
Team-Work based Architecture for Distributed Manufacturing
Scheduling

ANA MADUREIRA† NUNO GOMES* JOAQUIM SANTOS †

Computer Science Department
Institute of Engineering - Polytechnic of Porto

GECAD – Knowledge Engineering and Decision Support Research Group
Porto, Portugal

Abstract: - This paper presents a Team-Work based architecture for Distributed Manufacturing Scheduling with
Genetic Algorithms and Tabu Search. We consider that a good global solution for a scheduling problem may emerge
from a community of machine agents solving locally their schedules and cooperating with other machine agents.
Social aspects are considered when a community of autonomous agents cooperate to reach a common goal. Agents
negotiate in a cooperative way, in order to find a consistent overall plan, while avoiding significant changes onto
their current best possible local plans. A cooperative negotiation mechanism is proposed.

Key-Words: - Multi-Agent Systems, Dynamic and Distributed Scheduling, Meta-Heuristics, Manufacturing

1. Introduction

Real world manufacturing scheduling systems are
related to complex systems operated in continuous
changing environments. Such environments are
frequently subject to several kinds of random
occurrences and perturbations, such as new job
arrivals, machine breakdowns, employee’s sickness,
jobs cancellation, due dates and time processing
changes causing established schedules to become
easily outdated and unsuitable. Scheduling under this
environment is known as dynamic.

Traditional scheduling methods, encounter great
difficulties when they are applied to some real-world
situations. Several attempts have been made to
modify algorithms, to tune them for optimization in a
changing environment. The interest in optimization
algorithms for dynamic optimization problems is
growing and a number of authors have proposed an
even greater number of new approaches, the field
lacks a general understanding as to suitable
benchmark problems, fair comparisons and
measurement of algorithm quality [1][3][4][13].

Multi-agent paradigm is emerging for the
development of solutions to very hard distributed
computational problems. This paradigm is based
either on the activity of "intelligent" agents which
perform complex functionalities or on the
exploitation of a large number of simple agents that

can produce an overall intelligent behavior leading to
the solution of alleged almost intractable problems.

The main purpose of this work is the resolution of
more realistic scheduling problems in the domain of
manufacturing environments, known as Extended
Job-Shop Scheduling Problems [13-14], combining
Multi-Agent Systems (MAS) and Meta-Heuristics
potentialities.

The proposed Team-based approach is rather
different from the ones found in the literature; as we
try to implement a system where each agent
(Machine Agent) is responsible for optimize the
scheduling of operations for one machine through
Tabu Search or Genetic Algorithms. After local
solutions are found, each Machine Agent is required
to cooperate with other Machine Agents in order to
find a global optimal schedule. A Cooperative
Negotiation mechanism is proposed for coordinate
this process.

The remaining sections are organized as follows:
Section 2 summarizes some related work and the
research on multi-agent technology for dynamic
scheduling resolution. In section 3, some
organizational issues such as negotiation, cooperation
and MAS architectures are described. In section 4 the
scheduling problem under consideration is defined.
Section 5 presents the Team-Work based Model for
Dynamic Manufacturing Scheduling and describes

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 325

the proposed coordination mechanism. Finally, the
paper presents some conclusions and puts forward
some ideas for future work.

2. Related Work

Scheduling problems arise in a diverse set of
domains, ranging from manufacturing to hospitals
settings, transports, computer and space
environments, amongst others. Most of these domains
are characterized by a great amount of uncertainty
that leads to significant system dynamism. The
problem of dynamic scheduling is one that is
receiving increasing attention amongst both
researchers and practitioners. In spite of all previous
contributions the scheduling problem still known to
be NP-complete [3]. This fact incites researchers to
explore new directions. Multi-Agent technology has
been considered as an important approach for
developing industrial distributed systems.

In [19] Shen and Norrie presented a state-of-the-
art survey referencing a number of publications that
attempted to solve distributed dynamic scheduling
problems. According to these authors, there are two
distinct approaches in the mentioned work.

