
Evolutionary Techniques in Circuit Design and Optimization

CECÍLIA REIS, J. A. TENREIRO MACHADO J. BOAVENTURA CUNHA
Department of Electrical Engineering Engineering Department

Institute of Engineering of Porto Univ. of Trás-os-Montes and Alto Douro
R. Dr. António Bernardino de Almeida, Porto Apt. 1013, 5000-911 Vila Real

PORTUGAL PORTUGAL

Abstract: - Several Evolutionary Algorithms (EAs) are applied in the design and optimization of digital circuits,
namely Genetic Algorithms (GAs), Memetic Algorithms (MAs) and swarm intelligence with Particle Swarm
Optimization (PSO). GAs are optimization and search techniques based on the principles of genetics and natural
selection. MAs are evolutionary algorithms that include a stage of individual optimization as part of its search
strategy, being the individual optimization in the form of a local search. The combination of a global and a local
search is a strategy used by many successful hybrid optimization approaches. PSO is a population-based search
algorithm that starts with a population of random solutions called particles. In a PSO scheme each particle flies
through the search space with a velocity that is adjusted dynamically according with its historical behavior.
Therefore, the particles have a tendency to fly towards the best search area along the search process. In this line
of thought, this paper presents the results for digital circuits design using the three above EAs.

Key-Words: - Digital circuits, Evolutionary computation, Genetic algorithms, Memetic algorithms, Optimization.

1 Introduction
In recent decades Evolutionary Computation (EC)
techniques have been applied to the design of
electronic circuits and systems, leading to a novel
area of research called Evolutionary Electronics (EE)
or Evolvable Hardware (EH) [1]. EE considers the
concept for automatic design of electronic systems.
Instead of using human conceived models,
abstractions and techniques, EE employs search
algorithms to develop implementations not
achievable with the traditional design schemes, such
as the Karnaugh or the Quine-McCluskey Boolean
methods.
 This paper proposes three evolutionary techniques
for the design of combinational logic circuits, namely
a Genetic Algorithm (GA), a Memetic Algorithm
(MA) and a Particle Swarm Optimization (PSO)
scheme.
 Bearing these ideas in mind, the organization of this
article is as follows. Section 2 presents the GA, the
MA is described in section 3 and the PSO is detailed
in section 4. Section 5 exhibits the computational
results. Finally, section 6 outlines the main
conclusions.

2 The Genetic Algorithm
In our previous work, we have developed a GA for
combinational logic circuits design [2]. The circuits
are specified by a truth table, can have multiple

inputs and multiple outputs, and the goal is to
implement a functional circuit with the least possible
complexity. For that purpose, it is defined a set of
logic gates and the circuits are generated with
components of that specific set.

1. Initialize the population
2. Calculate the fitness of each individual in the
population
3. Reproduce selected individuals to form a new
population
4. Perform evolutionary operations such as
crossover and mutation on the population
5. Loop to step 2 until some condition is met

Fig. 1: Evolutionary computation algorithm.

 Table I shows the four gate sets defined, being Gset
2 the simplest one and Gset 6 a more complex gate
set.
 For each gate set the GA searches the solution
space of a function through a simulated evolution
aiming the survival of the fittest strategy. In general,
the best individuals of any population tend to
reproduce and survive, thus improving successive
generations. However, inferior individuals can, by
chance, survive and reproduce [3]. In our case, the
individuals are digital circuits, which can evolve until
the solution is reached (in terms of functionality and
complexity).

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 307

Table 1 Gate sets

Gate Set Logic gates
Gset 6 {AND,OR,XOR,NOT,NAND,NOR,WIRE}
Gset 4 {AND,OR,XOR,NOT,WIRE}
Gset 3 {AND,OR,XOR,WIRE}
Gset 2 {AND,XOR,WIRE}

 In what concerns to the circuit encoding as a
chromosome, EH systems develop chromosomes that
encode the functional description of a given circuit.
As with many GA applications, the resulting circuit is
the phenotype, as it comprises several smaller logic
cells or genotypes. The adopted terminology reflects
the conceptual similarity between EH, natural
evolution and genetics.
 In the GA scheme a rectangular matrix
(row × column = r × c) of logic cells encodes de
circuits (figure 1) [4].
 Three genes represent each cell:
<input1><input2><gate type>, where input1 and
input2 are one of the circuit inputs, if they are in the
first column, or one of the previous outputs, if they
are in other columns. The gate type is one of the
elements adopted in the gate set. As many triplets of
this kind, as the matrix size demands, constitute the
chromosome. For example, the chromosome that
represents a 3 × 3 matrix is depicted in figure 2.

