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ABSTRACT 
This paper presents the comparison between the numerical results of central and upwind results 

of a computational model which efficiently simulate super-critical free surface flow in channels with 
non-parallel side walls. This model computes water depth and velocity components in horizontal 
plane using shallow water continuity and equations motion in horizontal plane. This model evaluates 
two-dimensional velocity patterns and shockwaves. The governing equations are discretized utilizing 
over lapping cell vertex finite volume method on triangular unstructured meshes. The numerical 
oscillations of explicit solution procedure are damped out using either artificial viscosity scheme or 
upwind averaging fluxes at control volume boundary edges. The algorithm of evaluation of the fluxes 
at edges and artificial dissipation terms at nodes is adopted for unstructured meshes. Using both 
techniques, no additional dissipation is introduced to the computed flow and shockwaves are 
simulated accurately. The efficiency of the model is improved using edge base data structure for 
addressing unstructured mesh details. The accuracy of results is assed by simulating super-critical 
flow in two chute canal with expanded and contracted walls and using comparison of between the 
computation results with the reported experimental measurements.  
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INTRODUCTION 
In order to calculated flow parameters such as velocity, depth and Froude number, and to 

check cavitations phenomena, It is necessary to predict flow patterns in chutes. When the width of 
channel is expanded or contracted some steady shock waves are generated and propagates 
downstream in the hydraulic system. The position and direction of these waves remains constant for 
steady flows. The height and speed of the shock waves are important parameters in design of side 
walls along channels and the self aeration flow characteristics. 

Many researches were reported in this regard, using various schemes of Finite element 
method (FEM), Finite difference method (FDM), the characteristics method; and the Finite volume 
method (FVM) “Zhao et al. (1996)”.    
In this paper, the shallow water equations are considered for mathematical modeling of two-
dimensional flows. Numerical computation of two-dimensional super-critical flow using finite volume 
method is performed using two methods of central and upwind flux averaging at the overlapping finite 
volume boundary edges. The central scheme uses artificial viscosity technique for shock capturing 
and damping numerical oscillations of explicit solution while with application of upwind averaging 
no additional terms are used. The numerical model utilized for present computations are originally 
developed by S.R. Sabbagh-Yazdi and here its accuracy is assessed for super-critical flow “Sabbagh 
and Mohammad zade (2004)”. 
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1. GOVERNING EQUATION 
The Shallow-water equations describe unsteady gradually varied flow in open channels. The 
equations are obtained from integrating the Navier-Stokes equation over the channel depth “Sanders 
(2001) ,  Gharmy and Steffer (2002)”. Some assumptions to extract shallow water equations are; 
hydrostatic pressure distribution, incompressible flow (water), distribution of velocity in vertical 
direction is uniform. These equations are suitable for solving two-dimensional flow over mild slope 
beds. 
Shallow water continuity equations equation is: 
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And two equations of motion in two horizontal directions are:  
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Where t = time, x and y = Cartesian coordinates, h= flow depth, u and v = velocity vectores in  x  and  
y  coordinates , z = bed elevation and  g = gravity acceleration    
Global forces are computed from following equation: 
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 fc is bed friction coefficient. In order to computed the bed stress can use roughness coefficient of 

Manning, Chezy, Darcy Weisbach or equivalent sand roughness. 
 

2. NUMERICAL SOLUTION MODEL 
 In this paper, in order to discretize the shallow water equations the overlapping cell vertex 
finite volumes which are formed by some triangles meeting at each nodal point (Figure 1) are applied. 
The two-dimensional governing equations in the conservative form can be written as : 
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Integrating over each control volume Ω  using the Finite Volume Method, the discrete form of 
equations takes the general form of :  
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Here xF and yF are the convective fluxes while xG and yG are hydrostatic pressure fluxes. The value 
of dependent variables Q at nodes can be used for computation of average fluxes at control volume  
boundary edges as: 

)(QFF xx =  , )(QFF yy =        [8] 
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Figure 1. Two overlapping control volumes at the left and right nodes of computational edge 
  
 The above mention fluxes are usually computed by averaging of fluxes at associated nodes of 
control volume boundary edges. Two averaging methods are described in following sections. The first 
method which uses two end nodes of boundary edges of the control volumes for flux averaging  
procedure is identical to central schemes (for regular meshes) while the second method which uses the 
aforementioned node plus an upstream node is an upwind scheme.  
 
3. THE CENTERAL FLUX AVERAGING  

It can be shown that if two end nodes of control volume boundary edges are used for 
computation of average fluxes of relation “Younus and Chaudhry (1996)”. 

2/)( 21 FFF +=                    [9] 
 the resulted formulation approaches the central differencing scheme for meshes with relatively 
regular cell sizes. Therefore, application of this averaging method may give rise to numerical 
oscillation and would destroy the stability and accuracy of explicit computation procedure. To 
stabilize the explicit solution of hyperbolic equations adding artificial viscosity to the numerical 
formulation is one of the efficient techniques. The Laplacian operator ( Q2∇ ) with depth switch hS  
provides a suitable mechanism for damping superior numerical oscillation near shock waves. 
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However, for the regions with smooth variations of flow variables application of Biharmonic operator   
( Q4∇ ) may be beneficial “Sabbagh and Mohammad zade (2003)”. 
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ijλ is a scaling factor and is computed using the maximum value of the spectral radii of every node  i . 

