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Abstract: – The Brunn-Minkowski theory is a core part of convex geometry. At its foundation lies the Minkowski
addition of convex bodies which led to the definition of mixed volume of convex bodies and to various notions and
inequalities in convex geometry. Various matrix analogs of these notions and inequalities have been well known
for a century. We present a few new analogs. The major theorem presented here is the matrix analog of the
Kneser-Süss inequality.
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1 Introduction
The Brunn-Minkowski theory is a core part of convex
geometry. At its foundation lies the Minkowski ad-
dition of convex bodies which led to the definition of
mixed volume of convex bodies and, implicitly, to the
famous Brunn-Minkowski inequality. The latter dates
back to 1887. Since then it has led to various notions
and a series of inequalities in convex geometry. Var-
ious matrix analogs of these notions and inequalities
have been well known for over a century and have been
widely use in mathematical and engineering applica-
tions. Our purpose here is to develop an equivalent
series of inequalities for positive definite symmetric
matrices.

2 Materials and Methods
2.1 Mixed Determinant and Cofactors
A well known matrix analog of the convex geometry
notion of mixed volume is called mixed determinant.

Its definition is quoted here as follows:

Definition 1 (Mixed Determinanta[1]). Let
A1, . . . , Ar be n × n symmetric matrices,
λ1, . . . , λr be positive scalars. Then the de-
terminant of λ1A1 + · · · + λrAr can be written
as

D(λ1A1+ · · ·+ λrAr)

=
∑

λi1 · · ·λin
D(Ai1 , . . . , Ain

),

where the sum is taken over all n-tuples of pos-
itive integers (i1, . . . , in) whose entries do not
exceed r. The coefficient D(Ai1 , . . . , Ain

), with
Aik

, 1 ≤ k ≤ n from the set {A1, . . . , Ar}, is
called the mixed determinant of the matrices
Ai1 , . . . , Ain

.

aThe authors choose to quote this definition of mixed determi-

nant in a way analogous to the definition of mixed volume in

convex geometry [2, 3].
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Properties of Mixed Determinants: Let
A1, . . . , An, A, B and B′ be n × n matrices,
λ1, . . . , λn be positive scalars.

1.
D(A, . . . , A︸ ︷︷ ︸

n−1

, B) = D(A, . . . , A︸ ︷︷ ︸
n−2

, B, A)

= · · ·
= D(A,B, A, . . . , A︸ ︷︷ ︸

n−2

)

= D(B,A, . . . , A︸ ︷︷ ︸
n−1

).

In fact, the mixed determinant is symmetric in its ar-
guments, so in a larger generality one has:
(1)
D(A, . . . , A︸ ︷︷ ︸

n−k

, B, . . . , B︸ ︷︷ ︸
k

) = · · ·

= D(B, . . . , B︸ ︷︷ ︸
k

, A, . . . , A︸ ︷︷ ︸
n−k

).

We use the notation D(A,n− k;B, k) to represent
any of D(A, . . . , A︸ ︷︷ ︸

n−k

, B, . . . , B︸ ︷︷ ︸
k

), . . . , D(B, . . . , B︸ ︷︷ ︸
k

,

A, . . . , A︸ ︷︷ ︸
n−k

) in (1).

2.
(2)

D(λ1A1, . . . , λnAn) = λ1 · · ·λnD(A1, . . . , An).

3.
(3)
D(A1, . . . , An−1, B + B′) =D(A1, . . . , An−1, B)

+ D(A, . . . , An−1, B
′).

In particular,

D(A, . . . , A︸ ︷︷ ︸
n−1

, B + B′) =D(A, . . . , A︸ ︷︷ ︸
n−1

, B)

+ D(A, . . . , A︸ ︷︷ ︸
n−1

, B′).

The properties in (2) and (3) follow from the n-
linearity of the mixed determinant.

One can show that for n× n matrices A and B:
(4)

D(A, . . . , A︸ ︷︷ ︸
n−1

, B) =
1
n


∣∣∣∣∣∣∣∣∣

a1
...

an−1

bn

∣∣∣∣∣∣∣∣∣ + · · ·+

∣∣∣∣∣∣∣∣∣
b1

a2
...

an

∣∣∣∣∣∣∣∣∣

 ,

of which the generalization gives an alternative defini-
tion of the mixed determinant as in the following

remark:

Remark 2 ([1]). A mixed determinant D(A1, A2,

. . . , An) of n × n matrices A1, A2, . . . , An can
be regarded as the arithmetic mean of the de-
terminants of all possible matrices which have
exactly one row from the corresponding rows of
A1, A2, . . . , An.

Definition 3 (Cofactor Matrix [1]). The cofactor
matrix, CA, of an n×n matrix A, is the transpose
of the well known classical adjoint of A, thus it is
defined by

(5) (CA)ij := (−1)i+jD(A(i|j))

where A(i|j) denotes the (n − 1) × (n − 1) ma-
trix obtained by deleting the i-th row and the j-th
column of the matrix A.

