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Abstract:-In this paper a Lagrangean decomposition technique for solving the scheduling problem for Hot 
Charged Rolling (HCR) in the continuous casting process which involves sequencing and grouping.  This 
Lagrangian relaxation algorithm is proposed that incorporate two sets of constraints into the objective function 
after applying the variable splitting technique.  The relaxed problem has a special structure and can be solved 
as three versions of subproblems.  The subgradient algorithm is then used to maximize the Lagrangian dual.  
Two heuristic algorithms are also proposed to find good primal feasible solutions.  Through the three versions 
of subproblems and two heuristic algorithms, the best one from six combinations is selected to incorporate with 
branch-and-bound algorithm to find the optimal solution when job size is large.  Our methodology provides the 
optimal solutions for the difficult scheduling problem resulted from the continuous casting process. 
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1   Introduction 
In the continuous casting process, the most 
modernized steel mills which have the capability of 
Hot Charged Rolling (HCR).  The HCR is a modern 
steel manufacturing concept where the steel making, 
slab casting and hot coil production processes are 
physically integrated into one directly connected and 
synchronously controlled process.  
 The major advantage of the HCR is in the reduction 
of the slab inventory and the savings in energy cost 
normally wasted for reheating slabs for hot coil 
production. However, the scheduling task for the 
HCR becomes significantly more difficult than the 
one for the conventional steel manufacturing process. 
 The HCR process includes three processes: steel 
making, slab casting, and hot coil production.  The 
melted pig iron produced at the blast furnace is 
converted into melted steel at the steel making 
process.  The melted steel is produced in the 
converter having a certain capacity and shipped in an 
open ladle to the slab casting process.  This melted 
steel in the open ladle is then put into the continuous 
caster, where the melted steel is formed into slabs.  
Then these slabs pass through the rollers at the hot 
strip mill to become hot coils.  
 The jobs to be scheduled for the HCR process are 
hot coils having the following attributes: weight, 
thickness, width, and quantity.  The weights are 
within a certain range of tons.  There are several 
different thickness groups and width groups.  This 

