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Abstract : - Explicit pre/post conditioning of the large, sparse and non-symmetric system of equations, arising from
the discretization of the Dirichlet Poisson’s Boundary Value Problem (BVP) by the Hermite Collocation method is
the problem considered herein. Using the 2-cyclic (red-black) structure of the Collocation coefficient matrix, we
investigate the eigenvalue distribution of its preconditioned analogs emerging from its red-black USSOR (UnSymmet-
ric SOR) splittings. This analysis, coupled with computational efficiency issues, enables us to justify the choice of
Gauss-Seidel (GS) preconditioned schemes as efficient and practical ones, when they used to accelerate the rate of
convergence of the Bi-CGSTAB iterative Krylov subspace method. Our results are verified by numerical experiments.

Key-Words : - Collocation, 2-cyclic matrices, Gauss-Seidel, SOR, USSOR, preconditioning, Krylov methods, Bi-
CGSTAB.

1 Introduction

Many applications, in several fields of science and engi-
neering, are modeled by general Elliptic Boundary Value
Problems (BVP) and Finite Elements (FE) is a well es-
tablished methodology for their numerical solution. Col-
location, using Hermite bi-cubic elements, is a compe-
titive high order FE scheme with the following central
well known properties :

• avoids numerical integration
• produces direct approximations for the values of the
function and its first order partial derivatives at the grid
nodes
• the collocation spline representing the solution of the
BVP has continuous first derivatives (helpful e.g. in
subsurface flow problems)
• the choice of the collocation points directly affects the
convergence rate of the method
• the resulting, from the discretization, collocation ma-
trix is large, sparse and enjoys no pleasant properties
(such as symmetry, definiteness or diagonal dominance).

Last property directly suggests the usage of iterative me-
thods on multiprocessor environments for the efficient
solution of the Collocation system. This direction has
been attracted the interest of many researchers and some
very interesting results have been produced in the past
pertaining to the performance and analysis of the classi-
cal SOR-like splitting methods [6-8,11] and the precon-
ditioned Krylov subspace methods [1,2,9]. It is worth-
while to mention that in [9] we conducted a numeri-

cal performance evaluation on several methods from the
Krylov subspace family, including GMRES[13] and Bi-
CGSTAB[16] as well as several SSOR type precondi-
tioning schemes, and concluded that :

• SSOR-type preconditioned Bi-CGSTAB schemes yiel-
ded better performance, in all practical cases, compared
to the rest of the preconditioned Krylov subspace meth-
ods. The same conclusion was also reached in [1] where
a performance evaluation between the GS preconditioned
Bi-CGSTAB and GMRES methods was thoroughly per-
formed.
• The Symmetric Gauss-Seidel(SGS) preconditioned Bi-
CGSTAB proved to be the most practical, in the sense
that there is no need for any relaxation parameter eval-
uation, without any compromises in the rate of con-
vergence from other SSOR preconditioned Bi-CGSTAB
schemes.

In the work herein we attempt a generalized approach to
the problem of establishing efficient and practical pre-
conditioned Krylov subspace methods, for the Hermite
Collocation, through an eigenvalue analysis on the fam-
ily of red-black USSOR preconditioners. We remark
that :
• The distribution of the eigenvalues of the precondi-
tioned coefficient matrix, although not the only one, is
one of the most important factors affecting the conver-
gence rate of preconditioned Krylov methods (e.g. [5]).
•USSOR preconditioning includes both SSOR and SOR
type of preconditioning. Effective SOR-type precondi-
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Fig.1 : Red-Black Grouping and Numbering of Un-
knowns and Equations for ns = 4.

tioning has been observed in [3,4,12].
This paper is organized as follows : After a brief de-
scription of the derivation of the 2-cyclic (red-black)
Hermite Collocation system in Section 2, we proceed
with the eigenvalue analysis of the USSOR precondi-
tioned system in Section 3. In Section 4 we have in-
cluded numerical experiments to demonstrate our re-
sults.

2 Hermite Collocation Poisson system
For the numerical solution of the model Poisson’s prob-
lem

{
∇2u(x, y) = f(x, y) , (x, y) ∈ Ω

u(x, y) = g(x, y) , (x, y) ∈ ∂Ω
(1)

on the rectangular domain Ω ≡ (0, 1) × (0, 1), we as-
sume a uniform partition of the intervals Ix = Iy =
[0, 1] into ns = 2p subintervals Ix

m = Iy
m , m =

1 , . . . , ns . This generates a uniform grid with spac-
ing h = 1

ns
and nodal coordinates (xi, yj), where xi =

(i−1)h and yj = (j−1)h, i, j = 1 , . . . , (ns +1). The
Hermite Bi-Cubic finite element approximation seeks
an approximate solution ũ(x, y) in the form

u(x, y) ∼ ũ(x, y) =
ñ∑

i=1

ñ∑

j=1

αi,jφi(x)φj(y) , (2)

with ñ = 2(ns + 1). The basis functions φi(x) and
φj(y) are the known one dimensional piecewise Her-
mite cubic polynomials. Based, now, on the basic prop-

.