We use a similar notation in matrix theory to represent
an analog of the mixed volume V1(K, L), where K and
L are convex bodies, as follows:

Definition 4 ([1]). D1(A,B) is the following
mixed determinant of n× n matrices A and B:

(6)
D1(A,B):= D(A, . . . , A︸ ︷︷ ︸

n−1

, B)

2.2 Matrix Version of Blaschke Summa-
tion and Matrix Analogs of Mixed Vol-
ume between Two Convex Bodies
Learning the properties of the notion of Blaschke sum-
mation of convex bodies in convex geometry, we intro-
duce its analog in matrix theory as follows:

Definition 5 (Matrix Blaschke Summation [1]).
The Blaschke Summation of the n×n matrices A

and B, denoted by A+++B, is defined as the matrix
whose cofactor matrix is the sum of the cofactor
matrices of A and B; that is, it satisfies the fol-
lowing equality:

(7) C(A+++B) = CA + CB.

Theorem 6 ([1]). Let A = [aij ]n×n , B =
[bij ]n×n. If

A ·B :=
∑
i,j

aijbij ,

then, for any positive scalar ε,
(8)

nD1(A,B) = CA ·B = lim
ε→0

D(A + εB)−D(A)
ε

.
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It is natural to regard the product CA·B see the proof
in [1] as an equivalent of the mixed volume between
two convex bodies A and B. The previous theorem
was proved by the asymptotic expansion of the deter-
minant of A + εB which is similar to the Steiner’s
polynomial for the volume of A+εB, where A and B

are convex bodies.

One can easily show that D(A+++B) can be expanded
as (see [1])
(9)

D(A+++B) =

{
n∑

i=0

(
n

i

)
D(CA,n− i;CB, i)

}1/(n−1)

.

Also D(A+++ ε ·B) can be expanded as
(10)

D(A+++ ε·B) =

{
n∑

i=0

(
n

i

)
εiD(CA,n−i;CB, i)

}1/(n−1)

,

where ε · B = ε1/(n−1)B. Then as ε is close to 0, we
get

D(A+++ ε·B) ≈

{
Dn−1(A)+εnD(CA,n−1;CB)

}1/(n−1)

,

and we have the linear approximation
(11)

D(A+++ ε ·B) ≈ D(A) + ε
n

n− 1
D(CA,n− 1;CB)

Dn−2(A)
.

Therefore we have the following equality:

Theorem 7 ([1]). Let A,B be n×n positive def-
inite symmetric matrices, ε be a positive scalar.
Then

(12)
1

n− 1
CB ·A = lim

ε→0

D(A+++ ε ·B)−D(A)
ε

,

where ε ·B = ε1/(n−1)B.

2.3 The Matrix Analogs of the Brunn-
Minkowski, the Minkowski, the Kneser-
Süss Inequalities
The following theorem is a well known inequality
proved by Minkowski.

Theorem 8 (Minkowski,“the Brunn-Minkowski
inequality ” [4, 6, 7, 8]). Let A,B be n×n positive
definite symmetric matrices. Then

(13) D(A + B)1/n ≥ D(A)1/n + D(B)1/n,

with equality if and only if A = cB. �

It is called Minkowski’s determinant inequality [4, 6,
8], and is a matrix analog of the Brunn-Minkowski
inequality in convex geometry. And here are couple of
others.

Theorem 9 (Matrix analog of the Minkowski in-
equality a[1]). Let A,B be n× n positive definite
symmetric matrices. Then

(14) D1(A,B) ≥ D(A)
n−1

n D(B)
1
n ,

with equality if and only if A = cB.

Proof. Using AM-GM inequality:
1
n

trQ ≥

D(Q)1/n for any matrix Q with positive eigenval-
ues, and A ·B :=

∑
i,j

aijbij, it can be easily proved

that for n×n positive definite symmetric matrices
A and B,

tr(AB) = A ·B ≥ nD(A)1/nD(B)1/n,(15)

and the equality holds if and only if AB = cI, or
A is a multiple of B−1; that is, A = cB−1. Note
that the eigenvalues of the product of two posi-
tive definite matrices are positive, since λ(AB) =
λ(A1/2BA1/2). Then it follows directly from (15)
that

CA ·B ≥ nD(CA)
1
n D(B)

1
n

= nD(A)
n−1

n D(B)
1
n ,

and equality holds if and only if c1A
−1 = CA =

c2B
−1 or A = cB, where c1, c2, c are con-

stants. �

This inequality is a matrix version of the Minkowski in-
equality in convex geometry. It can also be shown that
the analog of the Brunn-Minkowski inequality (13) is
equivalent to the analog of the Minkowski inequality
(14). First we shows (14) implies (13). For any posi-
tive definite symmetric matrix Q, it follows from (14)
that

CQ ·Q = nD(Q)(n−1)/nD(Q)1/n(16)

= nD(CQ)1/nD(Q)1/n.

