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Abstract: - The nature of physical process of groundwater contamination transport generates complexity in the 
theoretical formulation. The governing equations, which are 2nd order PDE (partial differential equation), are 
solved numerically using a finite difference method. To perform the numerical equations, computer code has 
been written in MATLAB, and a program has been developed. The aquifer is idealized as an unconfined 
aquifer system including the well in which the solution domain is stated to be two-dimensional. This method 
has yielded the relationship between contaminant concentration distribution and time in the aquifer. 
 
Key-Words: - Numerical Solution - Unconfined Aquifer - Contaminant Transport 
 
1   Introduction 
De Jong (1958), Wilson and Miller (1978) and 
Bedient et al. (1994) formulated and solved the 
transport of contaminant in unconfined aquifer 
analytically with the help of Laplace and 
Hansel transformation technique. Their finding 
is applicable but not handy, especially in the 
using of values of erfc and Bessel function. 
Some researchers such as Smith and Schwartz 
(1980), Hwang, et al. (1985), Frind and 
Matanga (1985), Daus and Frind (1985), 
Burnett and Frind (1987), Dillon (1989), 
Lindstrom and Boersma (1989), Leij and Dane 
(1990) and many other researchers have 
proposed a good method to solve the problem 
of contaminant transport by either analytical or 
numerical solution.  

However, they do not consider the 
dispersion spreading in the vertical direction 
where y-axis is the vertical direction and x-axis 
is the horizontal direction of the aquifer domain 
and the source of contaminant is injected from 
a certain point of the upper domain of aquifer. 
Hence, this study is to describe the transport of 
pollutant (chloride) with groundwater flow in 
unconfined aquifer where the aquifer domain is 
bounded by a well in the right side and 
recharged by chloride in the upper left side 
(Fig.1). 

2   Problem Formulation 
Equation below is taken as the governing 
equation of pollutant transport for the case of 
non-reactive tracer in two-dimensional of x and 
y direction in the aquifer system. 
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Where C is solute concentration, C0 is solute 
concentration in a fluid source or sink, t is time, 
Dx and Dy are coefficient of hydrodynamic 
dispersion, vx and vy are pore water velocity, n is 
porosity of aquifer, b is saturated thickness of 
aquifer. W* is source or sink term (Javandel, 
1984 and Bedient, 1994). 
 
 
3 Problem Solution 
Equation (1) is then approximated by spatial 
discretisation using finite difference formula. If 
the domain of equation is (x,y) = (0,P), (0,L) and 
the width of each discretisation of grid is h = 
P/N and k = L/M, then the formula is expressed 
as (Anderson, 1984). 

2
j1,iji,j1,i

ji,
2

2 C2CC
x
C

h
−+ +−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂   (2)    

Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006         355



 2
1ji,ji,1ji,

ji,
2

2 C2CC
y
C

k
−+ +−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

  (3) 

h2
CC

x
C j1,ij1,i

ji,

−+ −
=⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

    (4) 

k2
CC

y
C 1ji,1ji,

ji,

−+ −
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

   (5) 

Substitution of equations (2), (3), (4) and (5) 
to equation (1) produces: 
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New parameters such as α, β, γ, δ, ε and η are 
introduced as follows: 
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Then equation (7) becomes: 
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The boundary conditions are stated as (Brown, 
1986): 
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According to equation (8), for the index value of 
i = j = 1, then equation (8) becomes: 
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Furthermore, the boundary condition is stated 
as: 

1,21,00,1 CC  ; 0C ==             (11) 

And then equation (10) becomes: 
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Using the above boundary conditions, then 
equation (12) is written as follows: 
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          (13) 
While the initial value is stated as:  

C(i ≥ 0, t = 0) = 0 

Equation (13) with its initial condition is an 
initial value problem of a system of ordinary 
differential equation and the general form is: 

( ) ( ) N
0 RfC,    ,Ct,0C    ,Ct,fC' ∈==           (14) 

Due to equation (12) has a constant coefficient, 
then the equation is written as follows. 

A C = B                         (15) 

The sixth order implicit Runge-Kutta is the 
method used for solving the initial value 
problem.  
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This method is expressed in the table of 
Butcher as follows (Gear, 1971). 
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In equation (16), Cn is the solution vector of 
(n) step, δ is the step-size of each step, and 
Cn-1 is the solution vector of the previous 
step. 

