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Abstract: - Several Evolutionary Algorithms (EAs) are applied in the design and optimization of digital circuits, 
namely Genetic Algorithms (GAs), Memetic Algorithms (MAs) and swarm intelligence with Particle Swarm 
Optimization (PSO). GAs are optimization and search techniques based on the principles of genetics and natural 
selection. MAs are evolutionary algorithms that include a stage of individual optimization as part of its search 
strategy, being the individual optimization in the form of a local search. The combination of a global and a local 
search is a strategy used by many successful hybrid optimization approaches. PSO is a population-based search 
algorithm that starts with a population of random solutions called particles. In a PSO scheme each particle flies 
through the search space with a velocity that is adjusted dynamically according with its historical behavior. 
Therefore, the particles have a tendency to fly towards the best search area along the search process. In this line 
of thought, this paper presents the results for digital circuits design using the three above EAs. 
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1   Introduction 
In recent decades Evolutionary Computation (EC) 
techniques have been applied to the design of 
electronic circuits and systems, leading to a novel 
area of research called Evolutionary Electronics (EE) 
or Evolvable Hardware (EH) [1]. EE considers the 
concept for automatic design of electronic systems. 
Instead of using human conceived models, 
abstractions and techniques, EE employs search 
algorithms to develop implementations not 
achievable with the traditional design schemes, such 
as the Karnaugh or the Quine-McCluskey Boolean 
methods. 
   This paper proposes three evolutionary techniques 
for the design of combinational logic circuits, namely 
a Genetic Algorithm (GA), a Memetic Algorithm 
(MA) and a Particle Swarm Optimization (PSO) 
scheme. 
   Bearing these ideas in mind, the organization of this 
article is as follows. Section 2 presents the GA, the 
MA is described in section 3 and the PSO is detailed 
in section 4. Section 5 exhibits the computational 
results. Finally, section 6 outlines the main 
conclusions. 
 
 
2   The Genetic Algorithm 
In our previous work, we have developed a GA for 
combinational logic circuits design [2]. The circuits 
are specified by a truth table, can have multiple 

inputs and multiple outputs, and the goal is to 
implement a functional circuit with the least possible 
complexity. For that purpose, it is defined a set of 
logic gates and the circuits are generated with 
components of that specific set. 
 

1. Initialize the population
2. Calculate the fitness of each individual in the
population
3. Reproduce selected individuals to form a new
population
4. Perform evolutionary operations such as
crossover and mutation on the population
5. Loop to step 2 until some condition is met

 
 

Fig. 1: Evolutionary computation algorithm. 
 

   Table I shows the four gate sets defined, being Gset 
2 the simplest one and Gset 6 a more complex gate 
set. 
   For each gate set the GA searches the solution 
space of a function through a simulated evolution 
aiming the survival of the fittest strategy. In general, 
the best individuals of any population tend to 
reproduce and survive, thus improving successive 
generations. However, inferior individuals can, by 
chance, survive and reproduce [3]. In our case, the 
individuals are digital circuits, which can evolve until 
the solution is reached (in terms of functionality and 
complexity). 
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Table 1 Gate sets 
 

Gate Set Logic gates 
Gset 6 {AND,OR,XOR,NOT,NAND,NOR,WIRE}
Gset 4 {AND,OR,XOR,NOT,WIRE} 
Gset 3 {AND,OR,XOR,WIRE} 
Gset 2 {AND,XOR,WIRE} 

 
   In what concerns to the circuit encoding as a 
chromosome, EH systems develop chromosomes that 
encode the functional description of a given circuit. 
As with many GA applications, the resulting circuit is 
the phenotype, as it comprises several smaller logic 
cells or genotypes. The adopted terminology reflects 
the conceptual similarity between EH, natural 
evolution and genetics. 
   In the GA scheme a rectangular matrix 
(row × column = r × c) of logic cells encodes de 
circuits (figure 1) [4]. 
   Three genes represent each cell: 
<input1><input2><gate type>, where input1 and 
input2 are one of the circuit inputs, if they are in the 
first column, or one of the previous outputs, if they 
are in other columns. The gate type is one of the 
elements adopted in the gate set. As many triplets of 
this kind, as the matrix size demands, constitute the 
chromosome. For example, the chromosome that 
represents a 3 × 3 matrix is depicted in figure 2. 
 

 
Fig. 1: A 3 × 3 matrix A representing a circuit with 

input X and output Y. 
 
   The GA starts by generating the initial population 
of circuits (strings) at random. The search is then 
carried out among this population. The three different 
operators used are reproduction, crossover and 
mutation, as described in the sequel. 
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Fig. 2: Chromosome for the 3 × 3 matrix of figure 1. 