Fig.2 : Block structure of the Red-Black Collocation
matrix for ns = 8.

erties of the Hermite basis functions, the following four
unknowns





a2i−1,2j−1 = ũ(xi, yj)
a2i−1,2j = ∂

∂y ũ(xi, yj)
a2i,2j−1 = ∂

∂x ũ(xi, yj)
a2i,2j = ∂2

∂x∂y ũ(xi, yj)

(3)

are associated with the mesh point (xi, yi). By imposing
the boundary conditions, 8ns+4 unknowns (denoted by
o on Figure 1), associated with nodes on the boundary
∂Ω, can be determined beforehand. Therefore, the col-
location equations needed for the determination of the
remaining n = 4n2

s unknowns are then constructed by
forcing the approximate solution ũ(x, y) to satisfy the
BVP in n interior collocation points. These are the four
Gauss points in each of the n2

s elements Iij , a classical
choice for orthogonal spline Collocation.

The Collocation method poses no restrictions in how
one orders/numbers equations and unknowns for the con-
struction of the associated system

Ax = b , (4)

where A is the n×n Collocation coefficient matrix and

x = [x1 x2 · · · xn]T ≡ [α1,1 · · · αñ,ñ]T

is the unknown vector. The block form of the collo-
cation matrix A depends directly on the numbering of
unknowns and equations. And as there is an one-to-one
correspondence between collocation points (denoted by
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© on Figure 1) and equations, a numbering of the equa-
tions is produced when we number the collocation points,
while a numbering of the unknowns (denoted by small
numbers on Figure 1) is readily available, when we num-
ber the unknowns associated with each node. To induce
scalability, we number unknowns and equations by us-
ing the line red-black ordering scheme (e.g. [10] for a
complete description), depicted in Figure 1 forns = 4,
leading to the block structure of the Collocation matrix
A shown schematically in Figure 2. It is now apparent
that we can writeA in the red-black ordered form

A =

(

DR HB

HR DB

)

, (5)

where, after a similarity transformation [10], the associ-
ated submatrices are defined by

DR = diag[A2 2A1 2A2 · · · 2A1 2A2 − A2
︸ ︷︷ ︸

2p−blocks

] ,

(6)
DB = 2 diag[A1 A2 · · · A1 A2

︸ ︷︷ ︸

2p−blocks

] (7)

HR =














R1 R2

R3 R1 R2

. .. . . . . ..
. . . . .. . . .

R3 R1 R2

R3 R̂1














(8)

HB =














B1 B2

B3 B1 B2

. . . . .. . . .
. .. . . . .. .

B3 B1 B2

B3 B1














(9)

where

R1 =

(

A4 A3

−A4 A3

)

, R̂1 =

(

A4 −A4

−A4 −A4

)

,

R2 = −
(

A4 0
A4 0

)

, R3 =

(

0 A3

0 −A3

)

,

and

B1 =

(

A3 −A4

A3 A4

)

,

B2 =

(

0 0
A3 −A4

)

, B3 = −
(

A3 A4

0 0

)

.

The2ns × 2ns matricesA1, A2, A3 andA4 are banded
(with bandwidth 5) and their structure is given by













a2 a3 −a4 0 0 · · · 0 0 0 0 0
a4 a1 −a2 0 0 · · · 0 0 0 0 0
0 a1 a2 a3 −a4 · · · 0 0 0 0 0
0 a3 a4 a1 −a2 · · · 0 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...
...

0 0 0 0 0 · · · a1 a2 a3 −a4 0
0 0 0 0 0 · · · a3 a4 a1 −a2 0
0 0 0 0 0 · · · 0 0 a1 a2 −a4

0 0 0 0 0 · · · 0 0 a3 a4 −a2














where the values ofai’s are defined by

a1 a2 a3 a4

A1 −r+ −s+ q t+

A2 −s+ −u+ t− 0
A3 q t− −r− −s−

A4 t+ 0 −s− −u−

with q = 24 , r± = 24 ± 18
√

3 , s± = 12 ±
8
√

3 , t± = 3 ±
√

3 , u± = 3 ± 2
√

3.

3 USSOR Preconditioned Bi-CGSTAB

Figure 3 depicts the eigenvalue distribution of the unpre-
conditioned Collocation matrixA demonstrating one of
the main reasons responsible for the ineffective conver-
gence properties of Krylov subspace methods.
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Fig. 3 : Eigenvalues of Collocation matrix forns = 16.

