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Abstract: - Composite materials are a very important class of engineering materials with great properties and 
applications in a variety of complex structures. The correct design of such structures requires adequate analysis 
and, in particular, adequate and accurate models for simulation with numerical tools. Piezoelectric materials can 
convert mechanical energy into electric energy and vice-versa and are being applied in laminated composite 
structures, working either as sensors (mechanical load applications) or actuators (electric potential applications), 
allowing its use in a wide range of engineering applications. Two important subject matters in the type of 
applications involving laminated composite structures and piezoelectric materials are the identification of 
material constants and the optimal location of actuators and sensors. In this work two numerical procedures 
involving genetic algorithms and neural networks are proposed for these problems. A neural networks based 
methodology for the identification of mechanical properties is presented. The identification process makes use of 
the information collected from piezoelectric sensors. Pairs of sensors are placed on the surfaces of a composite 
laminated plate and the potential differences are obtained among pairs when the plate is charged. Since genetic 
algorithms are very expensive when the objective function has high computational cost, we introduce the 
artificial neural networks to improve the efficiency of the genetic algorithm for the optimal location of 
piezoelectric actuators. Neural networks make a choice of the chromosomes for which it is worthwhile to 
calculate the objective function; for the other chromosomes neural networks attribute a value to the objective 
function. For both procedures, the results obtained are compared with those present in literature. 
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1   Introduction 
Piezoelectric materials are being applied in laminated 
composite structures, working either as sensors or 
actuators, allowing its use in a wide range of 
engineering applications. Benjeddou, [1], presents a 
bibliographical revision concerning finite elements 
modeling of adaptive composite structures. 
 

An important aspect in the type of applications 
involving laminated composite structures and 
piezoelectric materials is the identification of material 
constants. In fact, for the case of material composites, 
as they are the result of the mixture of two or more 
materials, the obtaining of its final properties 
becomes particularly complex once the parameters to 
define depend not just on the properties of the 
materials involved as, also, on the manufacturing 
process. The necessary parameters for the model can 

be obtained partially through destructive 
experimental tests of the final material or based on 
empiric formulas and the maker specifications on the 
base materials. In any of the cases, the guarantee of 
the results is reduced since the process of 
manufacture of the material can cause a great 
dispersion in the properties. An alternative form of 
obtaining the involved physical and mechanical 
parameters is through the resolution of an inverse 
problem in which the properties are identified from 
the structural response. 
 

A procedure to obtain the material constants of 
composite laminates based on genetic algorithms was 
proposed in [2]. Following this work, a neural 
network model was proposed in [3]. Bibliographical 
revision on this subject can be found in [4]. 
Another important aspect in the type of applications 
involving laminated composite structures and 
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piezoelectric materials is to improve their intended 
performance based on the optimal location of 
actuators and sensors, a typically discrete problem. A 
bibliographical revision on the subject of adaptive 
composite structures, including aspects related to the 
optimal location can be found in [5]. Genetic 
algorithms have shown an adequate technique for the 
optimization problem, particularly to solve these 
problems [6], but they demonstrated low 
computational efficiency and high computational 
cost, essentially related to the great number of times 
that the evaluation function was calculated.  
 

In this work two numerical procedures involving 
genetic algorithms and neural networks are proposed 
for the described problems. A neural network based 
approach is proposed to identify the properties of 
composite laminated plates. The information 
collected from piezoelectric sensors placed on the 
surfaces of the composite laminated plate is used as 
the structural response parameter. For the case of 
optimal location of actuators, a methodology that 
intends to reduce the number of times that the 
evaluation function is calculated is proposed, by 
introducing some “intelligent” characteristics to the 
genetic algorithm through its combination with neural 
networks, but without removing the random 
characteristic of the genetic algorithm. 
 

A higher order finite element formulation allowing 
the response of the laminated plates is developed in 
order to make the forward computation for both 
procedures. The results obtained with these methods 
are compared with those present in literature. 
 
