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Abstract: – The Brunn-Minkowski theory is a central part of convex geometry. At its foundation lies the
Minkowski addition of convex bodies which led to the definition of mixed volume of convex bodies and to various
notions and inequalities in convex geometry. Its origins were in Minkowski’s joining his notion of mixed volumes
with the Brunn-Minkowski inequality, which dated back to 1887. Since then it has led to a series of other
inequalities in convex geometry. The existence is very useful and widely used in mathematical and engineering
applications. Our purpose of this series was to develop an equivalent series of inequalities for positive definite
symmetric matrices. The major theorems presented here are the matrix analogs of Firey’s extension of Minkowski
inequality and of Firey’s extension of Brunn-Minkowski inequality.
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1. Introduction
The Brunn-Minkowski theory is the heart of quan-
titative convexity. Its origins were in Minkowski’s
joining his notion of mixed volumes with the Brunn-
Minkowski inequality, which dated back to 1887. Since
then it has led to a series of other inequalities in convex
geometry. The existence is very useful and widely used
in mathematical and engineering applications. Our
purpose of this series was to develop an equivalent
series of inequalities for positive definite symmetric
matrices. Some of these new matrix analogous no-
tions and inequalities can be found in [9], among them
the important ones are the matrix version of Blaschke
summation [9], matrix version of parallel summation
[3, 9, 12], matrix version of parallel Blaschke summa-
tion [9], and the matrix analog of the Kneser-
Süss inequality [9]. In this paper, our goal here is

to develop two new matrix analogs of the inequalities
in convex geometry, namely, the matrix analog of
Firey’s Extension of Minkowski inequality
and the matrix analog of Firey’s Extension
of Brunn-Minkowski inequality.

2. Materials and Methods
2.1 Matrix Quermassintegrals, Matrix
Mixed Quermassintegrals, Firey’s p Sum
and Matrix Mixed p-Quermassintegrals
Let A be an n × n matrix with real entries and we
denote its ijth entry by (A)ij . We will denote by
|A| or D(A) or det(A) the determinant of A. From
this point on, unless stated otherwise, we assume that
all matrices are symmetric. Let Ms

n denote the set
of all n × n positive definite symmetric matrices. For
A1, . . . , An ∈ Ms

n, let D(A1, . . . , An) denote the mixed
determinant [9] of A1, . . . , An.
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Remark 1 (Mixed Determinant [9]). A mixed
determinant D(A1, A2, . . . , An) of n× n matrices
A1, A2, . . . , An can be regarded as the arithmetic
mean of the determinants of all possible matrices
which have exactly one row from the correspond-
ing rows of A1, A2, . . . , An.

For example, for any A,B ∈ M s
n, the mixed determi-

nant D(A,n− 1;B, 1) is

D(A, . . . , A︸ ︷︷ ︸
n−1

, B) =
1
n


∣∣∣∣∣∣∣∣∣

a1
...

an−1

bn

∣∣∣∣∣∣∣∣∣+ · · ·+

∣∣∣∣∣∣∣∣∣
b1

a2
...

an

∣∣∣∣∣∣∣∣∣

 .

(1)
We can easily prove that nD1(A,B) = nD(A,n −

1;B, 1) = lim
ε→0+

D(A + εB)−D(A)
ε

= CA · B,

where A · B :=
∑
i,j

(A)ij(B)ij and CA is the cofac-

tor matrix of A, the transpose of the classical adjoint
matrix of A.

Definition 2 (Matrix Quermassintegrals). For
A ∈ M s

n, let W0(A),W1(A), . . . ,Wn(A) denote
the matrix Quermassintegrals of A defined by

Wi(A) = D(A,n− i; I, i), (2)

the mixed determinant with n− i copies of A and
i copies of I.

Thus, W0(A) = D(A), the determinant of A,

W1(A) = D(A,n−1; I, 1) = D1(A, I) =
CA · I

n
=

1
n

tr(CA) =
1
n

D(A) tr(A−1) =
1
n

D(A)
n∑

i=1

λ−1,

and Wn−1(A) = D(A, 1; I, n − 1) = D(I, n −

1;A, 1) = D1(I, A) =
CI ·A

n
=

I ·A
n

=
1
n

trA =

1
n

n∑
i=1

λi – the mean of eigenvalues of A, where

λ1, . . . , λn are the eigenvalues of A ∈ M s
n.