Letting Q = A + B, where A, B are positive definite
symmetric matrices, we have

D(A + B)1/n =
CQ · (A + B)
nD(CQ)1/n

=
CQ ·A

nD(CQ)1/n
+

CQ ·B
nD(CQ)1/n

=
CQ ·A

nD(Q)
n−1

n

+
CQ ·B

nD(Q)
n−1

n

≥ D(A)1/n + D(B)1/n.

The last inequality follows from (14). This concludes
that (14) implies (13). We will now show (13) implies
(14). By (13) and with ε being a positive scalar, we
have
aDespite lacking of reference literature, the authors believe that

this theorem is a well known theorem in matrix theory.
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D(A + εB)−D(A)
ε

=

(
D(A + εB)1/n

)n −D(A)
ε

≥
(
D(A)1/n + D(εB)1/n

)n −D(A)
ε

=

(
D(A)1/n + εD(B)1/n

)n −D(A)
ε

=
1
ε

[(
D(A) +

(
n

1

)
D(A)(n−1)/nεD(B)1/n

+
(

n

2

)
D(A)(n−2)/nε2D(B)2/n + · · ·

)
−D(A)

]
,

and as ε approaches 0, we infer that

lim
ε→0

D(A + εB)−D(A)
ε

≥
(

n

1

)
D(A)

n−1
n D(B)

1
n ,

which is

CA ·B ≥ nD(A)
n−1

n D(B)
1
n

or
D1(A,B) ≥ D(A)

n−1
n D(B)

1
n .

This concludes the proof that (13) implies (14).

Theorem 10 (Matrix analog of the Kneser-Süss
inequality [1]). Let A,B be n×n positive definite
symmetric matrices. Then

(17) D(A+++ B)
n−1

n ≥ D(A)
n−1

n + D(B)
n−1

n ,

with equality if and only if A = cB.

Proof. To prove this matrix version of Knesser-
Süss inequality, it suffices to show that it is equiv-
alent to the analog of the Brunn-Minkowski in-
equality (13). Using (13) we have

D(A+++B)
n−1

n = D(CA + CB)1/n(18)

≥ D(CA)1/n + D(CB)1/n

= D(A)
n−1

n + D(B)
n−1

n .

This shows that (13) implies (17).

One can easily verifies that an n× n matrix A is
positive definite symmetric if and only if its co-
factor matrix CA is a positive definite symmetric.
Let X = CA, Y = CB. Since A and B are posi-
tive definite symmetric then so are X and Y .

Using the definition of Blaschke addition and
(17), we obtain

D(X + Y )1/n = D(CA + CB)1/n(19)

= D(C(A+++B))1/n

= D(A+++B)
n−1

n

≥ D(A)
n−1

n + D(B)
n−1

n

= D(CA)1/n + D(CB)1/n

= D(X)1/n + D(Y )1/n.

This shows that (17) implies (13), and the
theorem is proved. �

The last inequality was unknown in matrix theory.
One may recognize the equivalent of this inequality in
convex geometry, where volumes replace the determi-
nants and convex bodies replace positive definite sym-
metric matrices. The convexity version of the last two
theorems are given in Appendix A.

3. Conclusion
The matrix Blaschke summation and the AM-GM in-

equality,
1
n

trQ ≥ D(Q)1/n as in the proof of Theo-

rem 9, play important roles in the derivation of matrix
analogs of notions and inequalities in convex geome-
try. These analogs look very similar to their convex
geometry version ones. The author believes that a
plethora of other matrix inequalities can be obtained
by choosing strategic positive definite matrices Q in
the AM-GM inequality.
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Appendix A.
The Brunn-Minkowski Inequal-
ity, the Minkowski Inequality
and the Kneser-Süss Inequality
in Convex Geometry

Theorem 11 (The Brunn-Minkowski inequality
[2, 3, 8]). Let K, L be convex bodies in Rn. Then

(20) V (K + L)1/n ≥ V (K)1/n + V (L)1/n,

with equality if and only if K and L are homo-
thetic. �

The theorem now named after Brunn and Minkowski
was discovered (for dimensions ≤ 3) by Brunn (1887,
1889) [9, 10]. Its importance was recognized by
Minkowski, who gave an analytic proof for the n-
dimensional case (Minkowski 1910 [11]) and charac-
terized the equality case; for the latter, see also Brunn
(1894) [12].

Theorem 12 (The Minkowski inequality [2, 3,
8]). Let K, L be convex bodies in Rn. Then

(21) V1(K, L) ≥ V (K)
n−1

n V (L)
1
n ,

with equality if and only if K and L are homo-
thetic. �

Theorem 13 (The Kneser-Süss inequality [3]).
Let K, L be convex bodies in Rn. Then

(22) V (K +++L)
n−1

n ≥ V (K)
n−1

n + V (L)
n−1

n ,

with equality if and only if K and L are homo-
thetic. �
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