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Abstract: - In this paper we consider a simple port as multi server queuing system and determine optimum-
group servers by a stochastic algorithm on the different types of servers, which minimize the demurrage cost in 
addition to service cost. Finally, it has been used for the ship arrival and departure from a port together with 
suitable computer programming. 
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1 Introduction 
The multi server queuing system in which 
customers require a random number of identical 
servers has been studied originally by L. Green [4]. 
Gillent and Latouche presented an explicit solution 
for finding the rate matrix R associated with the 
model, and hence, simplified the computation of the 
steady state probability vector considerably [3]. 
Leeuwaarden and Winands determine the 
equilibrium distribution for a class of quasi birth and 
death (QBD) processes using the matrix geometric 
method, which requires the determination of the rate 
matrix R. In contrast to most QBD processes, the 
class under consideration allows for an explicit 
description of R, by exploiting its probabilistic 
interpretation [6]. Altiok  propose  bounds and an 
approximation for a modified port time which is a 
significant measure of performance in bulk-material 
port operations [1]. 

In this paper, our main focus is on the 
different types of servers, which minimize the 
demurrage cost in addition to service cost, a subject 
that was not considered in the aforementioned 
references. 
  
2 The Model 
We consider a simple port in which arrival of the 
ships are Poisson with rateλ . The system consists 
of s independent and identical servers. The service 
time of individual servers are exponentially 
distributed with meanµ . A ship requires 
simultaneous service from i  servers with 
probability ,  depending on its tonnage, 
then service time of every ship is not exponentially 
distributed but it is distributed as  
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Supposing that arrival of the ships are Poisson 
with rate λ , the following lemma shows that i-type 
ships are also Poisson.   

 
Lemma 1.  We consider a port system in which 

arrival of ships are Poisson with rateλ . If i -type 
ships with tonnage  arrive to port with 

probability , then -type ships are Poisson with 

rate

iT
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λip . 

Prove: We define Νi(t),i=1,…,m as the number of 
i-type ships which arrive to port, with probability pi 

and Ν(t)= . Using total probability and 

because of  N(t) is Poisson with rate λ and 
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2.1 QBD processes and matrix-geometric solution 
We present the model formulated as a QBD 
process. We express the state of the system at 
an epoch by a double (i, j), where i denotes the 
number of ships in queue and j denotes the 
number of busy l-type servers, where 1≤ l≤ k.  
We order the states lexicographically, i.e. {(0, 0),…, 
(0,s), (1, 0),…, (1,s),…, (n, 0),…, (n,s),…} and 
assume that the infinitesimal generator Q has the 
following block tridiagonal structure:  
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where A0, A1 and A2 are square matrices of order s. 
The matrices A0, A2, B0 and B2 are nonnegative and 
the matrices B1 and A1 have nonnegative off_-
diagonal elements and strictly negative diagonals. 
We denote the diagonal elements of B1 and A1 by∆ , 
which are such that the row sums of Q equal zero 
[3]. 

The QBD process driven by Q is ergodic if 
and only if it satisfies the mean drift condition  
ωA0e < ωA2e                                                (1) 
where ω = (ω0,…,ωs) is the equilibrium distribution 
of the generator A0 + A1 + A2 and e the unity vector. 
When (1) is satisfied, the stationary distribution of 
the QBD process exists. Denoting by π(i, j) the 
stationary probability of the process being in state (i, 
j), and using the vector notationπn = (π(n; 0),…, 
π(n;s)), the balance equations of the QBD process 
are given by 
πn-1A0 + πnA1 +πn+1A2 = 0,       n ≥2               (2) 
and 
π0B1 +π1B2 = 0,                                              (3) 
π0B0 + π1A1 +π2A2 = 0,                                  (4) 

Introducing the rate matrix R as the minimal 
nonnegative solution of the nonlinear matrix 
equation 
A0 + RA1 + R2A2 = 0,                                    (5) 
it can be proved that the equilibrium probabilities 
satisfy  
πn+1 = πn R    n≥1,                                           (6) 

The vectors π0 and π1 follow from the 
boundary conditions (3-4) and the normalization 
condition 
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Where  I represents the identity matrix. In order to  
obtain the stationary distribution, one should thus 
determine the rate matrix R. Several iterative 
procedures exist for solving (5). For example, we 
can  use the following scheme 
R(k+1) = -(A0 + R(k)2A2)  ,k = 0, 1,…         (9) 1

1
−A

starting with R(0) a matrix of zero-entries only. Now, 
the following result holds [6]: 

