
Non-Stationary Components Fixing Jacobi Iteration

JUN SRISUTAPAN
Department of Biostatistics, Mahidol University, Bangkok 10400. THAILAND

SIRIKUL BUNDITSAOVAPAK
Department of Mathematics and Computer Science, King Mongkut's Institute of

Technology Ladkrabang, Bangkok 10520. THAILAND

Abstract: - This paper presents an effective extension to the classical Jacobi iteration. The non-stationary
components fixing Jacobi iteration was designed to save the computational cost per iteration. This done by skip
evaluating the solution components that probably need no computation in a certain iteration. The experiment
using PDE data set confirm our method. Moreover, the quality of the obtained solutions are acceptable.

Key-Words: - Stationary iterative methods, Non-stationary iterative methods, Jacobi iteration, Gauss-Seidel,
Components fixing, Convergence ratio, Binary convergence table, Approximate Jacobi iteration.

1 Introduction
We proposes an adaptive algorithm for the Jacobi
iteration to solve a linear system arises from
computational fluid dynamics. Section 2 gives
literature reviews. Section 3 reviews Jacobi iteration
in our notations. Section 4 describes the motivation
of the problem in term of our notations together
with introduces some terminology used in Section 5.
Section 5 explains our method and Section 6 gives
experimental results.

2 Literature Reviews
Solving a system of linear equations[1,2,3] is a
fundamental work in scientific computing. This line
of work can be categorised into direct and indirect
(iterative) method.

The term iterative method refers to a wide range
of techniques that use successive approximations to
obtain more accurate solutions to a linear system
after each step. This paper will covers two types of
iterative methods: 1) stationary methods, which are
older, simpler, and easy to implements and 2) non-
stationary methods, which are relatively new.

Below are short descriptions of each of the
methods:

2.1 Stationary Methods
The Jacobi method solves for every variable

locally with respect to the other variables. One
iteration of the method corresponds to solving for
every variable once.

The Gauss-Seidel method is similar to the Jacobi
method except that it employs updated values as
soon as they are available which make this method
converges faster than the Jacobi.

 Successive Over-Relaxation (SOR) can be
derived from the Gauss-Seidel method by
introducing an extrapolation parameter and may
converge faster than Gauss-Seidel.

2.2 Non-stationary Methods
The Conjugate Gradient method (CG) generates

a sequence of orthogonal vectors. These vectors are
the residuals of the iterates. They are also the
gradients of a quadratic function, the minimisation
of which is equivalent to solving the linear system.
The CG method has been adapt for various
conditions of various types of problem.

Chebyshev Iteration recursively determines
polynomials with coefficients chosen to minimise
the norm of the residual in a min-max sense.

This paper focuses on Jacobi and Gauss-Seidel
iteration methods because these iterative methods
are known as the fundamental theoretical and
application framework for all iterative methods.
Furthermore, these methods are still widely used in
many classes of applications, making their
improvement greatly appreciable.

3 Classical stationary Jacobi iteration
An iterative method to solve a linear system

bAx = , where nn
ijaA ×ℜ∈= }{ and n

ibb ℜ∈= }{ ,

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp566-571)

starts with an initial approximation nx ℜ∈)0(to
approach the solution n

ixx ℜ∈= }{ by produces a

sequence of vectors { } n
k

kx ℜ∈
∞

=0
)(that would

converge to the solution x . The method can be
expressed in the form cTxx += where

nn
ijtT ×ℜ∈= }{ and n

icc ℜ∈= }{ . In stationary
methods, neither T nor c depends upon the
iteration count k . In contrast, for non-stationary
iterative methods, T and/or c can depends upon
the iteration count k .