The first is based on an incremental search process
that may involve backtracking. In this approach,
orders are assigned to agents that search for solutions
to their local problems. If a solution holds violations
of inter-agent constraints, with regard to other agents’
solutions, agents backtrack and decide for a different
path. Agents repeat this process until a feasible
solution is found.

The second approach is based on systems in which
an agent represents a single resource and is therefore
responsible for scheduling that resource. Agents then
negotiate with other agents in order to accomplish a
feasible solution. Typically, this latter approach
builds upon a constructive heuristic, where agents
start scheduling operation per operation, in
succession, until all operations are scheduled.

A different approach is presented by Logie et al.
[12]. Here, a sliding window frame is implemented
and all agents with processes inside the current
window frame schedule their operations ignoring any
operations outside that window. This process goes on
until either the sliding window has advanced or gaps
have opened between tasks inside the window frame.

Any other approaches to solve dynamic
scheduling problems with multi-agents systems are
somehow, and to our knowledge, variations of those
presented above. For the interested reader, a quite
extensive compilation of work in this domain is
available at [6]. For further works developed on MAS
for dynamic scheduling, see for example,
[4][11][13][14][15][18][21].

As it will be shown later in this paper, our
approach will introduce a rather different way of
undertaking these problems.

3. Multi-Agent Systems

A Multi-Agent System (MAS) can be defined as
“a system composed by population of autonomous
agents, which cooperate with each other to reach
common objectives, while simultaneously each agent
pursues individual objectives" [7]. According to
Russell and Norving [17] multi-agent systems “[...]
solve complex problems in a distributed fashion
without the need for each agent to know about the
whole problem being solved”. Both these definitions
entail the idea that each agent has its own individual
goals and therefore coordination concerns
necessarily arise when the purpose of the system is
the resolution of a global problem. However,
effective coordination of multiple agents interacting
in dynamic environments is a problem on its own
and several strategies have been put forward to
handle such challenges. More specifically,
expressions like negotiation, coordination and
cooperation have been employed to describe
mechanisms that allow the management of multi-
agent systems.

3.1 Multi-Agent Negotiation

Negotiation can be defined as the process in
witch at least two operators, a sender and a receiver,
communicate across a communication protocol in
order to accomplish an agreement. A well known
negotiation protocol is the contract net protocol.
Since in multi-agent systems’ context negotiation
will always be specified by a protocol, which can be
simple or sophisticated, deterministic or non-
deterministic. Any type of negotiation can be seen as
similar in its nature from the contract net protocol
[4].

There are other negotiation models like game
theory, economical or psycho-sociologic. However,
most of the systems that employ negotiation use
economical models like auctions where intervenient
expectations can be identified. It is then possible to
describe auctions by the strategy that agents use to
develop the negotiation method.

 MAS consisting of several autonomous entities,
called agents, that interact with each other to either
further their own interests (competition) or in pursuit
a common objective (cooperation).

Negotiation research in multi-agent systems can
be categorized into two main categories [10]:
Competitive Negotiation which occurs among self-
interested agents, each trying to maximize its local

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 326

utility; while in Cooperative Negotiation agents try
to reach the maximum global utility that takes into
account the worth of all their activities. For further
works developed on MAS negotiation, see for
example [2][5[16].

3.2 MAS Architectures

In this section we present a brief description of
some Multi-Agent Architectures (MAA), related on
literature, for building distributed software systems.
Multi-Agent Architectures (MAA) are fundamental for
MAS development, as they establish a significant
outcome on the system performance. Horling and
Lesser [8] identified a range of architectural strategies
that sprang from agent systems, their main advantages
and disadvantages.