scheduling problem for the HCR involves both 
grouping and sequencing.  
 For steel making, jobs must be grouped into lots 
called "charges".  These charges are then grouped 
into larger lots called "casts".  Charges in the same 
cast must be properly sequenced according to the 
charge sequencing rules, i.e., (1) Width must be 
nonincreasing; (2) Thickness must be nondecreasing; 
(3) Each charge will not weight more than the 
limitation.  
 The approach used in this paper is based on 
Lagrangian relaxation.  This problem has a special 
structure that allows the Lagrangian problem to be 
decomposed into three easy problems: a minimum 
spanning tree, an assignment problem and a 
minimum cost network flow problem.  The 
subgradient method is then used in a dual algorithm 
to tighten the Lagrangian lower bounds.  We also 
have developed two heuristic methods to tighten the 
upper bounds because it may be that optimal values 
for the subproblems are not feasible. For this reason, 
it is worthwhile to seek a feasible solution by means 
of a heuristic.  Our contribution is to present a 
dual-based heuristic procedure, incorporated in the 
Lagrangian algorithm, to generate good primal 
feasible solutions.  The lower bound generated by the 
subgradient algorithm is then used to measure the 
quality of the heuristic solution in terms of the duality 
gap.  A branch-and-bound algorithm based on 
Lagrangian relaxation algorithm is proposed to 
search for all optimal solutions.  
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2. Literature Survey  
In 1970, Held and Karp [14] used a Lagrangian 
problem based on minimum spanning trees to devise 
a successful algorithm for the Traveling Salesman 
Problem. Because of their success, they were widely 
applied to scheduling problems, general integer 
programming problems, location problems, set 
covering problems, and so on. 
 Altinkemer and Gavish [2] present a 0-1 
formulation of a vehicle delivery problem and give a 
number of heuristics for the problem.  A lower bound, 
based upon Lagrangian relaxation and subgradient 
optimization, is used to evaluate the quality of the 
heuristic solutions.  Admadi and Tang [1] present a 
paper dealing with the operation partitioning problem.  
This is the problem of assigning operations to 
machines so as to minimize the total movement of 
jobs between machines.  They presented two 0-1 
formulations of the problem and used Lagrangian 
relaxation, subgradient optimization and Lagrangian 
heuristics. Fetterolf and Anandalingam [7] use the 
Lagrangian relaxation technique to optimize the 
interconnection of local area networks.  After two 
sets of constraints are relaxed, the problem is easily 
solved by decomposing it into two subsets of 
problems.  The subgradient optimization and 
Lagrangian heuristic are applied.  In this paper when 
the networks are large, it is hard to find feasible 
solutions just by the Lagrangian heuristic.  Daskin 
and Panayotopoulos [4] solve the problem of 
assigning aircraft to routes to maximize profits in a 
hub and spoke network.  The Lagrangian heuristic 
and the subgradient optimization are also used and 
two heuristics are developed for obtaining the 
feasibility when the Lagrangian solution is not 
feasible.  Because of the heuristics, good feasible 
solutions are found more easily and the Lagrangian 
problem converged more quickly.  Resnoso and 
Maculan [19] present a new Lagrangian 
decomposition scheme for integer linear 
programming problems.  This scheme is based on a 
reformation of the problem by introducing one or 
more copies of some of the decision variables and a 
number of coupling constraints.  By defining a 
Lagrangian relaxation of the copy and coupling 
constraints, it is possible to decompose the problem 
into two or more independent subproblems.  
 A branch-and-bound algorithm, using a lower 
bound obtained from the solution of linear 
assignment problem, is proposed by Rinnooy [21] for 
problems with a more general objective function.  
Some fathoming rules are presented by Etcheberry [5] 
and Fisher [11].   Potts [18] used a Lagrangian based 
branch-and-bound algorithm for the single machine 

sequencing where the heuristic method is used prior 
to the application of branch-and-bound.  He applies 
the tree optimal heuristic of Morton and Dhara [16].  
This method has the advantage that in some problems 
with only a few precedence constraints, the heuristic 
will indicate that the heuristic generated is optimal. 
 The paper applies the advantages of these papers.  
Like most of the papers the Lagrangian relaxation, 
subgradient optimization algorithm, and two 
Lagrangian heuristic methods proposed here to solve 
the Lagrangian problems.  At each iteration of the 
Lagrangian heuristic we get a feasible solution from 
our heuristics so that the optimal solutions are more 
easily found.  We also apply branch-and-bound to get 
the optimal solution for large job size problems. 
  
 
3. Solution methology  
The approach used in this paper is based on 
Lagrangin relaxation using variables splitting 
technique, this problem has a special structure that 
allows Lagrangian problem to be decomposed into 
three easy subproblems: Minimum spanning tree, 
assignment problem and minimum cost network flow 
problem.  We called the combination of these three 
subproblems as version 1.  In the version 2, the 
assignment problem of version has been transferred 
into generalized upper bound problem or multiple 
choice problems.  In version 3, the constrain of X is a 
tree is replaced with the strong constraint that X is an 
"aborescence."  Then relax as in version 2.  
 The other algorithm is developed as the branch 
and bound for big size problem.  This algorithm still 
applies the technique of Lagrangian relaxation, 
which can be used at each node of the branching tree 
to obtain lower bounds and feasible solutions to 
avoid doing the unnecessary works.  The results from 
this algorithm are time consuming and the number of 
branching nodes is huge when the size of the problem 
is large, though we can get the optimal solutions from 
this algorithm.  
 
3.1 Model Formulation 
A set of jobs is to be scheduled on a machine.  For 
some pairs   of jobs, no major setup is required if 
product   immediately follows job , e.g., if the width 
and thickness of what: 

 Sum of weight for each charge must be within a 
certain limit 

 Width is nonincreasing and thickness is 
nondecreasing. 