For each iteration k and components i , Jacobi
iteration generates a sequence { }∞=0

)(
k

kx by using the
generating function),(ikJacobiΓ with the assignment

),()(ikx Jacobi
k

i Γ= . JacobiΓ is defined by (4) whereas
Gauss-Seidel employs),(ikSeideliGauss−Γ in (5).

ii

i

N

ijj

k
jii

Jacobi a

bxa

ik

+−
=Γ

∑
≠=

−

,1

)1(

),(
(1)

ii

i

N

ij

k
jii

i

j

k
jii

SeidelGauss a

bxaxa

ik

+−−
=Γ

∑∑
+=

−
−

=
−

1

)1(
1

1

)(

),(
(2)

Definition For each iteration k and component i

we define { }ε<−==
∞

−)1()()(:...1: k
i

k
i

k xxNiG

)(kG can be used to check whether the linear
convergence is converge at iteration k , e.g., iff

NG k =)(. The infinity norm in)(kG can be

replaced with any proper norm. The algorithmic of
the classical stationary Jacobi then can be written as

),(ikJacobiΓ and)(kG , which can be replaced with
Gauss-Seidel or different norm(*).
Algorithm Jacobi Iteration. Solving bAx =
order N with initial solution

)0(x and
infinity-norm and TOLERANCE ε
begin
• converge := false;
• 0:=k ;
 while (not(converge)) do
 {

 1: += kk ;

 for Ni ...1:= do

),(:)(ikx Jacobi
k

i Γ= ; (*)
 { }ε<−==

∞

−)1()()(:...1: k
i

k
i

k xxNiG ; (*)

 if NG k =)(
then

 converge := true;
 }
end;

Fig.1 Formalism of classical Jacobi iteration

4 Motivation
This section describes the root of the problem. For
example, let we solve the linear system (3) of order

8=N using Jacobi iteration with infinity norm
where tolerance ε =0.05.

































=

































1
1
1
1
1
1
1
1

91011201
19121132
01902000
12091200
11219112
21021911
03001190
12002109

x (3)

We track how the linear system reaches the
convergence point.

4.1 Error
In Fig.2 seven iterations are need to make (3)

converges. The Root Mean Square Error (RMSE),
which is a quality of the solution, is 0.223.

4.2 Computational Cost
Jacobi iteration pays static cost for using generating
function at cost N per iteration. It employs the
component-updating equation (1) for 56=8×7 times
shown within Fig.2.

4.3 Binary Convergence Table
Definition Binary convergence table is a table
displaying how each components reach the
convergence. The rows represent iteration count and
columns represent component.

ik \ 1 2 3 4 5 6 7 8
1 × × × × × × × ×
2 × × × × × • × ×
3 × × × × × • × ×
4 × × × × × • × ×
5 • • × × • • × •
6 • • • • • • × •
7 • • • • • • • •

Fig.2 Binary convergence table of solving (3)
using classical Jacobi Iteration

For 2=k and 6=i we have)2()2(
6 Gx ∈ , i.e.,

ε<−
∞

−)12(
6

)2(
6 xx so we mark • at element (2, 6)

but for 2=k and 8=i we have ε≥−
∞

−)12(
8

)2(
8 xx

or)2()2(
8 Gx ∉ so we mark × at element (2, 8).

Moreover for 5≥k we also have
)(

86521 ,,,, kkkkkk Gxxxxx ∈ . However it is not always

that)()(kk
m Gx ∈ imply)1()1(++ ∈ kk

m Gx but by
observation this is probably occur. The binary
convergence table gives a lot of useful information.

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp566-571)

4.4 Convergence Ratio
From binary convergence table it is natural to define
some quantity.

Definition convergence ratio, kπ at iteration k is
defined as NG k

k /)(=π .

5 The Method
Our method was inspired by the binary convergence
table. The method consists of fixing, flushing, and
convergence determining.

5.1 Fixing
One simple way to reduce the computational cost is
to simply fix the component)(k

ix . Unconditionally
fixing or modifying a component can be viewed as
giving an unusual noise to the system. Fixing is a
very low-cost operation. It is definitely effective if it
introduces a little noise to the system but yield an
acceptable result.

 In case of N =3, standard Jacobi searches the
solution within R3. Fixing one component reduce
the search space to R2. Fixing one more component
would reduce it further to R1. Therefore if we know
in prior that the noise added is low enough, we can
reduce our search space one dimension at a time. In
fact, binary convergence table provides us some
useful heuristic. Here we do fix)(k

ix only if when
)()(kk

i Gx ∈ . This can be done via defining a new

generating function,),(ikJacobi−ΦΓ for Jacobi
extension and),(ikSeidelGauss−−ΦΓ for Gauss-Seidel.

