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Abstract: The extended mild slope equation has been solved numerically to simulate wave propagation. 
Refraction, diffraction, shoaling, reflection, bottom friction, breaking energy dissipation and resonance with 
nonlinear wave celerity and group velocity have been considered. Mac Cormack Method and Point Gauss 
Seidel Method are applied together on an irregular mesh. In the predictor step, forward finite difference 
approximations are applied to first order derivatives and central finite difference approximations are applied to 
second order derivatives. In the corrector step, backward finite diffrence approximations are used for first order 
derivatives and central finite difference approximations are applied to second order derivatives. The developed 
numerical model has been applied to the Fethiye Bay located in the Mediterranen coast of Turkey. 
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1   Introduction 
In every coastal or ocean engineering planning 
study, the information of wave distributions and 
conditions of the region has an important role. 
Therefore the wave propagation from deep water to 
shallow water has to be well simulated.  
 Numerical wave models are basically two types. 
First is phase- resolving models based on vertically 
integrated, time dependent mass and momentum 
balance equations; and the second is phase- 
averaged models based on the a spectral energy 
balance equation. Recently, the researchers have 
concentrated on the improvement of unified phase 
resolving models describing transient fully 
nonlinear wave propagation from deep water to 
shallow water over a large area (Liu & Losada, 
2002). As the depth integrated models, these methos 
can be stated: Ray approximation, mild slope 
equation, parabolic approximation, Stokes waves 
approximation, Boussinesq approximation, highly 
nonlinear and dispersive models. The detailed 
explanation of these models can be found in the 
study of Liu and Losada (2002). In this study, on 
mild slope equations is focused. Linear wave 
transformation from deep water to shallow water 
like refraction, diffraction, shoaling, reflection can 
be solved together with the mild slope equation 
proposed by Berkhoff in 1972. This basic mild slope 
equation is an elliptical model. Bottom topography 
is assumed to be small, ( 1/ <<∇ khh ) where h is 
water depth, k is wave number, ∇ is horizontal 

gradient operator. The equation below is called mild 
slope equation in the literature. 
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where, σ: Angular frequency; C : Wave celerity; Cg: 
Group velocity;φ : Two dimensional complex 
potential function. 
 Four approaches can be applied for solving of the 
elliptical equation: 1) Parabolic approach, 2) 
Hyperbolic approach, 3) Iteration methods, 4) Direct 
matrix equation solver.  
 Parabolic approach was proposed by Radder in 
1979. Weak diffraction and negligible reflection are 
assumed in this approach. Parabolic equation is 
obtained after reducing the mild slope equation to 
Helmholtz equation. The advantage of this model is 
the applicability to short waves over large coastal 
areas with irregular bottom topography. 
 Hyperbolic approach is an unsteady approach. 
Mild slope equation is transformed to transient mild 
slope equation. This method includes reflection and 
it is the superioty to the parabolic approach. 
Hyperbolic method is a useful tool to solve wave 
transformation problems especially in harbours 
where reflection has a great importance.  
 The third approach is advanced iteration methods 
such as multi grid technique used by Li & 
Anastasiou (1992) and Generalized Minimum 
Residual Method applied by Walker (1982). These 
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methods do not require large computer memory and 
have great convergence rate.  
 The fourth approach is solution of large band 
matrices with the Gauss Elimination Method using 
partial pivot algorithm. But large computer memory 
is necessary for this method.  
 If bottom topography has undulations, 
bottom curvature ( )( )2h∇  and square of bottom 
slope ( )h2∇  have to be accounted. Some 
researhers have studied on the modification of 
the mild slope equation for the rapidly varying 
bottom topographies.  

Kirby (1986) developed mild slope equation for 
the rapidly varying bottom topographies and applied 
this modified mild slope equation to observe the 
reflection effect of propagating waves over 
sinusodial bathymetries. Massel (1993), studied on 
the transformations of propagating waves. He 
developed a modified mild slope equation including 
higher order bottom effect terms as wells as 
evanescent modes. Chamberlain and Porter (1995) 
solved modified mild slope equation for the not 
evanescent modes. It includes the general mild slope 
eqation and extended mild slope equation of Kirby. 
Suh et al. (1997) derived two equivalent time 
dependent wave equation for the propagation of 
water waves on rapidly varying bottom topography 
using Green’s formula method and the Lagrangian 
formulation.  

Maa et al. (2002) used the extended mild slope 
equation for solving water wave transformations 
(refraction, diffraction, shoaling, reflection, bottom 
friction, breaking energy dissipation and resonance).  

In this study, the extended mild slope equation 
has been used to simulate refraction, diffraction, 
shoaling, reflection, bottom friction, breaking 
energy dissipation and resonance with nonlinear 
wave celerity and group velocity.  
 