 Kuntzmann-Butcher formula is a form 
based on the sixth order implicit Runge-
Kutta (Hairer, et al., 1987) as follows: 
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where: 15p =  

The application of equation (16) on equation 
(15) yields linear equation in (k) as follows. 
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Automaticly, after equation (18) is solved, 
then the solution of Cn(t = tn) is calculated 
based on the previous value of (Cn-1), which 
is as follows. 

ss22111nn kb ...... kbkbCC δδδ ++++= −      (19) 

Equation (19) is obtained adaptively on the 
value of δ. The adaptive process is explained 
through the following algorithm. 

Adaptive Algorithm 

Input: δ01, C0, t0, tf

Ouput: Cf

tn = t0

While tn < tf

(1)  δ1 = δ0, solve equation (17) and (18) with  

δ = δ1 → obtained C1 

(2)  δ2 = 2
1 δ1, solve equations (17) and (18) 

with δ = δ2

(3)  δ2 = 2
1 δ1 

(4)  (1)  togo , then CC if 12
1

021 δδε =>−  

(5)  tn = tn + δ1

End 

 

4 Results and Discussion 
The alteration of contaminant concentration 
towards radius of well obtained from both, 
laboratory experiment of sand tank model and 
numerical solution is plotted in Fig.3. It does 
not indicate a good agreement between them. 
Curves of laboratory data have a tendency to 
be steeper than curves of numerical solution. 
At zero cm of x, the deviation of curves is not 
significant. But when the values of x are in the 
range of 40 to 80 cm, the deviation becomes 
greater. Curves of laboratory data tend drop 
after a distance of 40 cm until 80 cm. This is 
maybe the layer of aquifer is not perfectly 
uniform. The placement of sand in the 
physical model may not cause uniformity in 
whole layer of the aquifer. Weight of the 
upper layer could press the lower layer to 
cause changes of either porosity or hydraulic 
conductivity to become smaller. Also during 
the collection of data, footstep of observers on 
the top layer could cause changes of 
uniformity of the layer of aquifer. 
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 However, after changing Dy = 0.1 Dx, 
then a better result is gained as shown in 
Fig.4. Previous researchers such as Tang and 
Aral (1992) assumed the value of Dy to be 
ten percent of Dx as well. 

The numerical solution is also applied 
for a big scale field problem as follows: An 
underground tank leaches a liquid waste of 
chloride into an unconfined aquifer having a 
hydraulic conductivity of 2.15 m/day, an 
effective porosity of 0.1, a hydraulic gradient 
of 0.04 m/m, an initial concentration of 1000 
mg/L and longitudinal dispersivity of 7.5 m. 
The question is how long the time taken for 
the contaminant concentration to reach 100 
mg/L at distance L = 750 m by neglecting 
any degradation processes. The time given 
by analytical solution (Bedient at al., 1994) 
to reach the contaminant concentration for C 
= 100 mg/L and at distance L = 750 m is 
after 25.88 months. While, the numerical 
solution yielded results as plotted in Fig.2 
reaches for C = 100 mg/L after 30 months. 
Both results have a bit difference; however, 
it needs to compare with monitoring field 
data. 

 

5 Conclusions 
• The problem of contaminant transport in 

unconfined aquifer has been formulated 
and solved with the help of numerical 
technique. 

• A type of computer program written in 
MATLAB has been developed which 
can be employed to analyze the 
contaminant transport in unconfined 
aquifer system. 

• Two-dimensional solution is much better 
solved numerically as the solution 
enables the representation of the actual 
field problem by using complex 
boundary system. 

• Results of the contaminant transport 
example show the behavior of the 
spreading of contaminant where the 
dominant seepage velocity effects in a 
contaminant concentration situation. 
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Fig.2:  Distribution of contamination concentration in the domain  
           of unconfined aquifer as results of running the program    

    where H1=45m, hw=15m, C0=1000mg/L, n=0.01 and α=7.5m 
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Fig. 3: Change of contaminant concentration towards radius of well for 
      H1=60cm, hw=15cm, n=0.363, and C0=200mg/L, comparison  
      between results of numerical solution and laboratory experiments. 
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