We wish to sequence the products so as to minimize 
the number of major setups required. 
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 Represent the jobs by nodes in a network, with arc 
from node   to node   if node   requires no major setup 
when if follows node.  For example, Figure 1 
represents a simple case in which the three quantities 
in parenthesis at each node represent the width, 
thickness and the weight, respectively, in the case in 
which we suppose the grades of the jobs are all the 
same.  The nodes on a path through the network 
correspond to a sequence of jobs which can be 
processed with a single major setup.  Any two such 
paths should be disjoint, i.e., should share no 
common jobs. So we should find the minimum 
number of disjoint paths which span all the nodes of a 
directed graph.  
 

 
Fig.1 Example of network structure 

 
 In addition, we should impose the limitation of the 
total weight for each path, i.e., the sum of weight for 
each charge must be within a certain limit.  Figure 2 
represents one feasible solution with paths shown in 
bold if we suppose the weight limitation is 35 units of 
weight limit.  

  
Fig.2 A feasible solution 

 
3.1.1 Mathematical Programming Model 
Given the directed graph (digraph) G: 
G=(N,A), where N={1,2,3,......n}= set of nodes. 
  A= set of arcs ( ), 
we define the variables: 

  
⎩
⎨
⎧

=
otherise0

path aon  included is j)(i, arc if1
jiX

  j)(i, arc of Flows=jif
  limitWeight =W
  i node ofWeight =iw

Clearly 
Xij = 1 for at most one j for each i 
That is, at most one arc enters node j and at most one 
arc leaves node i. Thus, we have the constraints as 
follows: 

1
1

≤∑
=

n

j
jiX  for each   Ni∈

 However, the above constraints permit circuits.  
For this reason we have to add a constraint that the 
edges of the subgraph indicated by X form a "forest", 
i.e., a collection of trees.  Each tree is a subgraph 
containing no cycle.  In order to facilitate defining the 
objective function (which is to be the number of paths) 
in terms of X, define a new node 0.  Let G'=(N',A') 
where  

 { }
( ) ( ) ( ){ }nAA

NN
,0,......2,0,1,0 

0 
∪=
∪=  

Let   
⎩
⎨
⎧

=
otherwise0

path a of beginning  theis i node if1
0 jX

When we add the node 0 to the network, then the 
network would appear as Figure 3. 

 
Fig.3 A redefined network 

 
 After adding the constraint to form a new problem 
and solving it, we find that the optimal solution of 
this new problem is a spanning tree. See Figure 4.  
This property will make it more convenient to handle 
this problem.  
 

 
Fig.4. A collection of trees 

 
3.1.2 Formulation 
 
Problem (D) 
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Z = Minimize     (1) ∑
=

n

j
jX

1
0

subject to 
TX ∈  = set of all spanning tree of G'   (2) 

1
1

≤∑
=

n

j
jiX      for each   (3)  Ni∈

1
0

=∑
=

n

i
jiX   for each    (4) Nj∈

A   j)(i,each for  {0,1} x ∈∈   (5) 

∑∑
==

=
n

j
j

n

j
j wf

11
0

         (6) 

∑∑ +=
j

jii
k

ik fwf     for each   (7)  Ni∈

jiji WXf ≤       for each   and   Ni∈ j ∈ N    (8) 

0≥jif         for each ( )   (9)  , Aji ∈
 
 The constraint (6) specifies that the total weight of 
the flow entering each path should be equal to the 
sum of all job's weights.  The constraint (7) is the 
conservation of flow in the network, where the  is 
the net flow into node i , i.e., the weight of job i .  
The constraint (8) indicates that if arc (i, j) is not 
included on the spanning tree, then there is no flow in 
that arc.  

iw

 This formulation appears to be a good candidate 
for Lagrangian relaxation because its structure can be 
separated into three parts, the minimum spanning tree 
problem, the assignment problem and the minimum 
cost network flow problem.  
 As we know the spanning tree constraint is not 
easily expressed a system of explicit linear 
constraints, so that relaxing them is problematic.  We 
use the variable "splitting" method to solve this 
difficulty.  
 