Let us consider now the classical splitting ofA as

A = DA − LA − UA (10)

where

DA =

(

DR O

O DB

)

, LA =

(

O O

−HR O

)

(11)
and

UA =

(

O −HB

O O

)

. (12)

Upon defining the matrix

Mω,ω̂ =
1

ω + ω̂ − ωω̂
(DA − ωLA)D−1

A (DA − ω̂UA)

(13)
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with ω + ω̂ − ωω̂ 6= 0, the USSOR iteration matrix is
given by

Tω,ω̂ = I −M−1
ω,ω̂A , (14)

where the parameters ω and ω̂ are referred as (over) re-
laxation parameters. Notice that for specific choices of
the relaxation parameters one may recover well known
iterative schemes. For example :

• when (ω, ω̂) = (1, 0) the USSOR reduces to the
Gauss-Seidel method

• when (ω, ω̂) = (0, 1) the USSOR reduces to the
”backward” Gauss-Seidel method

• when (ω, ω̂) = (ω, 0) the USSOR reduces to the
SOR method

• when (ω, ω̂) = (ω, ω) the USSOR reduces to the
SSOR method

• when (ω, ω̂) = (1, 1) the USSOR reduces to the
SGS method.

Jacobi and USSOR Eigenvalues

Taking into consideration the 2-cyclic [17] structure of
the matrix A, it is shown [15] that the eigenvalues τ of
the USSOR matrix Tω,ω̂ and the eigenvalues µ of the
Jacobi iteration matrix T are related through the eigen-
value relationship

[τ − (1− ω)(1− ω̂)]2 = τ(ω + ω̂ − ωω̂)2µ2 . (15)

Inspecting now the above equation one may easily ob-
serve that :

• upon setting ω̃ = ω + ω̂ − ωω̂, the spectrums
of the USSOR iteration matrix Tω,ω̂ and the SOR
iteration matrix Tω̃ coincide, that is

σ(Tω,ω̂) = σ(Tω̃) , (16)

and, therefore, the convergence rate of the opti-
mal USSOR method coincides with the rate of
convergence of the optimal SOR method

• upon setting ω = 1 or ω̂ = 1 equation (16) re-
duces to

τ = µ2 (17)

and, therefore,

σ(T1,ω̂) = σ(Tω,1) (18)

hence, the spectrums of the forward and back-
ward GS iteration matrices T1,0 and T0,1 as well
as the spectrum of the SGS iteration matrix T1,1

coincide, that is

σ(T1,0) = σ(T0,1) = σ(T1,1) , (19)

with, of course, σ(T1,0) = {µ2
k , µk ∈ σ(T )}.

And, moreover, as the eigenvalues µk (depicted in Fig-
ure 4) of the Jacobi iteration matrix have been analy-
tically evaluated in [8], equation (15) easily determines
the spectrum of the USSOR family of methods.

−1 −0.5 0 0.5 1
−0.25

−0.15

−0.05

0.05

0.15

0.25

Fig. 4 : Jacobi Eigenvalues for ns = 16.

Effective Preconditioning for the Bi-CGSTAB

A USSOR preconditioned Krylov subspace method is,
of course, a Krylov method used to solve the USSOR
preconditioned system

Ãω,ω̂x = b̃ (20)

where

Ãω,ω̂ = M−1
ω,ω̂A and b̃ = M−1

ω,ω̂b . (21)

For effective preconditioning we require Ãω,ω̂ ≈ I or,
equivalently,

M−1
ω,ω̂A ≈ I ⇔ A ≈ Mω,ω̂ (22)

and at the same time we allow fast iterations. For this
observe the following :
I. Distribution of Eigenvalues. Following [5], for ef-
fective convergence properties of the Bi-CGSTAB, the
eigenvalues of the preconditioned matrix Ã (or, their ap-
proximations by the eigenvalues of the reduced matrix,
namely the Ritz values) should be located in the half
complex plane with small imaginary parts and the ori-
gin being outside, or towards the boundary, of the con-
vex hull containing them. Moreover it is well known,
and apparent by (22), that they also have to be clustered
around unity.
In this direction, recall relation (14) and observe that

Ãω,ω̂ = M−1
ω,ω̂A = I − Tω,ω̂ (23)

hence

σ(Ãω,ω̂) = {1− τk , τk ∈ σ(Tω,ω̂)} . (24)

Therefore, to satisfy the qualifications for effective per-
formance of the Bi-CGSTAB, described earlier, there
must hold

0 < 1−Re(τk) ≈ 1 and | Im(τk) |≈ 0 . (25)
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To avoid cumbersome algebraic manipulations, notice
that, for ω = 1 or ω̂ = 1, the spectrums of the corre-
sponding preconditioned matrices satisfy

σ(Ãω,1) ≡ σ(Ã1,ω̂) = {1− µ2
k , µk ∈ σ(T )} . (26)

Inspecting Figure 5, where we depict these eigenval-
ues, one may easily verify that the conditions in (25)
are readily verified.