Definition 3 (Matrix Mixed Quermassinte-
grals). The matrix mixed Quermassintegrals
W0(A,B),W1(A,B), . . . , Wn−1(A,B) of A,B ∈
M s

n are defined by

(n− i)Wi(A,B) = lim
ε→0+

Wi(A + εB)−Wi(A)
ε

.

Since Wi(cA) = cn−iWi(A), it follows that
Wi(A,A) = Wi(A), for all i.

Since the Quermassintegral Wn−1 is Minkowski lin-
ear, it follows that Wn−1(A,B) = Wn−1(B), ∀A.
The mixed Quermassintegral W0(A,B) will usually
be written as D1(A,B).

The fundamental inequality for mixed Quermassinte-
grals in convexity theory states that: For K, L ∈ Kn

and 0 ≤ i < n− 1,

Wi(K, L)n−i ≥ Wi(K)n−i−1Wi(L), (3)

with equality if and only if K and L are homothetic.
Good general references for this material are Buse-
mann [2] and Leichtweiß [8]. Its matrix version states
as follows: For A,B ∈ M s

n and 0 ≤ i < n− 1,

Wi(A,B)n−i ≥ Wi(A)n−i−1Wi(B), (4)

with equality if and only if A and B are scalar multiple
of each other. This matrix inequality can be proved
easily using Aleksandrov inequality [1, 11], which is
the matrix version of the Aleksandrov-Fenchel inequal-
ity for mixed volumes.

Definition 4 (Matrix Firey p Summation). Let
A,B ∈ M s

n. Then the matrix Firey p sum of A

and B, denoted A +p B, is defined by

A +p B := (Ap + Bp)1/p. (5)

The commutativity and the associativity of +p are
obvious. Mixed Quermassintegrals are, of course, the
first variation of the ordinary Quermassintegrals, with
respect to Minkowski addition. The first variation of
the ordinary Quermassintegrals with respect to Firey
addition is as follows:

Definition 5 (Matrix Mixed p-Quermassintegral).
Define the mixed p-Quermassintegrals Wp,0(A,B),
Wp,1(A,B), . . . ,Wp,n−1(A,B) as the first vari-
ation of the ordinary Quermassintegrals, with
respect to Firey addition: For A,B ∈ M s

n,
and p ≥ 1, 0 ≤ i ≤ n − 1, the mixed p-
Quermassintegrals of A,B, denoted Wp,i(A,B),
is defined by
n− i

p
Wp,i(A,B) = lim

ε→0+

Wi(A +p ε ·B)−Wi(A)
ε

where ε ·B = ε1/pB expresses the relation between
Firey scalar multiplication (·) and Minkowski
scalar multiplication.

Of course for p = 1, the mixed p-Quermassintegral
Wp,i(A,B) is just Wi(A,B). Obviously, Wp,i(A,A)
= Wi(A), for all p ≥ 1.
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Lutwak [7] states that for these new mixed Quermass-
integrals, there is an extension of inequality (3): If
K, L ∈ Kn

0 , 0 ≤ i ≤ n− 1, and p > 1, then

Wn−i
p,i (K, L) ≥ Wn−i−p

i (K)W p
i (L), (6)

with equality if and only if K and L are dilates. We
will prove its matrix version: If A,B ∈ M s

n, 0 ≤ i ≤
n− 1, and p > 1, then

Wn−i
p,i (A,B) ≥ Wn−i−p

i (A)W p
i (B), (7)

with equality if and only if B = c·A, c > 0 in Theorem
18.

Theorem 6.

(a) For A,B ∈ M s
n and α, β > 0,Wp,i(αA, βB)

= αn−i−pβpWp,i(A,B), and when p = n−i

and β = 1,Wp,i(αA, B) = Wp,i(A,B) for
all α > 0.

(b) For all Q,A,B ∈ M s
n,Wp,i(Q,A +p B) =

Wp,i(Q,A) + Wp,i(Q,B). �

This result shows that the mixed p-Quermassintegral
is linear, with respect to Firey p-sums, in its second
argument.

2.2 Variational Characterizations of
Eigenvalues of Symmetric Matrices
For a general matrix A ∈ Mn, about the only charac-
terization of the eigenvalues is the fact that they are
the roots of the characteristic equation pA(t) = 0. For
symmetric matrices, however, the eigenvalues can be
characterized as the solutions of a series of optimiza-
tion problems.