3.1.3 Variable "Splitting" 
For each variable Xij of the problem, define a variable 
Yij.  If we require that X be a spanning tree and Y be a 
feasible assignment, then we have to add a new set of 
constraints to our problem, namely Xij = Yij for each i 
and j,  ( ) . The problem is then written as 
follows: 

 , Aji ∈

 
 Z = Minimize   (10) 
subject to 

TX ∈ = set of all spanning tree of G'  (11) 

1
1

≤∑
=

n

j
jiY

 
for each  (12)  Ni∈

1
0

=∑
=

n

i
jiY     for each    (13) Nj∈

  

   (14) ∑∑
==

=
n

j
j

n

j
j wf

11
0

∑∑ +=
j

jii
k

ik fwf   for each   (15)  Ni∈

jiji WYf ≤  for each  Ni∈   and  j ∈ N  (16) 

jiji YX =    for each  Ni∈   and  j ∈ N   (17) 
A   j)(i,each for  {0,1} Y ∈∈  (18) 

0≥jif        for each  ( )  , Aji ∈  (19) 
for some specified weight   which distributes the cost 
between the two sets of variables  )10( ≤≤α . 
 
3.2 Lagrangian Relaxation 
 
In the problem D, the constraints (16) and (17) are 
problematic, because the constraint (16) couples the 
binary decision variables of assignment problem with 
the network flow variables and the constraint (17) 
couples the minimum spanning tree variables with 
the assignment problem variables.  If they are relaxed 
and incorporated into the objective function with 
Lagrange multipliers, the resulting Lagrangian 
problem is as follows: 
Problem (D1) 

( ) ( ) ( )∑∑ ∑ ∑
== = =

−+−+=Φ
n

j
jijiji

n

j

n

j

n

i
jj YXYXMin

11 1 0
00 1., λααµλ  

                             
 

( )∑∑
==

−+
n

j
jijiji

n

i
WYfu

10

subject to 
TX ∈ = set of all spanning tree of G' 

1
1

≤∑
=

n

j
jiY   for each   Ni∈  

1
0

=∑
=

n

i
jiY  for each  j ∈ N  

∑∑
==

=
n

j
j

n

j
j wf

11
0  

∑∑ +=
j

jii
k

ik fwf     for each    Ni∈

( )    ,each for  {0,1} Y Aji ∈∈  
0≥jif    for each  ( )  , Aji ∈  

where the jiλ   is the Lagrangian multiplier of 

relaxed constraint (17), and 0≥jiµ  is the 
Lagrangian multiplier of relaxed constraint (16). 
 After these two constraints are relaxed, the 
constraints of problem (D1) are separable in the three 
sets of variables X, Y, and f.  This allows us to 
decompose the problem into three subproblems 
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which are designated by the coefficients of the three 
sets of variables.  We state this subproblem as 
follows:  
Problem (D1-1): Minimum spanning tree 

( ) ( ) ∑∑∑
= ==

++=Φ
n

i

n

j
jijij

n

j
jX XXMin

1 1
0

1
0. λλαλ

 
subject to 

TX ∈   = set of all spanning tree of G' 
Problem (D1-2): Assignment problem 

( ) ( ) j

n

j
jjY YWMin 0

1
001., ∑

=

−−−=Φ µλαµλ
 

( )∑∑
= =

+−
n

i
ji

n

j
jiji YW

1 1

µλ  

subject to 

1
1

≤∑
=

n

j
jiY   for each    Ni∈

1
0

=∑
=

n

i
jiY   for each  j ∈ N  

A  ),(each for  }1,0{ ∈∈ jiY  
Problem (D1-3): Uncapacitated minimum cost 
network flow problem 