()




 ∉Γ

=Γ
−−Φ

otherwisex

Gxik
ik

k
i

kk
iJacobi

Jacobi ;
;),(

),(
)1(

)()(

(4)

()




 ∉Γ

=Γ
−

−
−−Φ

otherwisex

Gxik
ik

k
i

kk
iSeidelGauss

SeidelGauss ;
;),(

),(
)1(

)()(

(5)

ik \ 1 2 3 4 5 6 7 8
1
2 •
3 6
4
5 • • • •
6 6 6 • • 6 6
7 6 6 •

Fig.3 Example of component fixing from iteration
2→3, 5→6, 6→7

In Fig.3 at iteration 3=k , there use only 8-1 calls
of JacobiΓ At iteration 6=k for 8-4=4 times of

calling JacobiΓ are required. Let us define some term
related to the fixing.

Definition For iteration k ,)(kF is defined to be the
total number of components that have been fixing
from iteration 1−k to k .

Therefore, in Fig.3,)1(F = 0,)2(F =0,)3(F =1,
)4(F =0,)5(F =0,)6(F =4, ()F =2.

5.2 Convergence
Test for convergence of classical version uses

NG k =)(. If we still use this in the component

fixing (i.e. fix some dimension of the solution), we
cannot be sure whether what we fixed is really the
correct dimension. One way that would ensure us is
to consider fixing no component before making a
decision for convergence.

Hence, the system is said to be converge if and
only if NG k =)(and)(kF = 0.

5.3 Flushing
Flushing lets the system search for the solution in

N -dimensional space. Two flushing strategies
designed for this work are immediately- flushing and
proportional- flushing.

5.3.1 Immediately-Flushing (Jacobi-I)
At iteration k , do flush when)1(−kF > 0. In Fig.4,
every components from iteration 4 must be
computed into iteration 5.

k/i 1 2 3 4 5 6 7 8 F(k-1)
1
2 •
3 6 1 > 0
4*

Fig.4 Immediately-Flushing at iteration 4

0.00E+00

5.00E-02

1.00E-01

1.50E-01

1 2 3 4 5 6 7

Jacobi Jacobi-I Jacobi-II

Fig.5 Error norm v.s. iteration of solving (3) using
classical Jacobi, Jacobi-I(5.3.1), and Jacobi-II(5.3.2)

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp566-571)

5.3.2 Flushing Proportional to
N

F k)1(−

 (Jacobi-II)

Do flushing only if the number of fixed element,
)1(−kF is large enough. As we try to make our model

simple, we try to avoid defining what is large.
Instead, we assign the probability to flush dues to
the ratio NF k /)1(− . The larger)1(−kF , the greater
probability to flush the system.

In Fig.6, at iteration 6, the flushing will occurred
since a uniform random number from 2

]1,0[χ gives a
value greater than 8/)5(F = 0.5.

k/i 1 2 3 4 5 6 7 8 F
2 •
3
4
5 • • _ _ • _ • 4
6* 6 6 • • 6 6 _ 6
7 • • •
Fig.6 Flushing Proportionally at iteration 6

5.4 Computational Cost
In all Jacobi's, the cost per iteration k is actually

)(kFN − . In classical Jacobi NNFN k =−=− 0)(.
Fig.7 shows the computational cost of all Jacobi
iterations.

5.5 Error
The graph of error within the process of all Jacobi
iterations are shown in Fig.5. They are not much
different for (3). However, in some equation, our
method also decrease the error dramatically.

5.6 The quality of the solution
After linear systems are converged, RMSE is used
to show the quality. The RMSE of the three methods
comparing to the exact solution are given in Fig.8

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7

Jacobi Jacobi-I Jacobi-II

Fig.7 Computational cost v.s. iteration of classical
Jacobi, Jacobi-I, and Jacobi-II .

0.00E+00

5.00E-02

1.00E-01

1.50E-01

1 2 3 4 5 6 7

Jacobi Jacobi-I Jacobi-II

Fig.8 RMSE v.s. iteration of Jacobi Family

Firstly we expected the RMSE of our fixed
method are slighter higher than classical one, but the
experiment show even the RMSE is reduced.