Paradigm Characteristics Benefits Drawbacks
Hierarchy Decomposition Maps to many

common
domains; handles
scale well

Potentially brittle; can
lead to bottlenecks or
delays

Holarchy Decomposition
with
autonomy

Exploit autonomy
of
functional units

Must organize holons;
lack of predictable
performance

Coalition Dynamic, goal-
directed

Exploit strength
in numbers

Short term benefits may
not
outweigh organization
construction costs

Team Group level
cohesion

Address larger
grained
problems; task-
centric

Increased
communication

Congregation Long-lived,
utility-directed

Facilitates agent
discovery

Sets may be overly
restrictive

Society Open system Public services;
well defined
conventions

Potentially complex,
agents
may require additional
society-related
capabilities

Federation Middle-agents Matchmaking,
brokering,
translation
services;
facilitates
dynamic agent
pool

Intermediaries become
bottlenecks

Market Competition
through pricing

Good at
allocation;
increased
utility through
centralization;
increased fairness
through
bidding

Potential for collusion,
malicious behavior;
allocation decision
complexity can be
high

Matrix Multiple
managers

Resource sharing;
multiply-
influenced agents

Potential for conflicts;
need
for increased agent
sophistication

Compound Concurrent
organizations

Exploit benefits
of several
organizational
styles

Increased
sophistication;
drawbacks of several
organizational styles

Table 1 - MAA Description [8]

Table 1 summarizes the characteristics, objectives,

benefits and drawbacks of some MAA.

From the architectural strategies identified, we
considered only the distributed because they would be
appropriate to the objectives of our work considering
the distributed nature of dynamic scheduling.

The explanation for this decision derives from the
disadvantages that hierarchical architectures comprise.
In fact, hierarchical architectures may lead to fragile
systems as the concentration of control on agents of
higher level can disrupt the entire system if these same
agents fail. Also, such decision may lead to bottleneck
effects, as agents from lower levels need to
communicate with agents from higher levels for
coordination and control decisions. Thus, and to avoid
that kind of problems, the architectures initially
considered for our work, namely the Market based
architectures and Team based architectures, strongly
reduce such disadvantages.

On the other hand, the drawbacks of the team and
market based architectures can be reduced by the
progress of technology, specifically network
communication and security technology improvement.

Finally, we decided for Team based architecture
due to its philosophy of cooperation. Agents agree to
work together in order to solve a problem that is
shared by all agents in the team. Such approach allows
for the resolution of large-scale problems that a single
agent would not be able to solve. Moreover, Team -
based architecture has the ability to meet global
constraints given the capability that agents possess to
act in concert. As we shall see later, this characteristic
is critical for the problem at hand.

4. Problem Definition

Most real-world multi-operation scheduling
problems can be described as dynamic and extended
versions of the classic or basic Job-Shop scheduling
combinatorial optimization problem. The general
Job-Shop Scheduling Problem (JSSP) can be
generally described as a decision-making process on
the allocation of a limited set of resources over time
to perform a set of tasks or jobs. Most real-world
multi-operation scheduling problems can be depicted
as dynamic as already described before.

In this work we consider several extensions and
additional constraints to the classic JSSP, namely: the
existence of different job release dates; the existence
of different job due dates; the possibility of job
priorities; machines that can process more than one
operation in the same job (recirculation); the
existence of alternative machines; precedence
constraints among operations of different jobs (as
quite often, mainly in discrete manufacturing,
products are made of several components that can be
seen as different jobs whose manufacture must be
coordinated); the existence of operations of the same

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 327

job, on different parts and components, processed
simultaneously on different machines, followed by
components assembly operations (which
characterizes the Extended Job-Shop Scheduling
Problem (EJSSP)[13][14]).

5. Multi-Agent System for Distributed
Manufacturing Scheduling with
Genetic Algorithms and Tabu Search

Distributed environment approaches are important
in order to improve scheduling systems flexibility
and capacity to react to unpredictable events. It is
accepted that new generations of manufacturing
facilities, with increasing specialization and
integration, add more problematic challenges to
scheduling systems. For that reason, issues like
robustness, regeneration capacities and efficiency are
currently critical elements in the design of
manufacturing scheduling system and encouraged the
development of new architectures and solutions,
leveraging the MAS research results.