Fig. 1: A 3 × 3 matrix A representing a circuit with

input X and output Y.

 The GA starts by generating the initial population
of circuits (strings) at random. The search is then
carried out among this population. The three different
operators used are reproduction, crossover and
mutation, as described in the sequel.

...

...

Input Input Gate

0 1 2

a11

Input Input Gate

24 25 26

a33

genes

matrix element

Fig. 2: Chromosome for the 3 × 3 matrix of figure 1.

 Successive generations of new strings are
reproduced on the basis of their fitness function. In
this case, tournament selection [3] is used to select
the strings from the old population, up to the new
population.
 For the crossover operator the strings in the new
population are grouped together into pairs at random.
Single point crossover is then performed among
pairs. The crossover point is only allowed between
cells to maintain the chromosome integrity.
 The mutation operator changes the characteristics
of a given cell in the matrix. Therefore, it modifies
the gate type and the two inputs, meaning that a
completely new cell can appear in the chromosome.
An elitist algorithm is applied to retain the best
solutions for the next generation.
 To run the GA we have to define the number of
individuals to create the initial population P. This
population is always the same size across the
generations, until the GA reaches the solution.
 The crossover rate CR represents the percentage of
the population P that reproduces in each generation.
Likewise, MR is the percentage of the population P
that mutates in each generation.
 The calculation of the fitness function F has two
parts f1 and f2 that measure the functionality and the
simplicity, respectively. Firstly, we compare the
output produced by the GA-generated circuit with the
expected values, according with the truth table, on a
bit-per-bit basis (i.e., f1). Once the circuit is
functional, the GA tries to generate circuits with the
least number of gates. Therefore, the index f2, that
measures the simplicity, is increased by one (zero) for
each wire (gate) of the generated circuit, yielding:

f10 = 2ni × no (1a)

f1 = f1 + 1

if {bit i of Y} = {bit i of YR} , i = 1, …, f10
(1b)

f2 = f2 + 1 if gate type = wire (1c)

⎩
⎨
⎧

≥+
<

=
1021

101

,
,

fFff
fFf

F (1d)

where ni and no represent the number of inputs and
outputs of the circuit.
 The GA has three stop criteria with the following
hierarchy: i) based on the matrix size, it is reached a
possible best solution; ii) the variation of the average
fitness function, for 10 consecutive generations, is
less or equal to 1 (the algorithm has stabilized) and
iii) after having attained 104 generations.

X
Inputs

a11

a31

a21

a12

a32

a22

a13

a23
Y

Outputs

a33

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 308

3 The Memetic Algorithm
In this work we adopt a MA, that is, an evolutionary
algorithm that includes a stage of individual
optimization as part of its search strategy, being the
individual optimization in the form of a local search.
MAs are inspired by models of adaptation in natural
systems that combine evolutionary adaptation of
populations with individual learning within a lifetime.
As it is known, MAs are metaheuristics that take
advantage of the evolutionary operators in
determining interesting regions of the search space.
Moreover, MAs adopt a local search that rapidly
finds good solutions in a small region of the search
space. Additionally, MAs are inspired by Richard
Dawkins’ concept of a meme, which represents a unit
of cultural evolution that can exhibit local refinement
[5].
 As figure 3 shows, the proposed MA includes a GA
and a local search algorithm, where the GA
corresponds to the algorithm implemented in first
stage of development.

1. Initialize the population
2. Calculate the fitness of each individual in the
population
3. Reproduce selected individuals to form a new
population
4. Perform evolutionary operations such as
crossover and mutation on the population
5. Apply a local search algorithm
5. Loop to step 2 until some condition is met

Fig. 3 Memetic algorithm.

 Over the last decade MAs have relied on the use of
a variety of different methods as the local
improvement procedure. Some recent studies on the
choice of local search method employed have shown
that this choice significantly affects the efficiency of
problem searches.
 The local search method investigates a small area
around a solution and adopts the best-found solution.
By other words, the procedure tries to find a fitter
solution in the neighborhood of the current solution.
If the algorithm finds a better solution, then the new
solution replaces the current solution, and the
neighborhood restarts. Local search methods are
iterative algorithms that seek to enhance the solution
by stepwise improvements. The simplest form of
local search attempts to swap elements in
combinatorial optimization problems [6].