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

Fig. 5 : The spectrums σ(Ãω,1) ≡ σ(Ã1,ω̂) for ns = 16.

II. Error Matrices. Recalling now equation (13), it is
evident that the error matrix Eω,ω̂

.= A −Mω,ω̂ for the
USSOR preconditioning is given by

Eω,ω̂ =
(ω̃ − 1)

ω̃
DA − (ω̃ − ω)

ω̃
LA − Uω,ω̂ (27)

where, ω̃ is as in (16) and

Uω,ω̂
.=

(ω̃ − ω̂)
ω̃

UA +
ωω̂

ω̃
LAD−1

A UA (28)

is a strictly upper triangular matrix. Recalling relations
(10)-(12), Eω,ω̂ takes the form

Eω,ω̂ =




(ω̃−1)
ω̃ DR

(ω̃−ω̂)
ω̃ HB − ωω̂

ω̃ HRD−1
R HB

(ω̃−ω)
ω̃ HR

(ω̃−1)
ω̃ DB


 .

(29)
Therefore, by noticing that for ω = 1 or ω̂ = 1 there
holds ω̃ = 1, we obtain

E1,ω̂ =




O (1− ω̂)HB − ω̂HRD−1
R HB

O O


 (30)

and

Eω,1 =




O −ωHRD−1
R HB

(1− ω)HR O


 . (31)

The choice ω = 0 or ω̂ = 0, for which the USSOR
reduces to backward-GS and GS, respectively, have the
following obvious advantages :

• They decrease, in a very simple way, the number
of nonzero entries of the corresponding error ma-
trices

E1,0 =




O HB

O O


 E0,1 =




O O

HR O




• They decrease the number of operations involved,
in case of explicit pre or post conditioning, since
the corresponding preconditioning matrices are
readily simplified.

Therefore, different choices of the relaxation parame-
ters will be considered to be better only if they result
in substantial reduction of iteration count. In the Fig-
ures 6 and 7, we graphically illustrate the iteration count
of the explicitly pre or post conditioned Bi-CGSTAB
method, by M1,ω̂ and Mω,1 respectively, as a function
of ω̂ and ω. By inspection, now, of said figures, one may
easily observe that there are other, than the zero, val-
ues of the relaxation parameters ω̂ and ω for which the
corresponding preconditioned Bi-CGSTAB attains bet-
ter convergence. However, the difference in the number
of iterations is small and does not justify the usage of
other relaxation values. There is always, of course, the
issue of efficient implementation of pre/post condition-
ing which will be addressed in another publication.
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Fig. 6 : Iteration count of the pre/post conditioned
Bi-CGSTAB method by M1,ω̂ for ns = 64.
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Fig. 7 : Iteration count of the pre/post conditioned
Bi-CGSTAB method by Mω,1 for ns = 64.
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4 Numerical Verification

We conclude our work herein by presenting, in Tables
T1 and T2, results from numerical experimentation for
a test Poisson problem with exact solution defined by

u(x, y) = 10 φ(x) φ(y) , φ(x) = e−100(x−0.1)2(x2−x).

T1 GS preconditioned Bi-CGSTAB
ns Iterations Time ‖ u− x ‖∞ ‖ b−Ax ‖∞
16 16 0.029 6.08e-4 4.89e-7
32 29 0.188 3.35e-5 7.16e-7
64 59 1.473 1.79e-6 3.43e-7
128 116 11.86 2.64e-6 1.50e-7
256 221 102.7 2.49e-6 3.23e-8

T2 B-GS postconditioned Bi-CGSTAB
ns Iterations Time ‖ u− x ‖∞ ‖ b−Ax ‖∞
16 14 0.023 6.07e-4 2.18e-5
32 22 0.136 3.20e-5 2.29e-5
64 62 1.510 2.04e-6 2.99e-8
128 103 10.32 2.15e-6 5.16e-7
256 207 95.19 2.37e-6 5.55e-8

In Table T1 we have included the results from the GS
preconditioned Bi-CGSTAB, which in our implementa-
tion, performs relatively better from the backward-GS
preconditioning. The opposite is true for the case of
postconditioning. Observe that the backward-GS post-
conditioned Bi-CGSTAB performs better. Efficient im-
plementation of all schemes is under study.
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