagrangian multipliers using 
sub-gradient search algorithm. 
     In this paper, a new algorithm is developed to 
substitute the conventional dynamic programming 
(DP) for solving the dual problem. The new method 
avoids the searching forward and tracing back. It only 
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uses an auxiliary function compared with the start 
cost as the On/Off decision criterion of the unit. The 
obtained numerical test results show that the 
proposed method is simple, efficient and has great 
potential in solving practical UC problems. 
     The organization of this paper is as follows. 
Section 2 briefly introduces the Lagrangian 
Relaxation method based on [1]. A new algorithm 
which has the potential to replace the existing 
dynamic programming is presented in Section 3. 
Section 4 presents simple numerical tests on the 
proposed algorithm. Conclusion is given in Section 5. 
The Appendix provides the proofs of the proposed 
theorems of the new algorithm.  
 
 
2   Lagrangian Relaxation Method for 
Unit Commitment 
   
     UC problem is designed to minimize the 
production cost over the scheduled 24-hour time 
horizon under the constraints of generator operation 
and spinning reserves. The objective function to be 
minimized is [1] 
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     By temporarily ignoring the coupling constraints, 
duel optimization procedure transfers the original 
optimization problem into the following optimization 
problem (details are available in [1]): 
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Subject to  for t=1,…,T, and the 
constraints are given in (5). 
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3   A New Algorithm for Solving the 
Sub-problems 
 
3.1 Dynamic problem 
     In the conventional Lagrangian relaxation 
method, dynamic programming is used to obtain the 
dual solution for each unit separately. 
     In Eq. (6), if , the value of objective 
function to be minimized is trivial (i.e., it equals 
zero); if , the startup cost term and the term 

 can be ignored since they keep unchanged 
at this moment during the minimization of the 
objective function. The optimization problem, 
therefore, becomes the problem to decide  so that 
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     The term [ ]titt
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the optimality condition to find the dual power 
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The dual power is then obtained 
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There are three cases to check  against its limits 
[1]: 
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3.2 A new Lagrangian algorithm 
     In our method, the new on/off decision criterion 
will be used to substitute the DP method. 
     We define the new variable 
   (9) max,)( i
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     Then the minimum of the Lagrangian function for 
each generating will be changed to 
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Omitting the generator subscript i, equation (10) 
becomes: 
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     Here we assume ST is constant. If ST=0, then the 
on/off decision is very easy to make: If Xt is negative 
(Xt < 0), Ut = 1; If Xt is positive (Xt > 0), Ut = 0; If Xt 
= 0, Ut could be either 1or 0. 
     But usually ST > 0, then changing state 
(especially from 0 to 1) will affect the result of Eq. 
(11). So we have to modify the above criterion. Our 
main idea is: , if X[ Tt ,...,1,0∈∀ ] t < -ST, then Ut = 1; 
If Xt >ST, then Ut = 0. If –ST < Xt < ST, hen Ut will 
depends on Xt+1. If still can not be decided, it will 
depends on Xt+2, and so on… 
     In order to solve this problem, we define new 
variables: 
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As shown in Fig 1: 

   D(10)=7;  
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We assume that the solution of Eq. (10) is   
t=1,…,T. 
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     Our new on/off decision criterion is (the proof is 
given in the Appendix I): 
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       especially if , then . STX t > 0* =tU
     (2) If 0<MX , then 
       1* =tU Mtt ,,max K=

       especially if , then . STX t < 1* =tU
 
     From the criterion 2, we can get the solution of 
interval from tmin (or tmax) to M directly. The other 
interval’s solution could be gotten from criterion 1. 
     For every generator, the new algorithm is given as 
follows: 
    Step 1: Set t = 0, tt =′ ; 
    Step 2: Set S(0) = 0; 
    Step 3: If t < T, t = t+1; Otherwise stop. 
    Step 4: Calculate S(t), Smax, Smin, tmax, tmin, D; 
    Step 5: If D < ST, Go to step 3. 
    Step 6: If D > ST, 
     (1) If ,  0>tX
          tk UU ′=*

min,,1 ttk K+′=

                          0* =kU ttk ,,1min K+=

     (2) If ,  0<tX
          tk UU ′=*

max,,1 ttk K+′=

           1* =kU ttk ,,1max K+=
    Go to step 2                 
 
 
 

;  1= )0  1 (S 
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4   Numerical Results 
   
     In order to illustrate the effectiveness of the new 
method, the results of dynamic programming and our 
presented algorithm are compared. Two methods are 
used in solving the equation (10). The program was 
written in MATLAB on a PC/Pentium 400. We use a 
random vector X with 1,000,000 random variables 
and random number ST in the test. The results show 
that dynamic programming uses 40.7 seconds but our 
new method only need 27.9 seconds. 
     The results show that the new method is faster 
than the dynamic programming, but identical 
optimization solution is obtained. As mentioned in 
3.1, in solving the equation (11), dynamic 
programming needs 4N(T-1)+2 additions and 
2N(T-1) comparisons, but our method only needs 
2NT additions and 2NT comparisons. So the new 
method is more efficient than the dynamic 
programming. More numerical test results will be 
reported in further papers. 
  
 
5   Conclusion 
   
     This paper presents a new approach to determine 
the hourly unit status instead of single-unit dynamic 
programming. The new On/Off decision criterion is 
depended on an auxiliary variable S which is the sum 
of Xt. The proposed method has been tested. Test 
results show that the proposed algorithm is able to 
obtain the identical results as dynamic programming 
but with less CPU time. The results imply that the 
proposed method is simple, efficient and has 
potential for solution of practical UC problem. 
In the conventional Lagrangian relaxation method, 
dynamic programming is used to obtain the dual 
solution for each unit separately. 
 
 

Appendix I 
Proof of the new method 
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Proof: Let’s first define the following variable: 
n: the number of the state (0 or 1) changed. 
Ffixed: the cost of the decided time i.e.  .,,2,1 Mt K∉

2
1
n

nF : the total cost when the number of undecided 
state at ‘off’ is n1 and at ‘on’ is n2. 
Then, 
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If n = 2, 
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Propriety (3) could be proved in the same way. 
 

     Theorem 1.2: Assume that  
D(M-1) < ST and D(M) > St, then: 
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Proof: Because D(M-1) < ST and D(M) >ST, so tmax 
= M. 
Define n′  as the number of the state (0 or 1 ) 
changed at internal [tmin, M], then: 
Assuming  and , 0*

min
=tU 0*

1 =+MU
If 0=′n , 

fixedFF ′=0
1  

0
1

1
0 )( FMDSTFF fixed >++′=  

If 1=′n , 
0

1
1

1 )( FonSSTFF fixed >++′=  

If 2=′n , 
0

1
2

1 )(22 FonSSTFF fixed >++′=  
or 

0
1

1
2 )( FonSSTFF fixed >++′=  

When ,,5,4,3 K=′n using the similar method we 
can get that . 0

1FFn >
      In the other conditions, we can also get 

. So propriety (1) is also proved. 0
1FFn >

     It is easy to see if  then . ,STX t > 0* =tU
     Using the same approach, propriety (2) can also 
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