 
2   Finite Element Modeling 
For a composite laminated plate with piezoelectric 
materials, the linear piezoelectric constitutive 
relations, coupling the elastic field and the electric 
field, can be expressed as [7] 
 

 - ; TQ e E D e p Eσ ε ε= = +   (1) 
 

where σ  is the elastic stress vector, ε is the elastic 
strain vector, Q  is the elastic constitutive matrix in 
the laminate coordinate system, e is the piezoelectric 
stress coefficients matrix in the same coordinate 
system, D  is the electric displacement vector and p  
represents the dielectric matrix. E  is the electric field 
vector which is the negative gradient of the electric 
potential, E φ= −∇ , where φ  represents the electric 
voltage applied. 
 

In order to approximate the elasticity problem of a 
two-dimensional laminate, a higher order finite 
element formulation was developed, based in the 

following displacement field   
3
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where 1 2 3, ,u u u  are the displacement components at 
any point in the laminate space in the , ,x y z  
directions, respectively, , ,u v w  are the displacements 
of a generic point on the reference surface, 1 2,φ φ  are 
the rotations of a normal to the reference surface 
related to the y  and the x  axes, respectively, and 

1 2 3 3, , ,θ θ θ ψ  are the higher order terms. 
 

Hamilton’s principle is used to derive the equations 
for the finite element formulation and a nine node 
Lagrangian quadrilateral element is applied to the 
formulation. This model has nine degrees of freedom 
at each node for the elastic behaviour and one 
additional electric potential degree of freedom for 
each piezoelectric layer for the piezoelectric 
behaviour. The electrical potentials φ  are assumed to 
be constant for each piezoelectric layer within each 
element. 
 

The system of equilibrium equations obtained for the 
laminated composite plate with embedded or surface 
bonded piezoelectric layers can be written as 
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where uuM  is the mass matrix, 
uu

K  is the elastic 
stiffness matrix, K

φφ
is the dielectric ‘stiffness’ matrix 

and 
u

T
uK K

φ φ=  are the coupling matrices between 

elastic mechanical and electrical effects. { }Tu φ are 
the system of generalized displacements and voltages 
at sensors and ( ) ( ){ }T

uF t F tφ  are the mechanical 

loads and the applied electrical charges at time t , 
defining the force vector of the system. A more 
complete description can be obtained in [4, 5]. 
 
 
3   Genetic Algorithms and Neural 
Networks 
 
3.1 Genetic Algorithms 
Genetic algorithms are search and optimization 
techniques inspired by Darwin's theory of natural 
evolution [8]. Genetic algorithms start with a 
population of chromosomes (a digit sequence, in 
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general binaries), each one of them representing a 
solution in the search space. Each solution is 
evaluated using a fitness function which demonstrates 
the merit of the respective individual. Based on the 
fitness, a random selection is made, in which the best 
chromosomes have a higher chance of being selected. 
The successive application of genetic operators 
(crossover and mutation) to the selected individuals 
generates tendentiously more fitting populations. 
When the algorithm attains a pre-established 
criterion, it stops. 
 

The genetic algorithms have a high probability of 
tending to the global minimum; that is, to the best 
performance. The risk of the algorithm being stuck in 
a local minimum is relatively low if the search is 
made from a large enough random set of solutions 
and if the population diversity is assured during the 
process.  
 

The basic requisites for the construction of a genetic 
algorithm are: 1) Codification technique of the 
population individuals in chromosomes, 2) 
Characteristics (dimension and generation) of the 
initial population, 3) Evaluation function that allows 
the measurement of the merit of each individual, 4) 
Selection method used to make sure that the best 
individuals have a higher probability of remaining in 
the population and/or of reproduction, 5) Genetic 
operators necessary for the attainment of new 
individuals and the probability with which they will 
operate, 6). Stop criteria. A more detailed description 
of these aspects can be found in [5].  
 
3.2 Neural Networks 
Some appealing features of neural networks are their 
ability to learn through examples, they do not require 
any prior knowledge and can approximate well any 
non-linear continuous function [9]. Among the 
several architectures used in practice, feedforward 
type neural networks, shown in Fig. 1, have been 
considered more suitable for the purposes of the 
signature analysis. 
 

 
Fig. 1 – Feedforward Neural Network 

A feedforward neural network consists of several 
layers, each one with some neurons, linked to each 
other by weights. The weights determine the nature 
and the strength of the connection and the number of 
nodes considered in the input and output layers 
depend on the specifications of the problem. The 

number of hidden layers, the number of neurons in 
each hidden layer as well as the activation function 
type for each neuron is selected according to the 
experience and some convergence criterions. 
 