   Successive generations of new strings are 
reproduced on the basis of their fitness function. In 
this case, tournament selection [3] is used to select 
the strings from the old population, up to the new 
population. 
   For the crossover operator the strings in the new 
population are grouped together into pairs at random. 
Single point crossover is then performed among 
pairs. The crossover point is only allowed between 
cells to maintain the chromosome integrity. 
   The mutation operator changes the characteristics 
of a given cell in the matrix. Therefore, it modifies 
the gate type and the two inputs, meaning that a 
completely new cell can appear in the chromosome. 
An elitist algorithm is applied to retain the best 
solutions for the next generation. 
   To run the GA we have to define the number of 
individuals to create the initial population P. This 
population is always the same size across the 
generations, until the GA reaches the solution. 
   The crossover rate CR represents the percentage of 
the population P that reproduces in each generation. 
Likewise, MR is the percentage of the population P 
that mutates in each generation. 
   The calculation of the fitness function F has two 
parts f1 and f2 that measure the functionality and the 
simplicity, respectively. Firstly, we compare the 
output produced by the GA-generated circuit with the 
expected values, according with the truth table, on a 
bit-per-bit basis (i.e., f1). Once the circuit is 
functional, the GA tries to generate circuits with the 
least number of gates. Therefore, the index f2, that 
measures the simplicity, is increased by one (zero) for 
each wire (gate) of the generated circuit, yielding: 
 

f10 = 2ni × no (1a)

f1 = f1 + 1  

if {bit i of Y} = {bit i of YR} , i = 1, …, f10 
(1b)

f2 = f2 + 1 if gate type = wire (1c)
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where ni and no represent the number of inputs and 
outputs of the circuit. 
   The GA has three stop criteria with the following 
hierarchy: i) based on the matrix size, it is reached a 
possible best solution; ii) the variation of the average 
fitness function, for 10 consecutive generations, is 
less or equal to 1 (the algorithm has stabilized) and 
iii) after having attained 104 generations. 
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3   The Memetic Algorithm 
In this work we adopt a MA, that is, an evolutionary 
algorithm that includes a stage of individual 
optimization as part of its search strategy, being the 
individual optimization in the form of a local search. 
MAs are inspired by models of adaptation in natural 
systems that combine evolutionary adaptation of 
populations with individual learning within a lifetime. 
As it is known, MAs are metaheuristics that take 
advantage of the evolutionary operators in 
determining interesting regions of the search space. 
Moreover, MAs adopt a local search that rapidly 
finds good solutions in a small region of the search 
space. Additionally, MAs are inspired by Richard 
Dawkins’ concept of a meme, which represents a unit 
of cultural evolution that can exhibit local refinement 
[5]. 
   As figure 3 shows, the proposed MA includes a GA 
and a local search algorithm, where the GA 
corresponds to the algorithm implemented in first 
stage of development. 
 

1. Initialize the population
2. Calculate the fitness of each individual in the
population
3. Reproduce selected individuals to form a new
population
4. Perform evolutionary operations such as
crossover and mutation on the population
5. Apply a local search algorithm
5. Loop to step 2 until some condition is met

 
 

Fig. 3 Memetic algorithm. 
 
   Over the last decade MAs have relied on the use of 
a variety of different methods as the local 
improvement procedure. Some recent studies on the 
choice of local search method employed have shown 
that this choice significantly affects the efficiency of 
problem searches. 
   The local search method investigates a small area 
around a solution and adopts the best-found solution. 
By other words, the procedure tries to find a fitter 
solution in the neighborhood of the current solution. 
If the algorithm finds a better solution, then the new 
solution replaces the current solution, and the 
neighborhood restarts. Local search methods are 
iterative algorithms that seek to enhance the solution 
by stepwise improvements. The simplest form of 
local search attempts to swap elements in 
combinatorial optimization problems [6]. 
 
 
 

4   The Particle Swarm Algorithm 
 
4.1 Introduction 
In the literature about PSO the term ‘swarm 
intelligence’ appears rather often and, therefore, we 
begin by explaining why this is so. 
   Non-computer scientists (ornithologists, biologists 
and psychologists) did early research, which led into 
the theory of particle swarms. In these areas, the term 
‘swarm intelligence’ is well known and characterizes 
the case when a large number of individuals are able 
of accomplish complex tasks. Motivated by these 
facts, some basic simulations of swarms were 
abstracted into the mathematical field. The usage of 
swarms for solving simple tasks in nature became an 
intriguing idea in algorithmic and function 
optimization. 
   Eberhart and Kennedy were the first to introduce 
the PSO algorithm (figure 4) [7], which is an 
optimization method inspired in the collective 
intelligence of swarms of biological populations, and 
was discovered through simplified social model 
simulation of bird flocking, fishing schooling and 
swarm theory. 

 
1. Initialize population in hyperspace
2. Evaluate fitness of individual particles
3. Modify velocities based on previous best and
global (or neighborhood) best
4. Terminate on some condition
5. Go to step 2

 
 

Fig. 4 Particle swarm optimization process. 
 