( ) ∑∑
= =

=Φ
n

i
ji

n

j
jiF fMin

0 1
. µµ  

subject to 

∑∑
==

=
n

j
j

n

j
j wf

11
0

 

∑∑ +=
j

jii
k

ik fwf    for each    Ni∈

0≥jif      for each  ( )   , Aji ∈
 In this problem, node 0 serves as a source for the 
flows, and each node  has a demand for  
units.  Because of the lack of capacities on the arcs, 
the minimum cost flow node 0 to node i is along the 
shortest path from node 0 to node i.  

Ni∈ iw

 For any matrix jiλ   and jiµ   of the Lagrangian 
multipliers ( )0≥jiµ  , the sum of the optimal values 
of the three subproblems provides a lower bound on 
the optimal value of the original problem. 
( ) ( ) ( ) ( ) *,, ZFYX ≤Φ+Φ+Φ=Φ µµλλµλ   , where *Z  is 

the optimal solution of the original problem Z.  It 
may be that the optimal values of X and Y for the 
subproblems are never feasible paths.  For this reason, 
it is worthwhile to seek a feasible solution (which 
also provides an upper bound) by means of heuristic 
algorithms which use information provided by the 
Lagrangian multipliers.  This feasible solution 
constitutes an upper bound on the optimal solution to 
our problem.  That will be described in Section 3.4.  
 
3.3 The Subgradient Optimization 

To tighten the bound generated by the Lagrangian 
relaxation, it is desirable to find the vectors λ  and 
µ   such that the objective ( )µλ,Φ   is maximized.  
That is, find the optimal dual value   such that  dZ
 ( )µλ,Φ= MaxZ d  subject to  0≥µ  
 It is well known that the function ( )µλ,Φ  is 
concave and differentiable at all points, except where 
the Lagrangian relaxation has multiple optimal 
solutions (see Fisher [7]).  Unfortunately, these 
points occur frequently, and thus unconstrained 
optimization using gradients is not acceptable.  A 
method that has gained wide acceptance over the past 
several years is subgradient optimization.  The 
application of this method to integer programming 
was pioneered by Held and Karp [14], and by Held, 
Wolfe and Crowder [15].  At differentiable ( )µλ,  
points the subgradient set of   consists of a singleton 
equal to the gradient, while at nondifferentiable 
points the subgradient set consists of all of the 
gradients of all underestimating linear function 
which are equal to Φ  at  ( )µλ, .  Like gradients, the 
subgradients have the property that they point in a 
direction of ascent.  
 The search for the optimal dual variables   and   
can be performed by subgradient optimization. One 
of the components of the subgradient of the dual 
objective, ( )µλ,Φ , is the matrix  
 ( )λ

λ δ ji=∆  where  ( )jijiji YX −=λδ  
The other component of the subgradient is as that: 

( )µ
µ δ ji=∆   where  ( )jijiji WYf −=µδ  

The adjustments of the two multiplier vectors are as 
follows: 
 ( )( )

λ

λ

µλ
τλλ ∆

∆

Φ−
+= 2

* , oldold
oldnew

Z  

 ( )( )
µ

µ

µλ
τµµ ∆

∆

Φ−
+= 2

* , oldold
oldnew

Z  

 where τ   is a step size parameter satisfying 
20 ≤< τ  , and  *Z  is an upper bound on ( )µλ,Φ  , 

i.e., the value of the best known primal feasible 
solution, frequently obtained by applying a heuristic 
algorithm as stated in the next section to the original 
problem (D).  The denominator is the sum of the 
squares of the elements in the subgradient.  
 