4 The Particle Swarm Algorithm

4.1 Introduction
In the literature about PSO the term ‘swarm
intelligence’ appears rather often and, therefore, we
begin by explaining why this is so.
 Non-computer scientists (ornithologists, biologists
and psychologists) did early research, which led into
the theory of particle swarms. In these areas, the term
‘swarm intelligence’ is well known and characterizes
the case when a large number of individuals are able
of accomplish complex tasks. Motivated by these
facts, some basic simulations of swarms were
abstracted into the mathematical field. The usage of
swarms for solving simple tasks in nature became an
intriguing idea in algorithmic and function
optimization.
 Eberhart and Kennedy were the first to introduce
the PSO algorithm (figure 4) [7], which is an
optimization method inspired in the collective
intelligence of swarms of biological populations, and
was discovered through simplified social model
simulation of bird flocking, fishing schooling and
swarm theory.

1. Initialize population in hyperspace
2. Evaluate fitness of individual particles
3. Modify velocities based on previous best and
global (or neighborhood) best
4. Terminate on some condition
5. Go to step 2

Fig. 4 Particle swarm optimization process.

4.2 Parameters
In the PSO, instead of using genetic operators, as in
the case of GAs, each particle (individual) adjusts its
flying according with its own and its companions
experiences. Each particle is treated as a point in a D-
dimensional space and is manipulated as described
below in the original PSO algorithm:

)()()()(21 idgdidididid xpRandcxprandcvv −+−+= (2a)

ididid vxx += (2b)
where c1 and c2 are positive constants, rand() and
Rand() are two random functions in the range [0,1],
Xi = (xi1, xi2,…, xiD) represents the ith particle, Pi =
(pi1, pi2,…, piD) is the best previous position (the
position giving the best fitness value) of the particle,
the symbol g represents the index of the best particle
among all particles in the population, and Vi = (vi1,
vi2,…, viD) is the rate of the position change (velocity)
for particle i.

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 309

 Expression (2) represents the flying trajectory of a
population of particles. Equation (2a) describes how
the velocity is dynamically updated and equation (2b)
the position update of the “flying” particles. Equation
(2a) is divided in three parts, namely the momentum,
the cognitive and the social parts. In the first part the
velocity cannot be changed abruptly: it is adjusted
based on the current velocity. The second part
represents the learning from its own flying
experience. The third part consists on the learning
group flying experience [8].
 The first new parameter added into the original
PSO algorithm is the inertia weigh. The dynamic
equation of PSO with inertia weigh is modified to be:

)()()()(21 idgdidididid xpRandcxprandcwvv −+−+= (3a)

ididid vxx += (3b)

where w constitutes the inertia weigh that introduces
a balance between the global and the local search
abilities. A large inertia weigh facilitates a global
search while a small one facilitates a local search.
 Another parameter, called constriction coefficient
k, is introduced with the hope that it can insure a PSO
to converge. A simplified method of incorporating it
appears in equation (4), where k is function of c1 and
c2 as it is presented in equation (4c).

[])()()()(21 idgdidididid xpRandcxprandcvkv −+−+= (4a)

ididid vxx += (4b)

4,422 21

1
2 >+=⎟

⎠
⎞

⎜
⎝
⎛ −−−=

−
φφφφφ ccwherek (4c)

4.3 Topologies
There are two different PSO topologies, namely the
global version and the local version. In the global
version of PSO, each particle flies through the search
space with a velocity that is dynamically adjusted
according to the particle’s personal best performance
achieved so far and the best performance achieved so
far by all particles. On the other hand, in the local
version of PSO, each particle’s velocity is adjusted
according to its personal best and the best
performance achieved so far within its neighborhood.
The neighborhood of each particle is generally
defined as topologically nearest particles to the
particle at each side.

4.4 Algorithm
PSO is an evolutionary algorithm simple in concept,
easy to implement and computationally efficient.
Figures 1-3 present a generic EC algorithm, a hybrid

algorithm, more precisely a MA and the original
procedure for implementing the PSO algorithm,
respectively.
 The different versions of the PSO algorithms are:
the real-value PSO, which is the original version of
PSO and is well suited for solving real-value
problems; the binary version of PSO, which is
designed to solve binary problems; and the discrete
version of PSO, which is good for solving the event-
based problems. To extend the real-value version of
PSO to binary/discrete space, the most critical part is
to understand the meaning of concepts such as
trajectory and velocity in the binary/discrete space.