4.2 Parameters 
In the PSO, instead of using genetic operators, as in 
the case of GAs, each particle (individual) adjusts its 
flying according with its own and its companions 
experiences. Each particle is treated as a point in a D-
dimensional space and is manipulated as described 
below in the original PSO algorithm: 

)()()()( 21 idgdidididid xpRandcxprandcvv −+−+=  (2a) 

ididid vxx +=      (2b) 
where c1 and c2 are positive constants, rand() and 
Rand() are two random functions in the range [0,1], 
Xi = (xi1, xi2,…, xiD) represents the ith particle, Pi = 
(pi1, pi2,…, piD)  is the best previous position (the 
position giving the best fitness value) of the particle, 
the symbol g represents the index of the best particle 
among all particles in the population, and Vi = (vi1, 
vi2,…, viD) is the rate of the position change (velocity) 
for particle i. 
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   Expression (2) represents the flying trajectory of a 
population of particles. Equation (2a) describes how 
the velocity is dynamically updated and equation (2b) 
the position update of the “flying” particles. Equation 
(2a) is divided in three parts, namely the momentum, 
the cognitive and the social parts. In the first part the 
velocity cannot be changed abruptly: it is adjusted 
based on the current velocity. The second part 
represents the learning from its own flying 
experience. The third part consists on the learning 
group flying experience [8]. 
   The first new parameter added into the original 
PSO algorithm is the inertia weigh. The dynamic 
equation of PSO with inertia weigh is modified to be: 

)()()()( 21 idgdidididid xpRandcxprandcwvv −+−+=  (3a) 

ididid vxx +=      (3b) 

where w constitutes the inertia weigh that introduces 
a balance between the global and the local search 
abilities. A large inertia weigh facilitates a global 
search while a small one facilitates a local search. 
   Another parameter, called constriction coefficient 
k, is introduced with the hope that it can insure a PSO 
to converge. A simplified method of incorporating it 
appears in equation (4), where k is function of c1 and 
c2 as it is presented in equation (4c). 

[ ])()()()( 21 idgdidididid xpRandcxprandcvkv −+−+=  (4a)  

ididid vxx +=      (4b) 
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φφφφφ ccwherek  (4c) 

 
4.3 Topologies 
There are two different PSO topologies, namely the 
global version and the local version. In the global 
version of PSO, each particle flies through the search 
space with a velocity that is dynamically adjusted 
according to the particle’s personal best performance 
achieved so far and the best performance achieved so 
far by all particles. On the other hand, in the local 
version of PSO, each particle’s velocity is adjusted 
according to its personal best and the best 
performance achieved so far within its neighborhood. 
The neighborhood of each particle is generally 
defined as topologically nearest particles to the 
particle at each side. 
 
4.4 Algorithm 
PSO is an evolutionary algorithm simple in concept, 
easy to implement and computationally efficient. 
Figures 1-3 present a generic EC algorithm, a hybrid 

algorithm, more precisely a MA and the original 
procedure for implementing the PSO algorithm, 
respectively. 
   The different versions of the PSO algorithms are: 
the real-value PSO, which is the original version of 
PSO and is well suited for solving real-value 
problems; the binary version of PSO, which is 
designed to solve binary problems; and the discrete 
version of PSO, which is good for solving the event-
based problems. To extend the real-value version of 
PSO to binary/discrete space, the most critical part is 
to understand the meaning of concepts such as 
trajectory and velocity in the binary/discrete space. 

Kennedy and Eberhart [7] use velocity as a 
probability to determine whether xid (a bit) will be in 
one state or another (zero or one). The particle swarm 
formula of equation (1a) remains unchanged, except 
that now pid and xid are integers in [0.0,1.0] and a 
logistic transformation S(vid) is used to accomplish 
this modification. The resulting change in position is 
defined by the following rule: 

[ ] 0;1)(() ==< ididid xelsexthenvSrandif   (5) 

where the function S(v) is a sigmoid limiting 
transformation and rand() is a random number 
selected from a uniform distribution in the range 
[0.0,1.0]. 
   The initial population of circuits (particles) has a 
random generation. The initial velocity of each 
particle is initialized with zero. The following 
velocities are calculated applying equation (2a) and 
the new positions result from using equation (2b). In 
this way, each potential solution, called particle, flies 
through the problem space. For each gene is 
calculated the corresponding velocity. Therefore, the 
new positions are as many as the number of genes in 
the chromosome. If the new values of the input genes 
result out of range, then a re-insertion function is 
used. If the calculated gate gene is not allowed a new 
valid one is generated at random. These particles then 
have memory and each one keeps information of its 
previous best position (pbest) and its corresponding 
fitness. The swarm has the pbest of all the particles 
and the particle with the greatest fitness is called the 
global best (gbest). 
   The basic concept of the PSO technique lies in 
accelerating each particle towards its pbest and gbest 
locations with a random weighted acceleration. 
However, in our case we also use a kind of mutation 
operator that introduces a new cell in 10% of the 
population. This mutation operator changes the 
characteristics of a given cell in the matrix. 
Therefore, the mutation modifies the gate type and 
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the two inputs, meaning that a completely new cell 
can appear in the chromosome. 
   To run the PSO we have also to define the number 
P of individuals to create the initial population of 
particles. This population is always the same size 
across the generations, until reaching the solution. 
 