3.4 The Heuristic Algorithms 
If the solution of the Lagrangian relaxation satisfies 
all of the relaxed constraints, the solution is feasible 
for the original problem.  In this case, we can then use 
the value of the original objective function to update 
the upper bound.  In our experience, however this 
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rarely happens.  This is not surprising because of the 
very large number of relaxed constraints, all of which 
must be satisfied for the Lagrangian solution to be 
primal feasible.  
 In other words, it is possible that the optimal 
values of X and Y for the subproblems are never 
feasible paths in most cases.  For this reason, to deal 
with the likely infeasibility of the solution to the 
relaxed problem, two heuristic methods have been 
developed to convert an infeasible Lagrangian 
solution into a feasible primal solution.  They are the 
Greedy algorithm and the Random-search algorithm 
and are described as follows:  
1. The greedy algorithm: 
Initially, the path set P and  are empty 

 . 
 Q

) (P ∅←←Q
(a) If all nodes lie on a path, i.e., , Stop.  Else, 

begin a new path by selecting the node 
,which minimizes

 QN =

 * QNi −∈ i0λ  

Let and } ) (0, {  PP *i∪← { }* iQ← ,  ,  QQQ ∪=
(b) If {(i*, j) : j does not lie on a path, i.e., 

} is empty, go to step (a).  
Otherwise, let.

 
 

 QQNj −−∈

}  :  argmin{ * QQNjj ji
* −−∈← λ

(c) If { }*, jQiWwi ∪∈≥∑  , go to step (a).  
Otherwise go to (d). 

(d) Let  , } ) (i, {  PP *i∪← { }*jQQ ∪←  , and 

 ; Return to step (b). **  ji ←
2. The random search algorithm: 
(a) If all nodes lie on a path, i.e., N=Q', Stop.  Else, 

begin a new path by selecting the node 
 which minimizes  * QNi −∈ i0λ  

Let    and  } ) (0, {  PP *i∪← { }* iQ←  

(b) If { ( , j) *i A∈  : j does not lie on a path, i.e., 
} is empty, go to step (a).  

Otherwise, the choice of j
 QQNj −−∈

* is random, with 
probability depending upon the current value of 
the Lagrange multipliers λ i

*
j.  Specially, 

randomly select j* from the set   where 
the probability of selecting  j

 QQN −−
*  is stated as follows: 

Fixed: i  , we define 
( ){ }AjiC jiji ∈+= ,:maxmax µλ  

( ){ }AjiC jiji ∈+= ,:minmin µλ
 

( ) ( )jijii CCCP µλθ +−−+= minmaxmax
 , where  θ=0.25. 

∑
=

i

i
i P

PP  

(c) If { }*, jQiWwi ∪∈≥∑ , go to step (a).  Otherwise, 
go to (d).  

 (d) Let , } ) (i, {  PP *i∪← { }*jQQ ∪←  , and ; 
Return to step (b).  

**  ji ←

 
3.5 Other Possible Relaxations 
Other relaxations are possible.  In Section 3.3, our 
relaxation decomposed into three subproblems, 
namely minimum spanning tree problem, assignment 
problem and the minimum cost network flow 
problem.  We will refer to this relaxation as version 1.  
The other two possible relaxation we describe the 
Versions 2 and 3 are as follows: 
Version 2:  Relax, in addition to those relaxed in the 
approach just presented, the constraint on the 
in-degree of each node from the original problem 
(10): 

       for each j∈N 1
0

=∑
=

n

i
jiY

 The subproblem in Y is then a simple GUB 
(generalized upper bound) problem, or "multiple 
choice" problem, more easily solved than the 
assignment problem 
The objective function of version 2 is 

∑ ∑∑∑∑∑
= =====

⎟
⎠

⎞
⎜
⎝

⎛
−+−+−+

n

j

n

i
jijji

n

j
jiji

n

i

n

j
j

n

j
j YYXYXMin

1 0101
0

1
0 1)()1(. νλαα

     
 ( )jiji

n

j
ji

n

i
WYf −+ ∑∑

== 10
µ

Subject to constraints (11), (12), (14), (15), (16), (18) 
and (19). 
where  υ  is a dual Lagrangian multiplier vector for 
the constraint (13). 
This vector ν   is adjusted by 