5.7 Algorithm
Algorithm Components-Fixing Jacobi

Iteration. Solving bAx = order N with

initial solution
)0(x with infinity-norm

and TOLERANCE
begin
• converge := false;
• 0:=k ;

• { }=:)(kG ;

•)(kF := 0;

 while (not(converge)) do
 {

 1: += kk ;

)(kF := 0;

 if (
)1(−kF > 0) then (**)

 for Ni ...1= do

),(:)(ikx Jacobi
k

i Γ= ; (**)

 else
 {

for Ni ...1= do

 if
)1(−∈ kGi then

 1:)()(+= kk FF ;

 else

),(:)(ikx Jacobi
k

i Γ= ; (**)

 }

 { }ε<−==
∞

−)1()()(:...1: k
i

k
i

k xxNiG ;

 if (
)(kF = 0) and NG k =)(

then

 converge := true;
 } // while
end;

Fig.9 Algorithm for Jacobi Family

(**) The term),(: 1
)(ikx Jacobi

k
i Γ= can be replaced

by Gauss-Seidel and)1(−kF > 0 can be substituted by
another flushing condition.

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp566-571)

6 Experimental Results

6.1 Data sets
Three computational fluid dynamics data sets from
http://www.math.nist.org are used to test our
method.

6.2 Parameters and results
We solve bAx = , using infinity-norm with different
tolerance ε and a couple of different b . The
random number seed is fixed as 1 and initial guess

)0(x = ()T0...0 . Number computed is the total number
of calling (1) or (2). All results are show in Fig.10-
Fig.15 (method 1 denotes Jacobi, 2 for Jacobi-I, 3
for Jacobi-II ,4 for Seidel, 5 for Seidel-I, 6 for
Seidel-II). Fig.16 plots norm v.s. iteration of
solving PDE225 with Jacobi's 05.0=ε shown in
Fig.13. Fig.17 plots norm v.s. iteration of solving
PDE225 with Gauss-Seidel's 05.0=ε shown in
Fig.13.

7 Conclusion
The component fixing-flushing strategy appeared in
this paper is determined by)1(−kG and)1(−kF . The
strategy is very simple yet provides a noticeable
improvement. Determining more than one iteration
can give better result.

In general, there might be fixing-flushing
strategies that can reduce as much computational
effort for updating solution component while retains
the same or better solution. Although we don't aim
our method to beat SOR or conjugated-gradient, we
wish our method would be an additional
improvement on many data set.

References:
[1] Burden, R.L. and Faires, J.D. Numerical

Analysis, Brooks/Cole, London, 6th ed. ,1997.
[2] Fröberg, C-E. Numerical Mathematics,

Benjamin/Cummings Publishing Company,
Sydney, 1985.

[3] Endre Süli and David F.Mayers. An
Introduction to Numerical Analysis, Oxford
University Press, 2003.

0

200000

400000

600000

800000

1000000

1200000

1400000

1 2 3 4 5 6

E-02 E-03 E-08 E-10 E-12

Fig.10 Number computed for PDE225: b =

()T...111 +−+

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

1 2 3 4 5 6

E-02 E-03 E-08 E-10 E-12

Fig.11 Number computed for PDE900: b =

()T...111 +−+

-5000000

0

5000000

10000000

15000000

20000000

25000000

1 2 3 4 5 6

E-02 E-03 E-08 E-10 E-12

Fig.12 Number computed for PDE2961: b =

()T...111 +−+

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp566-571)

0

200000

400000

600000

800000

1000000

1200000

1400000

1 2 3 4 5 6

E-02 E-03 E-08 E-10 E-12

Fig.13 Number computed / PDE225: b = ()T...111

0

5000000

10000000

15000000

20000000

25000000

1 2 3 4 5 6

E-02 E-03 E-08 E-10 E-12

Fig.15 Number computed/PDE2961: b = ()T...111

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

1 2 3 4 5 6

E-02 E-03 E-08 E-10 E-12

Fig.14 Number computed / PDE900: b = ()T...111

0.00E+00

2.50E-01

5.00E-01

Jacobi Jacobi-I Jacobi-II

Fig.16 Norm v.s. iteration of solving PDE225 with Jacobi's 05.0=ε shown in Fig.13.

0.00E+00

2.50E-01

5.00E-01

Seidel Seidel-I Seidel-II

Fig.17 Norm v.s. iteration of solving PDE225 with Gauss-Seidel's 05.0=ε shown in Fig.13.

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp566-571)