The application of artificial neural network consists 
of two stages, namely training and testing. During the 
training stage an input-to-output mapping, using the 
available sample data, is presented to the network. 
The network evaluates its own output based on the 
presented input and compares this value with the 
target (presented) output. The actual output error is 
used to adjust the node weights so that the error can 
be reduced. The learning stage stops once a cross 
validation pre-set error threshold is reached and the 
node weights are frozen at this point. During the 
testing stage, data that have not been presented to the 
network in the learning stage are provided as input 
and the corresponding output is calculated using the 
fixed node weights. 
 

In this work, the training of the neural network has 
been performed with a second order type algorithm, 
the Levenberg Marquardt [10].  
 
 
4   Numerical Applications 
 
4.1 Identification of Mechanical Properties 
 
4.1.1   Problem Definition 
Consider a simply supported glass/epoxy laminated 
plate, made with 4 glass/epoxy equal thickness layers 
and with stacking sequence [0/90/90/0]. The plate 
dimensions are 200x200x2.5 mm. 
 

The fiber glass (f) and the epoxy matrix (m) have the 
following mechanical properties:   

85.0 ; 35.420 ; 0.2

3.4 ; 1.308 ; 0.3
f f f

m m m

E GPa G GPa

E GPa G GPa

ν

ν

= = =

= = =
 (4) 

 

The laminae from the laminated plate can be 
manufactured varying the fiber volume fraction from 
0.4 to 0.7. Then, considering the Halphin-Tsai 
equations [11], the corresponding properties of the 
laminae are presented in table 1. We assume E2 = E3 , 
G12 = G13 = G23 and ν12 = ν13 = ν23. 
 

Fiber Volume Vf = 0.4 Vf = 0.7 
E1 (GPa) 36.04 60.52 
E2 (GPa) 9.03 20.20 
G12 (GPa) 2.85 8.13 
ν12 0.26 0.23 

Tab. 1 – Space of Properties 

A discretization with 36 equal elements is considered. 
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Six piezoelectric sensors are placed on the plate 
surfaces. A schematic representation of the plate with 
the piezoelectrics is illustrated in Fig. 1. 
 
 

 
Fig. 1 – Plate with 6 Pairs of Sensors 

 

The plate is loaded with 5 N applied in its center and 
the sensor readings are obtained with the described 
finite element model. The application considers a 
PVDF piezoelectric, with E1 = E2 = E3 = 2 GPa, G12 = 
G13 = G23 = 1 GPa, ν12 = ν13 = ν23 = 0.29, as elastic 
properties and the following piezoelectric properties: 

2
311 322 0.046 /e e C m= =  and 09

33 1.062 /p F m−= . 
 

The main objective is to determine the mechanical 
properties 1E , 2E , 12G  and ν12 of a target plate, 
designated as “experimental”. 
 
 
4.1.2   Neural Network Model 
The idea with this model is to use neural networks to 
interpret the relationship among the potential 
differences in the sensors and the mechanical 
properties associated to the laminate plate. A neural 
network with 4 layers and 6 neurons in the input 
layer, corresponding to the 6 potential differences in 
the sensors, and 4 neurons in the output layer, 
corresponding to the 4 properties, were defined. For 
the intern layers, 2 neurons were defined. This neural 
network is designed Net 6-2-2-4. 
 

The training data are created as follows. In a first 
step, 16 sets of properties are defined according to a 
uniform distribution of fiber volume between 0.4 and 
0.7. After, 30 different fiber volumes are randomly 
created between the same space, allowing 30 other 
sets of properties. For each set, the potential 
differences in the sensors are obtained using the finite 
element model. Then, 46 training patterns were 
created. From the 46 training patterns, 6 are randomly 
chosen to be used as cross validation. 
 

With the Halphin-Tsai equations, the 6 sets of 
properties which were different from each other, as 
well as from the training ones, were created to be 
used as testing data. In order to simulate manufacture 
conditions, a perturbation is added to the testing 
values of properties according to 
 

 1
100

A A randnβ⎛ ⎞= +⎜ ⎟
⎝ ⎠

  (5) 
 

where A  is the data without perturbation, A  is the 
data with perturbation, β  is a parameter that 
indicates the level of perturbation considered (0.5 in 
this step) and randn  is a random number with 
variance and standard deviation 1. 
 