Since the eigenvalues of a symmetric matrix A ∈ Mn

are real, we shall adopt the convention that they are
labeled according to increasing (non-decreasing) size:

λmin = λ1 ≤ λ2 ≤ · · · ≤ λn−1 ≤ λn = λmax. (8)

The smallest and largest eigenvalues are easily char-
acterized as the solutions to a constrained minimum
and maximum problem. The characterization theo-
rem bears the names of two British physicists, and the

expression
xT Ax

xT x
is known as a Rayleigh-Ritz ratio.

Theorem 7 (Rayleigh-Ritz [4]). Let A ∈ Mn be
symmetric, and let the eigenvalues of A be ordered
as in (8). Then

λ1x
T x ≤ xT Ax ≤ λnxT x ∀x ∈ Rn,

λmax = λn = max
x6=0

xT Ax

xT x
= max

xT x=1
xT Ax,

λmin = λ1 = min
x 6=0

xT Ax

xT x
= min

xT x=1
xT Ax. �

The Rayleigh-Ritz theorem provides a variational
characterization of the largest and smallest eigenval-
ues of a symmetric matrix A, but what about the rest
of the eigenvalues? This question is answered in the
following Courant-Fischer “min-max theorem.”

Theorem 8 (Courant-Fischer [4]). Let A ∈ Mn

be a symmetric matrix with eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λn, and let k be a given integer with 1 ≤ k ≤
n. Then

min
w1,w2,...,wn−k∈Rn

max
x 6=0, x∈Rn

x⊥w1,w2,...,wn−k

xT Ax

xT x
= λk (9)

and

max
w1,w2,...,wk−1∈Rn

min
x 6=0, x∈Rn

x⊥w1,w2,...,wk−1

xT Ax

xT x
= λk. (10)

Remark: If k = n in (9) or k = 1 in (10),
we agree to omit the outer optimization, as the
set over which the optimization takes place is
empty. In the two cases the assertions reduce to
the Rayleigh-Ritz theorem (Theorem 7). �

2.3 Some Applications of the Variational
Characterizations
Among the many important applications of the
Courant-Fischer theorem, one of the simplest is to the
problem of comparing the eigenvalues of A + B with
those of A. We denote the eigenvalues of a matrix A

by λi(A).

Theorem 9 (Weyl [4]). Let A,B ∈ Mn be sym-
metric and let the eigenvalues λi(A), λi(B), and
λi(A+B) be arranged in increasing order (8). For
each k = 1, 2, . . . , n we have

λk(A) + λ1(B) ≤ λk(A + B) ≤ λk(A) + λn(B).(11)

Proof. For any nonzero x ∈ Rn we have the
bound

λ1(B) ≤ xT Bx

xT x
≤ λn(B)

and hence for any k = 1, 2, . . . , n we have

λk(A + B) = min
w1,...,wn−k∈Rn

max
x 6=0

x⊥w1,...,wn−k

xT (A + B)x
xT x

= min
w1,...,wn−k∈Rn

max
x 6=0

x⊥w1,...,wn−k

[
xT Ax

xT x
+

xT Bx

xT x

]

≥ min
w1,...,wn−k∈Rn

max
x 6=0

x⊥w1,...,wn−k

[
xT Ax

xT x
+ λ1(B)

]
= λk(A) + λ1(B).
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A similar argument establishes the upper bound as
well. �

Weyl’s theorem gives two-sided bounds for the eigen-
values of A+B for any symmetric matrices A and B.
Further refinements can be obtained by restricting B

to have a special form – for example, positive definite,
rank 1, rank k, or bodering matrix.

Recall that a matrix B ∈ Mn such that xT Bx ≥ 0
for all x ∈ Rn is said to be positive semidefinite; an
equivalent condition is that B is symmetric and have
all eigenvalues nonnegative. For symmetric matrices
A,B we write B ≤ A or A ≥ B to mean that A−B

is positive semidefinite. In particular, A ≥ 0 indicates
that A is positive semidefinite. This is known as the
Löwner partial order. If A is positive definite, that is,
positive semidefinite and invertible, we write A > 0.

The following result, an immediate corollary of Weyl’s
theorem known as the monotonicity theorem, says
that all the eigenvalues of a symmetric matrix increase
if a positive semidefinite matrix is added to it.

Corollary 10 ([4]). Let A,B ∈ Mn be symmet-
ric. Assume that B is positive semidefinite and
that the eigenvalues of A and A+B are arranged
in increasing order (8). Then

λk(A) ≤ λk(A + B), ∀k = 1, 2, . . . , n. �

Corollary 11 ([4]). If A,B ∈ Mn are positive
definite symmetric, then if A ≥ B, then det A ≥
det B and trA ≥ trB; and more generally, if A ≥
B, then λk(A) ≥ λk(B) for all k = 1, 2, . . . , n if
the respective eigenvalues of A and B are arranged
in the same (increasing or decreasing) order. �

2.4 Some Useful Results from Löwner
Partial Order
A map Φ : Mm → Mn is called positive if it maps
positive semidefinite matrices to positive semidefinite
matrices: A ≥ 0 ⇒ Φ(A) ≥ 0. Φ is called unital if
Φ(Im) = In.