The coefficient of the artificial dissipation term 2ε and 4ε  should be tuned to minimum value 
required for stabilizing the solution procedure. The details of dissipation operator designed for the 
explicit solution of the shallow water equation on unstructured triangular meshes are described at 
reference paper utilized for numerical modeling of sub-critical flow “Sabbagh-Yazdi et al (2004)”.  
 
4. THE UPWINDING FLUX AVERAGING  

In previous section the value of fluxes is calculate at the center of each boundary edge of 
control volumes. Here in order to make upwind characteristics, three point of cells attached to the 
boundary edges of control volume are utilized to compute the fluxes required for finite volume 
calculations. 
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Figure 2.  Two triangular cells from two neighboring control volumes sharing an edge 

 
The value of dependent variables at three nodes (including two nodes at both ends the desired 

edge and upstream node.) can be used for computation of average fluxes at boundary edges as: 
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Where, the weighting coefficient θ  can be chosen between 0. to 0.333. On regular meshes, 
above mentioned formulation with 0=θ  may produce numerical results similar to second order 
central differencing scheme. However, if one uses θ<33.0 , the scheme will produce numerical 
results similar to the first order schemes. Using the values of 33.00 << θ   would result a simple 
oscillation free upwind scheme (with the accuracy somehow between first and second order) and 
hence, there would be no need to add any extra numerical dissipation to the computed residuals.   

 The upstream node may be considered proportional to the direction of computed value of 
normal velocity kU at the edge by using following formulations. The up and down nodes can be 

distinguished using the sign of the dot product of unit normal and velocity vector of the edge ( nU k

). , 

where sjxiyn ∆∆−∆= /)(
))) is unit normal vector of the edge).    

In order to compute upstream convective flux, UPF , the dependent variable 
)NodeUpQQUP (=  may be used. The upstream node may be considered proportional to the 

direction of computed value of normal velocity jie vuV += at the edge by using following 
formulations. The up and down nodes can be distinguished using the sign of the dot product of 

nVV en
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))) unit normal vector of the edge.       

Using this simple upwind scheme will produce oscillation free results, and hence, there would 
be no need to add any extra numerical dissipation to the computed residuals.  

 
5. OBLIQUE HYDRAULIC JUMP 
  In this section, the quality of the result of two schemes of central and upwind averaging in the 
model are assessed by comparison between the numerically simulated flow parameters of oblique 
hydraulic jump in a canal with a contraction in the left side wall of the canal. For present flow 
simulation the details of the test case are considered similar to the case utilized by previous 
researchers “Jimenez et al. (1998)”. 
 The canal with certain aspect ratio (B/h1>6, L/h1>11.8 where h1=0.1) is used to generate 
unstructured triangular mesh. The canal is contracted by diverting the left side wall of the canal by a 
constant angle of 12 degree (Figure 3). The method Delaunay triangulation is used to generate the 
unstructured mesh. This method provides the ability of local refinement of the mesh by considering 
points and line sources “Weatherill et al. (1994)”. Since the angle of the hydraulic jump from the 
analytical solution is known (β=25.505 degree), the mesh is fined along a line with similar angle. The 
finalized unstructured mesh for present numerical simulation contains 1376 nodes, 2585 cells and 
3960 edges (Figure 3).  
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 The upstream Froude number is considered as 4. Therefore, the upstream flow depth and 
velocity are considered as 0.1m and 3.982m/s. Figure 4 present the convergence behavior of two flux 
averaging schemes. Figure 5 demonstrates computed depths from central and upwind flux averaging 
schemes. For the computation of this case (using both schemes) on a Pentium IV (2.4 MHz) Personal 
Computer the CFL=3 are used and CPU time consumption were measured as 7.14 and 6.82 seconds 
for central and upwind flux averaging schemes, respectively. It worth noting that according to the 
analytical solution for β =  25.505 degree the depth and velocity after jump can be calculated using the 
ratios of h2/h1=1.987 and v2/v1 = 0.9282, respectively. In figure 6, the comparison between the 
reported analytical depth and numerically simulated water surface (using central and upwind flux 
averaging) along some cross sections of the canal are plotted. 
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a) Geometry     b) Mesh 
Figure 3. Geometry of the canal and Unstructured triangular mesh for the oblique jump 
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a) Depth     b) Velocity  

Figure 4. Convergence history of depth and velocity values for two flux averaging schemes 
(Oblique Jump) 
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Figure 5. Computed water surface contours in oblique jump canal  
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a) Section 1     b) Section 2 

Figure 6. Comparison of computed water surface with the analytical solution in two sections  
 
6. NUMERICAL APPLICATIONS 

In this section, in order to evaluate the computational results of two central and upwinding 
schemes to simulate free surface flow in channel; data of the results of the model are compared with a 
experimental test measurements of the previous workers on super-critical flow in two canals with 
contracting and expanding width “Kruger et al. (1998), Younus et al (1994)”. In these canals, flow 
regimes are super-critical, thus two parameters of flow (depth and velocity) are imposed at the 
upstream of the canals. 