Upon obtaining the testing data of “experimental” 
properties, their corresponding values of potential 
differences across the piezoelectric sensors are 
obtained using the finite element model. Finally, in 
order to simulate piezoelectric sensor reading 
conditions another perturbation is added, using the 
same expression (10) and considering β =0.25. 
The hyperbolic tangent function is used as transfer 
function for all neurons and the data are normalized 
between [-1,+1]. 
 
 
4.1.3   Obtained Results 
The response obtained from the neural network is 
presented in table 2. Additionally, this table shows 
the main relative errors (%) for each case.  
 
 

Properties Mat. 1 Mat. 2 Mat. 3 
Exp. 38.018 43.296 47.139 
Net 37.632 43.141 46.922 E1 

[x109] 
Error 1.02 0.36 0.46 
Exp. 9.546 11.262 12.680 
Net 9.464 11.187 12.596 E2 

[x109] Error 0.86 0.67 0.66 
Exp. 2.999 3.491 3.975 
Net 2.985 3.483 3.951 G12 

[x109] Error 0.45 0.21 0.59 
Exp. 0.2580 0.2513 0.2471 
Net 0.2581 0.2513 0.2467 ν12 
Error 0.04 0.00 0.19 

    

Properties Mat. 4 Mat. 5 Mat. 6 
Exp. 48.577 56.343 59.150 
Net 48.437 56.262 59.189 E1 

[x109] 
Error 0.29 0.14 0.07 
Exp. 13.272 17.292 19.098 
Net 13.224 17.245 19.200 E2 

[x109] Error 0.36 0.27 0.53 
Exp. 4.189 6.075 7.261 
Net 4.182 6.067 7.346 G12 

[x109] Error 0.17 0.13 1.17 
Exp. 0.2452 0.2353 0.2322 
Net 0.2448 0.2352 0.2316 ν12 
Error 0.18 0.05 0.23 

Tab. 2 – Properties Obtained (Net 6-2-2-4) 
 

As is shown in table 2, the neural network model 
identifies all the properties with mean relative errors 
lower than 1.2 %. 
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4.2 Optimization of Piezo Actuators Location 
 
4.2.1   Problem Definition 
Consider a rectangular composite plate (320x80x3 
mm) with stacking sequence [0/-45/+45/0], clamped 
on the shortest side and free on the other sides, made 
of 4 epoxy laminae reinforced with S glass fiber, as 
shown in Figure 2. 
 

 
 

Fig. 2 – Plate with 8 Pairs of Actuators 
 

The material properties of the epoxy laminae 
reinforced with S glass fiber are the following: E1 = 
55 GPa, E2 = E3 = 16 GPa, G12 = G23 = G13 = 7.6 GPa, 
ν12 = v13 = v23 = 0.28. The mechanical and electric 
properties of the actuators - PC5H Morgan Matroc, 
are the following: E1 = E2 = 60.24 GPa, E3 = 49.02 
GPa, G12 = G13 = G23 = 23 GPa, v12 = v23 = v13 = 0.31, 
d31 = d32 = -306x10-12 C/N, d33 = -800x10-12C/N e p33 
= 5.04x10-8F/m. The electric potentials applied on 
the 8 pairs of piezoelectric actuators are +200 V for 
the actuators bonded to the upper surface of the plate 
and -200 V for the actuators bonded to the lower 
surface. 
 

A 4x14 elements plate discretization is used in which 
the dimension of the elements is similar to the 
dimension of the piezoelectric actuators, and the 
finite element formulation is used. 
 

The aim is to find the best location for 8 pairs of 
piezoelectric actuators, PC5H with 20mm x 20mm 
dimensions, bonded to the lower and upper surfaces 
of the plate so as to maximize the transversal 
displacement in point A. 
 