Theorem 1. Assume (1) is satisfied and A2 = se.ν , 
where  ν   is a column vector and     a row vector 
normalized by  = 1. Then 
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We denote the stationary waiting time 

distribution at an arrival epoch by W(t). Consider an 
absorbing Continuous Time Markov Chain {Y(t)} 
with infinitesimal generator Q : 
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which is obtained by setting λ equal to zero in Q  
and the set of transient states  i ={(i, 1),…,(i, s)} for 
i≥0, an absorbing state 0=(0, 0). Y(t)  gives the state 
of the system (i, j) at time t and time 0 is defined as 
an arbitrary arrival epoch, i is the number of ships 
still in queue who arrived before time 0, and j is the 
number of busy servers. Let yi (t)=(y (t),…,y (t)), 
i≥0, t≥0 and y(t)=(y

1i is

0(t), y0(t),…), where y(t) be the 
solution of differential equations system: y ' (t) 
=y(t) Q , y(0)=π. Therefore y(t) gives the 
probabilities that the process is in the various states 
(i, j) and y0(t) is the probability that the process has 
reached state 0 at time t. Suppose Wi(t) is the 
waiting time distribution for an arriving ship who 
requires i servers and W(t)={W1(t),…,Ws(t)} or 
equally: 
W(t)= +ety )(0 y0(t)C                                       (11)  

Such that C is an s× s matrix that the first s-i 
elements of column i are ones for each i, otherwise 
zeros. 

 Using total probability, we obtain W(t)=cW(t), 
where c={c1,…,cs}. Using (11) and Laplace Stieltjes 
transform (LST), we obtain: 
Ŵ(ξ )=y0(t)e+ŷ(ξ )[be+ξ C]                                  (12) 
where b is s-vector and  Ŵ(ξ ) is LST of W(t). 

Using recursively method for solving 
the differential equation y ' (t) =y(t) Q ,, we have  
ŷ0 (ξ )=y0(0)                     (13) +− −1][ BIξ
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where ŷ0 (ξ ) is LST of  y0(t). Let  denote the 
mean conditional waiting time given that an 
arriving ship requires i  servers and 
W . From  (12) and (13), we have 

W = - 

iW

),,( 1 sWW K=
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ξd
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, r2= es
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where E  is an  s× s matrix of ones. Using (14), we 
can compute the mean waiting time as follows: 
E[W]=cW.                                                   (15)                                                                                                        
         

 
2. 2  Model formulation 
Ships enter service in their order of arrival (FIFO) 
and leave the system only after all servers have 
finished service. In this paper we consider K -group 
servers with different types such that service rate of 
each group are different. Therefore we must choose 
optimum-group servers which minimize the total 
cost in the port i. e. 
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Where  and   are service 
cost, demurrage cost, waiting time random variable 
and number of servers respectively. Since W is a 
random variable, the problem (16) is a stochastic 
programming. In the following Algorithm, we 
compute the probability distribution vector 
dependent on ship tonnages and their probabilities 
[2]. 

WyxCs    ),(C    ),( W s

ALGORITHM  1. 
Input: t[1],…, t[m]; u[1],…, u[m]; s. 
Output: c = . ),...,( 1 scc
Set  f=n=r=0, h:=0, v:=0 
1.For i=1 to m do e[i]:=s∗ t[i]/t[m] 
2. For j=1 to m-1 do 
   n[j]:=trunc(e[j]) 
   e[j]:=e[j]-n[j] 
3. f[s]:=u[m] 
4. For i:=1 to m-1 do 
5.    If  n[i]=0 then r[1]:=r[1]+u[i]∗  e[i] 
       Else 

6. If n[i]=v then 
7.    r[v+1]:=r[v+1]+u[i]∗ e[i] 
8.    f[v]:=f[v]+u[i] (1-e[i]) ∗
9. Else 
10.     v:=v+1 
11.     Repeat step 6 while v≤ s 

12.For  j:=1 to s do 
     f[j]:=f[j]+r[j] 
     h:=h+f[j] 
13.For j:=1 to s do c[j]:=f[j]/h 
14. Exit                        
  
One can select another scheme for computing the 
probability distribution vector, but our algorithm has 
the following property. 
 
Lemma 2.  
In algorithm 1, we suppose that s=m and  =iT, 

where u i is that arriving probability to port for i-

type ships with tonnage  , i=1,…,m, then we have 

iT

iT
c= . ),...,( 1 muu
Prove: step 1 gives e=(1, 2,…, m). Update n and e 
vectors in step 2 as follows: n=(1, 2,…, m-1, 0) , 
e=(0, 0,…., 0, m). The next step gives ms uf = . In 
For-loop for steps 4-11, our algorithm compute two 
vectors r and f as follows: r=(0,…, 0), 
f=( . Using the results of previous 

steps and this fact that ∑ , in step 12 we 

have  h=1 and  f=( . Finally in step 
13 we obtain the desired result. In addition, using 
lemma 1, we have  probability distribution function 

as   c i (t)= 
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Lemma 2 is a good property for computing the 
probability distribution vecor. 
The problem (16) is a simple stochastic 
programming. We can transform the problem (16) to 
deterministic problem by expectation value as 
follows: 
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Now we can solve the problem (17) by the 

following algorithm, using algorithm 1, (10), (14) 

and (15).    