The work described in this paper is a system
where a community of distributed, autonomous,
cooperating and asynchronously communicating
machines tries to solve scheduling problems.

The main purpose of MASDScheGATS (Multi-
Agent System for Distributed Manufacturing
Scheduling with Genetic Algorithms and Tabu
Search) is to create a Multi-Agent system where each
agent represents a resource (Machine Agents) in a
Manufacturing System. Each Machine Agent is able
to find an optimal or near optimal local solution
trough Genetic Algorithms or Tabu Search meta-
heuristics, to change/adapt the parameters of the
basic algorithm according to the current situation or
even to switch from one algorithm to another.

The original Scheduling problem defined in
section 4, is decomposed into a series of Single
Machine Scheduling Problems (SMSP)[13-14]. The
Machine Agents obtain local solutions and later
cooperate in order to overcome inter-agent
constraints and achieve a global schedule.

5.1 MASDScheGATS Architecture

The proposed architecture, to handle the problem,
is based on three different types of agents. In order to
allow a seamless communication with the user, a
User Interface Agent is implemented. This agent,
apart from being responsible for the user interface,
will generate the necessary Task Agents dynamically
according to the number of tasks that comprise the
scheduling problem and assign each task to the
respective Task Agent.

The Task Agent will process the necessary
information regarding the task. That is to say that this
agent will be responsible for the generation of the
earliest and latest processing times, the verification
of feasible schedules and identification of constraint
conflicts on each task and the decision on which
Machine Agent is responsible for solving a specific
conflict.

Finally, the Machine Agent is responsible for the
scheduling of the operations that require processing
in the machine supervised by the agent. This agent
will implement meta-heuristic and local search
procedures in order to find best possible operation
schedules and will communicate those solutions to
the Task Agent for later feasibility check (Figure 1).

Figure 1- MASDScheGATS System Architecture

5.2 Negotiation Mechanisms

Once the Machine Agents find their respective best
local solution to the set of assigned operations, it is
likely that the assembly of such solutions in a final
plan will not establish a feasible schedule. The reason
for this situation derives from the fact that each
Machine Agent does not take into account, due to the
concurrent procedure of local searching, the plans of
other agents with which it has inter-agent constraints.
It is therefore necessary a subsequent coordination
mechanism so that a global feasible schedule is
attained whilst minimizing the adjustments to the
initial local solutions.

The mechanism to be implemented gets its
inspiration from the Asynchronous Weak-
Commitment Search Algorithm [20]. The cornerstone
of the mechanism is the assignment of priority values
to Machine Agents, according to an altruistic stance,
so that lower priority agents will satisfy the constraints
of higher priority agents. A set of coordination
messages are broadcasted amongst the agents, within
each coordination round, in order to ensure a coherent
communication of conflicts and avoid unnecessary
processing of solutions that will be discarded in
succeeding steps. When a Machine Agent can not find
a satisfactory solution, the system will increase that

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 328

machine’s priority value, so that other Machine
Agents will attempt to change their schedules in order
to find a solution to the conflicting constraints.

The major procedures of the coordination
mechanism algorithm are described, in sequential
order, below in Figure 2:

Step 1: User Interface Agent
for (each machine agent)
 Assign initial priority values according to their
 alphanumeric name.
end for;

Step 2: Task Agent
for (each task)
 Assign each operation to the respective Machine Agent
end for;

Step 3: Machine Agent
When received (set of operations, criteria) do
 Perform meta-heuristics in order to optimize criteria.
 Communicate sequence position of each operation to
 respective Task Agent.
End do

Step 4: Task Agent
When received (set of operations with sequence position)
do
 Verify feasibility of operations’ sequence
 if (sequence is feasible) then
 Communicate feasibility to Machine Agents through
 “allgood” messages
 else
 Identify conflicts and decide, based upon priority
 values, which Machine Agent should attempt to solve
 the conflict.
 Communicate decision to Machine Agents through
 “nogood” messages.
 End if else
End do