 
4.2.2   Neural Network/Genetic Algorithms Model 
In this model a genetic algorithm is combined with a 
neural network. For the genetic algorithm, the choice 
of the binary codification was considered following 
the description: if the element includes the pair of 
actuators, the respective gene assumes the value of 1 
(one); otherwise it is 0 (zero). Since one intends to 
determine 8 locations (the number of piezoelectric 
pairs) among 56 possible ones (the number of 
elements), the generation of the initial population is 
forced to produce only admissible chromosomes, that 
is to say, limited to 8 genes different from zero. The 

crossover operation is modified to check how many 
piezoelectric elements exist in the resulting 
chromosomes and to assure its admissibility by taking 
or adding, in a random fashion, genes equal to the 
unit. The crossover thus developed assures the 
population diversity but, in spite of that, mutation 
operation is introduced, conditioned to the fact that 
the chromosomes produced are equally admissible.  
 

The parameters and genetic operators which present 
better performance in this case are: Dimension of 
Population = 60, Probability of Crossover = 65%, 
Probability of Mutation = 2.5% and Selection Method 
= Tournment. 
 

The idea of the model AG/NNET consists of using 
the data generated by the genetic algorithm (the 
chromosomes) and the corresponding values of the 
evaluation function to training a neuronal network 
that can introduce characteristics of intelligence to the 
genetic algorithm. This model is represented in figure 
3. 
 

Random
Population

Initial
Population

Genetic
Operators

Reprodution

New
Chromosomes

GENN

Out put

Objective
Function

Neural
Network

Objective
Function

Neural
Network

online

Yes No

 
Fig. 3 – Outline of AG/NNET Model 

 

Initially a set of chromosomes is randomly generated 
to the initial population. Each chromosome is 
evaluated using an evaluation function which 
supplies the fitness or merit of the respective 
individual. The pairs “chromosome-fitness” are used 
as data to train a neural network. After training, this 
net is incorporated in the conventional genetic 
algorithm. When a new chromosome is presented to 
the neural network, if the chromosome is considered 
“good”, it is selected to calculate the objective 
function; on the other hand, if the chromosome is 
considered “bad”, the fitness of the chromosome is 
the output of the network. 
 

By definition of the problem, the chromosome is 
composed of a sequence of 56 genes, so, the input 
layer takes 56 neurons, one for each gene. To the 
output layer, once we intend to obtain a classification 
for the chromosome, a single neuron was considered. 
In the two internal layers, four neurons are used. 
Thus, the net is designated by Net 56-4-4-1. 
 

The training of the network is made with cross 
validation. Additionally, a limit to the number of 
training epochs is imposed. It should be noted that, 
with the particular characteristics of this problem, no 
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testing evaluation is made to the network. In each 
generation of the genetic algorithm, the neural 
network is retrained, adding the new evaluated 
chromosomes to the old ones. 
 
 
4.2.3   Obtained Results 
Each problem was executed six times in a Pentium IV 
3.0 GHz with 1024 Mb of memory RAM. The results 
obtained with the proposed model are compared with 
[6] (conventional genetic algorithm). The resolution 
of the two models was made with the same hardware 
support. The optimal location is the same as [6] and is 
shown in figure 4. 
 

 
Fig. 4 – Optimal Location 

 

In table 3 the results obtained are shown, namely the 
medium values of: the number of generations of the 
genetic algorithm, the number of fitness function 
calculations and the time need to obtain the solution. 
 

Model AG [6] Presented 
AG + NNET 

Nº of Generations 7 7 
Nº of Fittness 
Functions Evaluated 258 42 

CPU Time (s) 2143 346 

Tab. 3 – Obtained Results 

 
 
5   Conclusions 
A numerical methodology to determine the material 
constants of composite laminates based on neural 
networks is developed. The sensor readings at 6 
defined elements of the discretion plate are used as 
input for inverse identification. The identification of 
material constants of a glass-epoxy plate has been 
carried out with satisfactory results. The obtained 
results are encouraging and demonstrate the 
effectiveness of the proposed technique to the 
characterization of material constants of composite 
structures. 
 

The numerical methodology for the optimal location 
of piezoelectric actuators involving the use of genetic 
algorithms and artificial neural networks allows 
improving computational efficiency, reducing in a 
significant way the computational cost as a 
consequence of the smallest number of calculations 

of the fitness function. The obtained results confirm 
that the introduction of artificial neural networks in 
the evaluation of the chromosomes reduces 
drastically the time of calculation, without loss of the 
quality for the obtained solution. 
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