Kennedy and Eberhart [7] use velocity as a
probability to determine whether xid (a bit) will be in
one state or another (zero or one). The particle swarm
formula of equation (1a) remains unchanged, except
that now pid and xid are integers in [0.0,1.0] and a
logistic transformation S(vid) is used to accomplish
this modification. The resulting change in position is
defined by the following rule:

[] 0;1)(() ==< ididid xelsexthenvSrandif (5)

where the function S(v) is a sigmoid limiting
transformation and rand() is a random number
selected from a uniform distribution in the range
[0.0,1.0].
 The initial population of circuits (particles) has a
random generation. The initial velocity of each
particle is initialized with zero. The following
velocities are calculated applying equation (2a) and
the new positions result from using equation (2b). In
this way, each potential solution, called particle, flies
through the problem space. For each gene is
calculated the corresponding velocity. Therefore, the
new positions are as many as the number of genes in
the chromosome. If the new values of the input genes
result out of range, then a re-insertion function is
used. If the calculated gate gene is not allowed a new
valid one is generated at random. These particles then
have memory and each one keeps information of its
previous best position (pbest) and its corresponding
fitness. The swarm has the pbest of all the particles
and the particle with the greatest fitness is called the
global best (gbest).
 The basic concept of the PSO technique lies in
accelerating each particle towards its pbest and gbest
locations with a random weighted acceleration.
However, in our case we also use a kind of mutation
operator that introduces a new cell in 10% of the
population. This mutation operator changes the
characteristics of a given cell in the matrix.
Therefore, the mutation modifies the gate type and

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 310

the two inputs, meaning that a completely new cell
can appear in the chromosome.
 To run the PSO we have also to define the number
P of individuals to create the initial population of
particles. This population is always the same size
across the generations, until reaching the solution.

5 Computational Results
This section shows the implementation of four
different combinational logic circuits, namely, a 2-to-
1 multiplexer (M2-1), a one-bit full adder (FA1), a
one-bit full subtractor (FS1) and a four-bit parity
checker (PC4), using the GA, the MA and the PSO
algorithms.
 Due to the stochastic nature of the EAs, in order to
evaluate its performance, for each gate set we
perform 20 simulations. The best gate set is the one
that requires the smaller average number of
generations Av(N) and the smaller standard deviation
S(N) to reach the solution.

5.1 Circuit Implementation
The first case study is the M2-1 circuit, with a truth
table with three inputs {S0, I1, I0} and one output
{O}. The matrix has a size of r × c = 3 × 3 and the
length of each string representing a circuit (i.e., the
chromosome length) is CL = 27. Since the 2-to-1
multiplexer has ni = 3 and no = 1, it results f10 = 8 and
F ≥ 12.
 The second case study is the FA1 circuit, with a
truth table with three inputs {A, B, Cin} and two
outputs {S, Cout}. In this case, the matrix has a size of
r × c = 3 × 3, and the chromosome length is CL = 27.
Since the one-bit full adder has ni = 3 and no = 2, it
results f10 = 16 and F ≥ 20.
 The third case study is a FS1 circuit, with a truth
table with three inputs {A, B, Bin} and two outputs
{S, Bout}. In this case, the matrix has a size of
r × c = 3 × 3, and the chromosome length is CL = 27.
Since the one-bit full adder has ni = 3 and no = 2, it
results f10 = 16 and F ≥ 20.
 The fourth case study consists on the PC4 circuit,
which has four inputs {A3, A2, A1, A0} and one
output {O}. The size of the matrix is r × c = 4 × 4 and
the chromosome length is CL = 48. In this case ni = 4
and no = 1, resulting f10 = 16 and F ≥ 24.
 Figure 5 presents the results obtained in terms of
Log[S(N)] versus Log[Av(N)] for the M2-1, the FA1,
the FS1 and the PC4 circuits and P = {100, 500,
1000, 3000}.