Step 5: Machine Agent
When received (all “nogood” and “allgood” messages) do
 Verify if there is a conflict to be solved on the
 machine
 if (no conflict needs to be solved) then
 communicate old sequence to each Task Agent
 else
 Verify if this same conflict was (within n rounds)
 already communicated
 if (conflict was communicated) then
 force solution.
 Return

 if (inter-agent constraints exist with lower priority
 agent that has also to solve conflict) then
 Halt processing of conflict.
 Communicate old sequence to each Task Agent.
 else attempt to solve conflict via local search.
 if (conflict solved) then
 Communicate new sequence to each task agent
 else
 Increase priority of agent to max-priority+1.
 Communicate old sequence to each Task Agent.
 End if else
 End if else
 End if else
end of round
return to step (4)
End do

Figure 2 - Coordination Mechanism Algorithm

5.4 Multi-Agent platform – JADE

In order to justify our decision of use JADE to
develop our proposal, we will describe in a
summarized way some of its most important
capabilities.

The main objective of JADE (Java Agent
DEvelopment Framework) is to turn simple the
development of agent systems ensuring at the same
time compliance with the most well known standards
of this specific area. To guarantee this, JADE was
developed in full compliance with FIPA
specifications, implementing features like naming
service and yellow-page service, message transport
and parsing service, and a library of FIPA interaction
protocols ready to be used.

This agent framework can be spread for several
hosts in which one Java application and one Java
Virtual Machine are running simultaneously. Each
Java Virtual machine functions like a container of
autonomous agents that provides a complete
concurrently execution environment.

The communication architecture offers flexible and
efficient messaging, where JADE creates and manages
a queue of incoming ACL messages, private to each
agent; agents can access their queue via a combination
of several methods: blocking, polling, timeout and
pattern matching based [9].

6. Concluding Remarks and Future
Work

We believe that a new contribution for the
resolution of more realistic scheduling problems
(Extended Job Shop Problems) was described in this
paper. The particularity of our approach is the
procedure to schedule operations, as each machine
will first find local optimal or near optimal solutions,
succeeded by the interaction with other machines
trough cooperation mechanisms as a way to find a
optimal or near-optimal global schedule.

We have discussed several options for coordination
mechanisms and justified our selection for
cooperation. A description of our cooperation
mechanism is presented. Furthermore, we have also
discussed two main approaches for MAS architectures
and justified our option for a distributed architecture
considering the drawbacks of hierarchical
architectures with regards to system robustness and
propensity for communication bottlenecks.

Work still to be done includes the testing of the
proposed system and negotiation mechanisms under
dynamic environments subject to several random
perturbations. We realize, however, that this is not an
easy task because it is difficult to find test problems
and computational results for the considered dynamic
environment where the jobs to be processed have
release dates, due dates and different job assembly
levels (parallel/concurrent operations).

Additionally, we envisage to develop a learning
mechanism that supported by a knowledge base will

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 329

permit to Machine Agents recognize scheduling
patterns and therefore improve the overall efficiency
of the system.

ACKNOWLEDGEMENTS
The authors would like to acknowledge FCT,
FEDER, POCTI, POCI for their support to R&D
Projects and GECAD Unit.

References:
[1] Aytug, H., Lawley, M.A., McKay, K., Mohan, S.

& Uzsoy, R. (2005). Executing production
schedules in the face of uncertainties: A review
and some future directions. European Journal of
Operational Research .Volume 16 (1). 86- 110.

[2] Beer, Martin, d’Inverno, Mark, Luck, Michael,
Jennings, Nick, Preist, Chris, and Schroeder,
Michael (1998). Negotiation in Multi-Agent
Systems, Panel discussion at the Workshop of the
UK Special Interest Group on Multi-Agent
Systems.