 

ALGORITHM 2 

[1.] Construct C vector using ship tonnage. 

    [2.] For  Do kl ,,1K=

      [2.1] Compute Rate Matrix for -type server. l

      [2.2] Compute  vector and . lW )( lWE

    [3.] Determine optimal type server and its total  

           cost. 

In the next section we express an example and solve 

it, using our algorithm.                         

 
3 A numerical example 
We consider a port in which ships arrive Poisson 
with rate 4.1=λ  and the number of servers equals 
to 5. The service cost and demurrage cost are given 
in following tables: 
 
Table 1. table of service cost(s.c.) 
 
i-server server rate(µi) s.c. 

1 0.9 33 

2 1.2 40 

3 1.5 48 

4 1.5 51 

 
 
Table 2. table of demurrage cost(d.c.) 
   
i-ship tonnage probability (pi) d.c. 
1 100 0.24 12 
2 200 0.32 15 
3 300 0.26 18 
4 600 0.18 22 
   
 

Now we use our algorithm to find optimum 
group-servers in which minimize the total cost in 
(17). The following computations are obtained by 
our algorithm. 
 

THE PROBABILITY DISTRIBUTION VECTOR 
IS GIVEN BY 
 
   

1c  2c  3c  4c  5c  
0.3194 0.3576 0.1354 0.0000 0.1875 
 
 
 
THE TYPE OF SERVER=1 AND RATE OF 
SERVER=0.9 
 

⎟
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⎟
⎟
⎟
⎟

⎠
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⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

3133.2086.0963.0540.0511.
1338.3065.1415.0792.0751.
1770.1178.3248.1818.1722.
2179.1451.0670.3946.3739.
1649.1098.0507.0284.5532.

..MR  

 
,.0270) .0375 1,.0675,.052 ,.0753, .0678(0 =X  

.01995) ,.01883, .01324 .01193, .01847,(1 =X  
 
MEAN CONDITIONAL WAITING TIMES IS 
GIVEN BY 
 

6.9690) 2,4603,5.963,5.1530,5. 4.9412(W =  
 
mean waiting time is given by . 4674.5)( =WE
 
THE TYPE OF SERVER=2 AND RATE OF 
SERVER=1.2 
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⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

2223.1565.0775.0476.0520.
0817.2299.1138.0700.0764.
1104.0777.2559.1573.1716.
1367.0962.0476.3234.3528.
1010.0711.0352.0217.4782.

..MR  

 
,.0359) .0531 3,.1228,.082 ,.1623, .1947(0 =X  

.0201) ,.0204, .0159 .0165, .0319,(1 =X  
 
MEAN CONDITIONAL WAITING TIMES IS 
GIVEN BY 
 

6.2257) 9,1463,1.466,0.9777,1. 0.8768(W =  
mean waiting time is given by . 1.9523)( =WE
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THE TYPE OF SERVER=3 AND RATE OF 
SERVER=1.5 
 
 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
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⎝

⎛

=

1709.1246.0645.0421.0506.
0552.1831.0948.0619.0743.
0757.0552.2104.1347.1649.
0940.0685.0355.2732.3278.
0864.0499.0258.0169.4202.

..MR  

 
,.0319) .0484 7,.1331,.080 ,.1976, .2963(0 =X  

.0141) ,.0150, .0125 .0144, .0321,(1 =X  
 
MEAN CONDITIONAL WAITING TIMES IS 
GIVEN BY 
 

1.7497) 3,4933,0.717,0.3879,0. 0.3311(W =  
mean waiting time is given by . 0.6394)( =WE
 
 
THE TYPE OF SERVER=4 AND RATE OF 
SERVER=1.8 
 

⎟
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⎟
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⎠

⎞

⎜
⎜
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⎝

⎛

=

1383.1033.0551.0376.0483.
0399.1517.0810.0552.0710.
0553.0413.1783.1215.1562.
0687.0513.0274.2361.3035.
0494.0369.0197.0134.3744.

..MR  

 
,.0270) .0416 0,.1295,.073 ,.2096, .3773(0 =X  

.0098) ,.0108, .0094 .0117, .0291,(1 =X  
 
MEAN CONDITIONAL WAITING TIMES IS 
GIVEN BY 
 

.9503) .4354, .2699, ,.1984, .1628(W =  
 
mean waiting time is given by  .33770)( =WE
 
THE TOTAL COST VECTOR FOR i-TYPE 
SERVERS IS GIVEN BY 
 

1042.62) 1002.84, ,930.80, 1026.32(E(TC(.)) =  
MIN TOTAL COST=930.804 AND OPTIMAL 
TYPE SERVER=2 
 
4 Conclusion 

In this paper, we tried to formulate a simple port as 
multi server queuing system and we determined the 
optimum group servers using stochastic algorithm 2. 
It is hoped that we can construct a similar algorithm 
for reduction of traffic in call center and use it in the 
real world. 
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