 
2    Theory 
 
The extended mild slope equation used by Maa et al. 
(2002) has been solved in this study.  
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where, g:gravitational acceleration, f1:bottom 
curvature coefficient, f2:coefficient of square of the 
bottom slope, ∇:horizontal gradient operator, φ: 
velocity potential function, k:wave number, L:wave 
length, C:wave celerity, Cg:group velocity, 
∇h:bottom slope, ∇2h:bottom curvature, fbd =fb+fd : 
combined energy dissipation factor, fb:bottom 
friction factor, fd:energy dissipation factor after 
wave breaking. fb and fd, were given by Hsu and 
Wen (2001) as follows: 
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where, fw is the wave friction factor, γ=a/h is the 
ratio of the wave amplitude to the water depth, Γ 
and K are emprical coefficients taken as 0.4 and 
0.15, respectively.  

Wave friction factor is determined from the 
following equation.( Jonsson and Carlsen (1975)). 

N

m
f

ww k
a

m
ff

1
1010 log

4
1log

4
1

+=+                    (8) 

where, a1m: Semi length of distance of moving fluid 
particle on bottom, kN: Nikuradse roughness, mf:an 
experimental constant (mf=-0.08). When a1m/kN < 2 
is, wave friction factor is taken as fw=0.24 in the 
calculations. Otherwise the calculated value of fw by 
the equation (8) is used. 

Breaking index is used to define breaker line. In 
the formulation below, m is bottom slope, and L0 is 
the deep water wave length, R= oLh/  (Isobe, 1987).  

( ) [ ]22/3 )1.0(45exp53exp3.053.0 −−+−−= RmRbγ  (9) 
γ and γb are calculated in each step and compared in 
the solution. If γ<γb is fd  is equalized to zero. 
Otherwise, fd value is used as calculated in the 
formula.  

The use of nonlinear wave celerity and group 
velocity provides more accurate results in wave 
propagation solution. The importance increases 
especially in strong refraction condition in shallow 
water. Kirby and Dalrymple (1986) proposed a 
method valid either in deep water or in shallow 
water. Dispersion relationship is used to obtain 
nonlinear wave celerity and group velocity. 
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The nonlinear wave celerity and group velocity 
can be calculated using the dispersion relationship 
given in the equation (10) and the equations (11)-
(14).  
 
 
2.1   Boundary Conditions 
There are two types boundary conditions used for 
wave transformations. One of them is partial 
reflection boundary condition, the other is given 
boundary condition.  
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where α* is the absorption coefficient; R is the 
reflection coefficient;  kx and ky are wave numbers 
in x- direction and y- direction, respectively; θ is the 
wave incidence angle. The subscript ‘i’ denotes a 
physical quantity under specified conditions. (Hsu 
and Wen, 2001). 

When there is total reflection condition: 
φi=0, m’=0, α=0                                                   (18) 
     When there is partial reflection condition: 
φi=0, m’=0, 0<α≤1                                               (19) 

When there is Radiation reflection condition: 
φi=0, m’=0, α=1                                                   (20) 
     At a given boundary condition: 
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where         [26] 
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Wave number vector is calculated with the equation 
[23] and phase function can be found with the 
equation [24]. Re and Im are real part and imaginary 
part of complex potential function, respectively. 
Wave angle calculation is given in the equation 
[25]. 
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3   Numerical Method 
Mac Cormack Method and Point Gauss Seidel 
Method are used together as numerical method. 
They have been applied to the equation [2] on an 
irregular mesh. Mac Cormack Method is a multi 
step method. In the predictor step, forward finite 
difference approximations are applied to first order 
derivatives and central finite difference 
approximations are applied to second order 
derivatives. In the corrector step, backward finite 
diffrence approximations are used for first order 
derivatives and central finite difference 
approximations are applied to second order 
derivatives. Mac Cormack Method provides more 
accurate results especially in the solution of 
nonlinear equations. Numerical dispersion problem 
is reduced by using forward and backward finite 
difference methods together. Point Gauss Seidel 
method decreases the iteration number and increases 
the rate of convergence. The results of the linear 
theory are used as initial assumptions to begin the 
iteration. 
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a0=H0/2                             (29) 
where a0 is the deep water wave amplitude, Ks is the 
shoaling coefficient and Kr is the refraction 
coefficient.  
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4   Applications 
The numerical model has been applied to the 
Fethiye Bay located in the Mediterranen coast of 
Turkey. The bathymetry of the Fethiye Bay is 
shown in the Fig.1. Deep water wave height is 
H0=3m and wave period is T=8sec. The numerical 
model has been applied to the dominant direction W 
and SW, and  wave height distributions are given in 
Fig.2. and in Fig.3 respectively. The grid size in x- 
direction and y- direction has been used as 
dx=dy=5m in numerical model.  
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Fig. 1: Bathymetry of Fethiye Bay 

 

 

Figure 2: Wave height distribution for waves angle 
from W direction.  

 

Figure 3: Wave height distribution for waves 
approaching from SW direction.  
 
5   Conclusions 
 
A numerical model is developed for the simulation 
of wave transformations, that is applicable to 
irregular bottom topographies.  Model is based on 
extended mild slope equation and could simulate 
wave shoaling, refraction, diffraction, reflection and 
resonance. The use of nonlinear wave celerity and 
group velocity provides more accurate results in 
wave propagation solution. The importance 
increases especially in areas where there occur 
sudden changes in water depth causing strong 
refraction and also in shallow water regions. 
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