 
5   Computational Results 
This section shows the implementation of four 
different combinational logic circuits, namely, a 2-to-
1 multiplexer (M2-1), a one-bit full adder (FA1), a 
one-bit full subtractor (FS1) and a four-bit parity 
checker (PC4), using the GA, the MA and the PSO 
algorithms. 
   Due to the stochastic nature of the EAs, in order to 
evaluate its performance, for each gate set we 
perform 20 simulations. The best gate set is the one 
that requires the smaller average number of 
generations Av(N) and the smaller standard deviation 
S(N) to reach the solution. 
 
5.1 Circuit Implementation 
The first case study is the M2-1 circuit, with a truth 
table with three inputs {S0, I1, I0} and one output 
{O}. The matrix has a size of r × c = 3 × 3 and the 
length of each string representing a circuit (i.e., the 
chromosome length) is CL = 27. Since the 2-to-1 
multiplexer has ni = 3 and no = 1, it results f10 = 8 and 
F ≥ 12. 
  The second case study is the FA1 circuit, with a 
truth table with three inputs {A, B, Cin} and two 
outputs {S, Cout}. In this case, the matrix has a size of 
r × c = 3 × 3, and the chromosome length is CL = 27. 
Since the one-bit full adder has ni = 3 and no = 2, it 
results f10 = 16 and F ≥ 20. 
   The third case study is a FS1 circuit, with a truth 
table with three inputs {A, B, Bin} and two outputs 
{S, Bout}. In this case, the matrix has a size of 
r × c = 3 × 3, and the chromosome length is CL = 27. 
Since the one-bit full adder has ni = 3 and no = 2, it 
results f10 = 16 and F ≥ 20. 
   The fourth case study consists on the PC4 circuit, 
which has four inputs {A3, A2, A1, A0} and one 
output {O}. The size of the matrix is r × c = 4 × 4 and 
the chromosome length is CL = 48. In this case ni = 4 
and no = 1, resulting f10 = 16 and F ≥ 24. 
   Figure 5 presents the results obtained in terms of 
Log[S(N)] versus Log[Av(N)] for the M2-1, the FA1, 
the FS1 and the PC4 circuits and P = {100, 500, 
1000, 3000}. 
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Fig. 5: Log[S(N)] versus Log[Av(N)] for the M2-1, 
the FA1, the FS1 and the PC4 circuits for P = {100, 

500, 1000, 3000}. 
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   The points in the space {Log[Av(N)], Log[S(N)]} 
are approximated by a bi-dimensional Gaussian 
probability distribution. The ellipses depicted in the 
charts represent the corresponding contour plots. 
   It is obvious that the MA algorithm reveals a better 
performance for all the combinational circuits and 
that both Av(N) and S(N) vary inversely with P. The 
GA and the PSO algorithms present similar results in 
particular for the M2-1 and the PC4 circuits. For the 
FA1 and the FS1 the PSO is less sensitive to P then 
the GA. 
 
5.2 Comparison of the algorithms 
Figure 6 shows Log[S(N)] versus Log[Av(N)] with 
P = {100, 500, 1000, 3000} for the GA, the MA and 
the PSO algorithms. 
   Analysing the charts is possible to classify the 
complexity of the combinational logic circuits in the 
perspective of each evolutionary algorithm. For the 
three algorithms, the sequence of increasing circuit 
complexity becomes {PC4, M2-1, FA1, FS1}. In the 
PSO algorithm, the circuit complexity is clearly 
divided in two zones, namely the {FS1, FA1} and the 
{M2-1, PC4} zones. 
 
 
6   Conclusions 
This paper studied the implementation of 
combinational logic circuits using three evolutionary 
algorithms. The results reveal that the population size 
has influence upon the results and that Log[S(N)] has 
a linear dependence with Log[Av(N)], meaning that 
S(N) ~ [Av(N)]α. 
   The superior performance of the MA algorithm is 
obvious for all gate sets and all circuits. Moreover, 
the adopted methodology leads to a classification 
scheme for combinational logic circuits in terms of 
their complexity. 
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Fig. 6: Log[S(N)] versus Log[Av(N)] for P = {100, 
500, 1000, 3000} for the GA, the MA and the PSO 

algorithms. 
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