-0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2

Log[Av(N)]

Lo
g[

S
(N

)]

M 2-1

GA

MA

PSO

P

-1

0

1

2

3

4

0 1 2 3

Log[Av(N)]

Lo
g[

S(
N

)]

FA 1

GA

MA

PSO

P

0

1

2

3

4

0 1 2 3 4

Log[Av(N)]

Lo
g[

S
(N

)]

FS1

GA

MA

PSO

P

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2

Log[Av(N)]

Lo
g[

S(
N

)]

PC4

GA

MA

PSO

P

Fig. 5: Log[S(N)] versus Log[Av(N)] for the M2-1,
the FA1, the FS1 and the PC4 circuits for P = {100,

500, 1000, 3000}.

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 311

 The points in the space {Log[Av(N)], Log[S(N)]}
are approximated by a bi-dimensional Gaussian
probability distribution. The ellipses depicted in the
charts represent the corresponding contour plots.
 It is obvious that the MA algorithm reveals a better
performance for all the combinational circuits and
that both Av(N) and S(N) vary inversely with P. The
GA and the PSO algorithms present similar results in
particular for the M2-1 and the PC4 circuits. For the
FA1 and the FS1 the PSO is less sensitive to P then
the GA.

5.2 Comparison of the algorithms
Figure 6 shows Log[S(N)] versus Log[Av(N)] with
P = {100, 500, 1000, 3000} for the GA, the MA and
the PSO algorithms.
 Analysing the charts is possible to classify the
complexity of the combinational logic circuits in the
perspective of each evolutionary algorithm. For the
three algorithms, the sequence of increasing circuit
complexity becomes {PC4, M2-1, FA1, FS1}. In the
PSO algorithm, the circuit complexity is clearly
divided in two zones, namely the {FS1, FA1} and the
{M2-1, PC4} zones.

6 Conclusions
This paper studied the implementation of
combinational logic circuits using three evolutionary
algorithms. The results reveal that the population size
has influence upon the results and that Log[S(N)] has
a linear dependence with Log[Av(N)], meaning that
S(N) ~ [Av(N)]α.
 The superior performance of the MA algorithm is
obvious for all gate sets and all circuits. Moreover,
the adopted methodology leads to a classification
scheme for combinational logic circuits in terms of
their complexity.

References:
[1] Zebulum, R. S., Pacheco, M. A. and Vellasco, M.

M., Evolutionary Electronics: Automatic Design
of Electronic Circuits and Systems by Genetic
Algorithms, CRC Press, 2001.

[2] Cecília Reis, J. A. Tenreiro Machado, and J.
Boaventura Cunha, “Evolutionary Design of
Combinational Logic Circuits”, JACIII, Fuji Tec.
Press, Vol. 8, No. 5, pp. 507-513, Sept. 2004.

[3] Goldberg, D. E., Genetic Algorithms in Search
Optimization and Machine Learning, 1989,
Addison-Wesley.

[4] Louis, S.J. and Rawlins, G. J., “Designer Genetic
Algorithms: Genetic Algorithms in Structure

Design,” in Proc. of the Fourth Int. Conf. on
Genetic Algorithms, 1991.

[5] Dawkins, R., “The Selfish Gene”, Oxford University
Press, New York, 1976.

[6] P. Moscato, “On Evolution, Search,
Optimization, Genetic Algorithms and Martial
Arts: Towards Memetic Algorithms”, Rep. 826,
California Inst. of Tech., California, USA, 1989.

[7] J. Kennedy and R. C. Eberhart. Particle Swarm
Optimization. In Proc. of the IEEE Int. Conf.
Neural Networks, pp 1942-1948, November 1995.

[8] M. Clerc and J. Kennedy. The Particle Swarm:
explosion, stability, and convergence in a multi-
dimensional complex space. In IEEE Trans. on
Evolutionary Comp., vol. 6, pp. 58-73, 2002.

0

1

2

3

4

0 1 2 3 4

Log[Av(N)]

Lo
g[

S
(N

)]

GA

M2-1

FA1

PC

FS1

P

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5

Log[Av(N)]

Lo
g[

S(
N)

]

MA

M2-1

FA1

PC4

FS1

P

0

1

2

3

4

0 1 2 3 4

Log[Av(N)]

Lo
g[

S
(N

)]

PSO

M2-1

FA1

FS1

PC4 P

Fig. 6: Log[S(N)] versus Log[Av(N)] for P = {100,
500, 1000, 3000} for the GA, the MA and the PSO

algorithms.

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 312