Given A = [aij ] ∈ Mm, B = [bij ] ∈ Mn, then the
right Kronecker (or direct, or tensor ) product of A

and B, written A⊗B, is defined to be the partitioned

matrix

A⊗B = [aijB]mi,j=1 ∈ Mmn.

Given A = [aij ] ∈ Mm, B = [bij ] ∈ Mn, the
Hadamard product of A and B is defined as the entry-
wise product: A ◦ B ≡ [aijbij ] ∈ Mn. We denote by
A[α] the principal submatrix of A indexed by α. The
following observation is very useful.

Lemma 12 ([5, 12]). For any A,B ∈ Mn, A◦B =
(A ⊗ B)[α] where α =

{
1, n + 2, 2n + 3, . . . , n2

}
.

Consequently there is a unital positive linear map
Φ from Mn2 to Mn such that Φ(A ⊗ B) = A ◦ B

for all A,B ∈ Mn.

As an illustration of the usefulness of this lemma, con-
sider the following reasoning: If A,B ≥ 0, then evi-
dently A⊗B ≥ 0. Since A◦B is a principal submatrix
of A ⊗ B, A ◦ B ≥ 0. Similarly A ◦ B > 0 for the
case when both A and B are positive definite. In other
words, the Hadamard product of positive semidefinite
(definite) matrices is positive semidefinite (definite).
This important fact is known as the Schur product
theorem. Let Pn be the set of positive semidefinite
matrices in Mn. A map Ψ : Pn × Pn → Pm is called
jointly concave if

Ψ(λA + (1− λ)B, λC + (1− λ)D)

≥ λΨ(A,C) + (1− λ)Ψ(B,D).

for all A,B, C, D ≥ 0 and 0 < λ < 1.

For A,B > 0 ∈ M s
n the parallel sum of A and B is

defined as

A+̃B :=
(
A−1 + B−1

)−1
.

We have the extremal representation for the parallel
sum of A,B ∈ Pn:

A+̃B = max
{

X ≥ 0 :
[

A + B A

A A−X

]
≥ 0
}

where the maximum is with respect to the Löwner
partial order. From this extremal representation we
can show that the map (A,B) 7→ A+̃B is jointly
concave [10, 12].

Lemma 13 ([10, 12]). For 0 < r < 1 the map

(A,B) 7→ Ar ◦B1−r

is jointly concave in A,B ≥ 0.
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Theorem 14. For A,B, C, D ≥ 0 and p, q > 1
with 1/p + 1/q = 1,

A ◦B + C ◦D ≤ (A +p C) ◦ (B +q D).

Proof. This is just the mid-point joint concavity
case λ = 1/2 of Lemma 13 with r = 1/p. �

2.5 Main Results

Theorem 15. For X, Y > 0 ∈ M s
n and ε ∈ [0, 1]

we have

(1− ε)X + εY ≤ ((1− ε)Xp + εY p)1/p

=: (1− ε) ·X +p ε · Y

Proof. This is just Theorem 14 with A = (1 −
ε)1/pX, B = (1 − ε)1/q1n, C = ε1/pY and D =
ε1/q1n, where 1n = [1]n×n, that is 1n is the n× n

matrix that has all of its entries equal to 1. �

Applying Corollary 11 to the inequality in Theorem 15
and the fact that for any matrix A ∈ Mn, W0(A) =
λ1λ2 · · · λn, W1(A) =

∑
λi1 · · · λin−1 , . . . ,

Wn−3(A) =
∑

λi1 λi2 λi3 , Wn−2(A) =
∑

λi1 λi2 ,
Wn−1(A) =

∑
λi. We can easily see that for any

A,B > 0

Wi((1− ε) ·A +p ε ·B)

≥ Wi((1− ε)A + εB)

≥ ((1− ε)Wi(A)
1

n−i + εWi(B)
1

n−i )n−i,

0 ≤ i ≤ n− 1,

(12)

where the last inequality is by applying the Aleksan-
drov-Fenchel inequality.