[3] Blazewicz, J., Ecker, K. H., Pesch, E., Smith, G.
Weglarz, J.(2001). Scheduling Computer and
Manufacturing processes. Springer. 2nd edition.
New York.

[4] Cowling, P. & Johansson, M. (2002). Real time
information for effective dynamic scheduling.
European J. of Operat.Research,139 (2). 230-244.

[5] Doran , J. E., Franklin , S., Jennings ,N. R.,
Norman , T. J. (1997). On Cooperation in Multi-
Agent Systems, Knowl. Eng. Rev., 12(3):309—
314.

[6] FARMS LAB - Laboratory for Fundamental and
Applied Research in Multi-agent Systems, Multi-
Agent Scheduling in Manufacturing Systems:
http://farm.ecs.umass.edu/~pschiegg/bib/lit.html

[7] Ferber, J. (1995). Les Sístemes multi-agents:
versune intelligence collective. Interedition.

[8] Horling, Brian, Lesser, Victor (2005). A Survey
of Multi-Agent Organizational Paradigms,
University of Massachusets.

[9] JADE – Java Agent DEvelopment Environment.
Technical Description. Retrieved on July 26,
2006 :http:// jade.tilab.com/description-
technical.htm

[10] Jennings, N. R. (1996). Coordination
Techniques for Distributed Artificial Intelligence,
in Foundations of Distributed Artificial
Intelligence(eds. G. M. P. O'Hare and N. R.
Jennings), Wiley, 1996, 187-210.

[11] Lind , Jurgen (1999). A Process Model for
the Design of Multi-Agent Systems, Research
Report TM- 99-03, German Research Center for
AI (DFKI).

[12] Logie, S., Sabaz, D., Gruver, W.A. (2004).
Sliding Window Distributed Combinatorial
Scheduling unsing JADE, IEEE International
Conference on Systems, Man and Cybernetics.

[13] Madureira, Ana M. (2003). Meta-Heuristics
Application to Scheduling in Dynamic
Environments of Discrete Manufacturing. PhD
Dissertation. University of Minho, Braga,
Portugal(in portuguese).

[14] Madureira, Ana, Ramos, Carlos & Silva,
Sílvio (2004). Toward Dynamic Scheduling
Through Evolutionary Computing. WSEAS
Transactions on Systems. Issue 4. Volume 3.
1596-1604.

[15] Milano, M. and Roli, A. (2004). MAGMA: a
Multiagent Architecture for Metaheuristics, IEEE
Transaction on Systems Man and Cybernetics,
Part B, Vol 34 N. 2.

[16] Monett-Díaz, Dagmar (2004). +CARPS:
Configuration of Metaheuristics based on
Cooperative Agents, Proceedings of First
International Workshop on Hibrid Metaheuristics
(HM 2004).

[17] Russel, S. and Norvig, P. (2003). Artificial
Intelligence: A Modern Approach, Prentice
Hall/Pearson Education International: Englewood
Cliffs (NJ), (2nd Ed).

[18] Shehory, O. and Sturm, A. (2001),
Evaluation of modeling techniques for agent-
based systems, in Proceedings of the 5th
International Conference on Autonomous Agents,
ACM Press: Montreal (CA).

[19] Shen, W. and Norrie, D. (1999). Agent-
based systems for intelligent manufacturing: a
state of the art survey, Int. J. Knowl. Inform.
Syst., vol. 1, no. 2, pp. 129– 156. [20]
Wooldridge, M. (2002). An Introduction to
Multiagent Systems, John Wiley and Sons.

[20] Yokoo, M., Hirayama, K. (2000).
Algorithms for Distributed Constraint
Satisfaction: A Review, in Journal of
Autonomous Agents and Multi-Agent Systems.

[21] Zambonelli, F. and Parunak, H. V. D.
(2004). Toward a change of paradigm in
computer science and software engineering: A
synthesis, Knowl. Eng. Rev.,

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 330