In following super-critical flow cases, depth and velocity of the flow in upstream are imposed 
at upstream flow boundary. Therefore, the flow parameters are computed at downstream of the 
channel by numerical model. 
 
6.1. CONTRACTED CANAL WITHOUT FRICTION  
  In this part, the quality of the result of two schemes of central and upwind averaging in the 
model are assessed by simulation of flow in a contracted canal. The dimension of the canal is present 
at figure 7. The upstream flow depth and velocity are considered as 0.05m and 2.8m/s in the 
experimental set up report “Kruger et al. (1998)”. 
The utilized unstructured mesh for present numerical simulation contains 2340 nodes, 4417 cells and 
6756 edges (Figure 7).  

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp556-565)



Figure 8 present the convergence behavior of two different schemes of flux averaging. Figure 9 
demonstrates computed depths from central and upwind flux averaging schemes. Figure 10 presents 
the comparison between the reported measured depth and numerically simulated water surface along 
the central are at the canal using central and upwind flux averaging. 
For the computation of this case (using both schemes) on a Pentium IV (2.4 MHz) Personal Computer 
the CFL=3 are used and CPU time consumption were measured 23.08 and 22.26 seconds for central 
and upwind schemes, respectively. 
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Figure 7. Unstructured triangular mesh for contracted canal (dimensions in meter) 
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a) Depth     b) Velocity  

Figure 8. Convergence history of depth and velocity values for two flux averaging schemes 
(contracted canal) 

X

0

1

2

3

4

Y
0

0.5

1

SL

0

0.05

0.1

X
Y Z

SL

0.11
0.1
0.09
0.08
0.07
0.06
0.05
0.04

Super-Critical Flow in Contracting Canal

Dr. S. Yazdi

Super-Critical Flow in Contracting Canal

Dr. S. Yazdi

Super-Critical Flow in Contracting Canal

Dr. S. Yazdi         

X

0

1

2

3

4

Y
0

0.5

1

SL

0

0.05

0.1

X
Y Z

SL

0.11
0.1
0.09
0.08
0.07
0.06
0.05
0.04

Super-Critical Flow in Contracting Canal

Dr. S. Yazdi

Super-Critical Flow in Contracting Canal

Dr. S. Yazdi  
a) Central flux averaging scheme  b) Upwind flux averaging scheme 

Figure 9. Computed water surface contours in contracted canal for upwind flux averaging scheme 
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Figure 10. Water surface plots along center of contracted canal  

 
6.2. EXPANDING CANAL WITH FRICTION  
  In order to verify the accuracy of the super-critical flow simulation in a canal with expanded 
walls a canal that its geometry is presented in figure 11 is chosen. The bed surface Chezy coefficient 
is reported as 70 and the inflow velocity and the upstream depth are measured as 1.4 m/s and 0.049 m. 
respectively according to the previous experimental work on the similar canal “ Younus and 
Chaudhry (1994)”.  
For numerical simulation of this case an unstructured mesh containing 3071 nodes, 8952 edges and 
5882 cells is utilized ( Figure 11 ). Figure12, shows the convergence history flow depths for central 
and upwind flux averaging schemes. Figure 13, present some sample results of two abovementioned 
schemes of the finite volume model. In figure 14, the results of computed water surfaces along the 
center of the canal resulted from both schemes are plotted and compared with the experimental data.    

 It worth nothing that, the computation of the case (using both schemes) were performed by 
considering CFL=3 and CPU time consumption were measured 46.87 and 44.87 seconds on a Pentium 
IV (2.4 MHz) Personal Computer, for central and upwind schemes, respectively. 
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Figure 11. Unstructured triangular mesh for expanded canal (dimension in meter) 
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a) Depth     b )Velocity  

Figure 12. Convergence history of depth and velocity values for two schemes of flux averaging 
(expanded canal) 
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Figure 13. Computed water surface contours in expanded canal  
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Figure 14. Computed depths and experimental measurements along center of expanded canal 

 
 
7. CONCLUSION 
  Using depth averaged equations of continuity and motions are used as mathematical model 
for numerical simulation of two-dimensional super-critical free-surface flow in channels with non-

H/H0 

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp556-565)



parallel walls. The overlapping cell vertex finite volumes formed by gathering triangles connected to 
each computational node are used to discretize the governing equations. In this paper, the effects of 
non-parallel (contracted and expanded) walls are numerically investigated and shock waves similar to 
experimental observations are computed. The numerical oscillations due to explicit procedure of 
computations are damped out by application of two different methods of central and upwind flux 
averaging. The central averaging scheme needs adding the artificial dissipation terms while the 
upwind averaging without any additional formulation provides relatively accurate results via robust 
and stable solution procedure. For two-dimensional flow problems the numerical model successfully 
simulated the super-critical flow in contracted or expanded canals and the comparison with reported 
experimental works presents accepted agreement.  
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