Theorem 16. If A0, B0 > 0 ∈ M s
n with

Wi(A0) = Wi(B0) = 1 then

Wi(α ·A0 +p (1− α) ·B0) ≥ 1 ∀α ∈ [0, 1],

0 ≤ i ≤ n− 1.

Proof. Apply (12) to A0, B0 with ε = 1− α. �

The following two theorems are analogs of Firey’s Ex-
tension of Brunn-Minkowski and Minkowski theorems
(see Lutwak [7] for the original theorems in convex
geometry).

Theorem 17 (Matrix Analog of Firey’s Exten-
sion of Brunn-Minkowski Inequality). If A,B ∈
M s

n, 0 ≤ i ≤ n− 1, p > 1, then

W
p

n−i

i (A +p B) ≥ W
p

n−i

i (A) + W
p

n−i

i (B) (13)

with equality if and only if A = c ·B, c > 0.

Proof. We apply Theorem 16 with

A0 =
1

Wi(A)
p

n−i

·A,

B0 =
1

Wi(B)
p

n−i

·B,

α =
Wi(A)

p

n−i

Wi(A)
p

n−i + Wi(B)
p

n−i

to obtain

Wi

(
1

Wi(A)
p

n−i + Wi(B)
p

n−i

·A

+p
1

Wi(A)
p

n−i + Wi(B)
p

n−i

·B

) p

n−i

≥ 1

Wi

 Ap + Bp(
Wi(A)

p

n−i + Wi(B)
p

n−i

)
 1

n−i

≥ 1

1(
Wi(A)

p

n−i + Wi(B)
p

n−i

)Wi (Ap + Bp)
1

n−i ≥ 1

Wi(Ap + Bp)
1

n−i ≥ Wi(A)
p

n−i + Wi(B)
p

n−i

or

Wi((Ap + Bp)
1
p )

p

n−i ≥ Wi(A)
p

n−i + Wi(B)
p

n−i ,

that is,

Wi(A +p B)
p

n−i ≥ Wi(A)
p

n−i + Wi(B)
p

n−i .

The equality part can be seen by directly substi-
tuting A = c ·B. This completes the proof. �

Theorem 18 (Matrix Analog of Firey’s Exten-
sion of Minkowski Inequality). If A,B ∈ M s

n, 0 ≤
i ≤ n− 1, p > 1, then

Wn−i
p,i (A,B) ≥ Wn−i−p

i (A)W p
i (B) (14)

with equality if and only if A = c ·B, c > 0.
Proof. Theorem 17 implies W

p

n−i

i ((1− ε) · A +p

ε ·B) ≥ (1− ε)W
p

n−i

i (A) + εW
p

n−i

i (B), and since

lim
ε→0

Wi ((1− ε) ·A +p ε ·B)−Wi(A)
ε

= 1
n− i

p
Wp,i(A,B) +

i− n

p
Wi(A).

Then
Wp,i(A, B) = Wi(A) +

p

n− i
lim
ε→0

Wi ((1− ε) · A +p ε · B)−Wi(A)

ε

≥ Wi(A)

+
p

n− i
lim
ε→0

»
(1− ε)W

p
n−i

i (A) + εW
p

n−i
i (B)

–(n−i)/p

−Wi(A)

ε

= Wi(A)

+
p

n− i

»
n− i

p

– h
Wi(A)

p/(n−i)[(n−i)/p−1]
Wi(B)

p/(n−i) −Wi(A)
i
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= Wi(A)
1−p/(n−i)

Wi(B)
p/(n−i)

.

This completes the proof. �

Furthermore, we can also show that the inequalities
(13) and (14) are equivalent. Since we already show
that (13) implies (14), it suffices to show that (14)
implies (13):

Since Wp,i(A,B) ≥ W
n−i−p

n−i

i (A)W
p

n−i

i (B), for
A,B ∈ M s

n, 0 ≤ i < n−1, p > 1, and Wp,i(Q,A+p

B) = Wp,i(Q,A) + Wp,i(Q,B) then Wp,i(Q,A +p

B) ≥ W
n−i−p

n−i

i (Q)[W
p

n−i

i (A) + W
p

n−i

i (B)]. We
now set A +p B equal to Q and use the fact that
Wp,i(Q,Q) = Wi(Q) to obtain

Wi(A +p B) ≥ W
n−i−p

n−i

i (A +p B)

»
W

p
n−i

i (A) + W
p

n−i

i (B)

–
,

or

W
p

n−i

i (A +p B) ≥ W
p

n−i

i (A) + W
p

n−i

i (B)

which is (13). �
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