( )( )
ν

ν

ν
τνν ∆

∆

Φ−
+= 2

*
old

oldnew
Z  where ( )ν

ν δ ji=∆  and 

( )1−= jiji Yνδ  
This problem still could be decomposed into three 
subproblems, namely: 
1. Minimum Spanning Tree subproblem 

( ) ( ) ∑∑∑
= ==

++=Φ
n

i

n

j
jijij

n

j
jX XXMin

1 1
0

1
0. λλαλ  

subject to constraint (11) 
2. Generalized Upper Bound subproblem 

( ) ( ) j

n

j
jjjY YWMin 0

1
001., ∑

=

−+−−=Φ µνλαµλ
                                

 ( ) ∑∑∑
===

−−−+
n

j
jji

n

j
jijij

n

i
YW

111
νµλν

  subject to constraints (12) and (18) 
3. Minimum Cost Networks Flow subproblem 

( ) ∑∑
= =

=Φ
n

i
ji

n

j
jiF fuMin

0 1
.µ  

subject to constraints (14), (15) and (16). 
Version 3:  In this version, the same constraints are 
relaxed as in version 2, the constraint that X is a tree 
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is replaced by the stronger constraint that X is an 
"arborescence".  An arborescence can be thought of 
as a directed tree that can be used as a grapevine.  The 
root of an arborescence is the unique vertex included 
in the arborescence that has no arcs directed into it.  A 
branching is defined as a forest in which each tree is 
an arborescence.  The maximum branching algorithm 
can be used to find a maximum spanning 
arborescence rooted at a specified vertex, say vertex 
0.  
 
3.6 Branch-and-Bound Algorithm 
In case the upper bound (provided by the heuristics) 
and the lower bound (provided by Langrangian 
relaxation) do not converge within a specified 
number of iterations, a branch-and-bound algorithm 
will be used to solve this problem.  In this section we 
give a complete description of the branch-and-bound 
algorithm, except for the lower bounding rule which 
has already been described in detail in Section 3.3.  In 
particular, a heuristic method is still used to find the 
feasible solution, i.e., upper bounds.  The branching 
rule and the search strategy are described as follows. 
 The branching rule in the algorithm consists of 
applying the Lagrangian relaxation algorithm to a 
particular edge.  We identify the set of edges which 
are incident to the nodes with excess in-degree or 
out-degree, and then the particular edge with 
maximum length is selected from this set of edges.  
We define the multipliers of spanning tree as the 
distance for the set of edges.  After selecting the 
particular edge, we first exclude it from the network 
to generate a new node of the searching tree and then 
apply the Lagrangian relaxation algorithm to check if 
the subproblem should be fathomed or not.  If it is not 
fathomed by excluding the edge then we select the 
next edge for branching until the subproblem is 
fathomed.  After a subproblem fathomed by 
excluding an edge, the edge is then forced into the 
network to form another subproblem, i.e., node of the 
branching tree.  If any of the following possibilities 
occurs, the subproblem should be fathomed, i.e., no 
further branching is done. 
(1) The greatest lower bound (or its ceiling) 

computed for the subproblem is greater than or 
equal to the current incumbent. 

(2) The greatest lower bound at the node is less than 
the current incumbent but a feasible solution can 
not be obtained when any edge is selected from 
the set of candidates for branching. 

 When all subproblems are fathomed, the solution 
corresponding to the current value of   is optimal.  
The branch-and-bound algorithm using Lagrangian 
relaxation is described in the flow chart in Figure 5.  
 

 
Fig.5 Branch-and-Bound algorithm 

 
4. Results and Discussion 
 
In this section the strengths and weaknesses of the 
combinations of three versions of Lagrangian 
relaxation with two heuristic methods will be 
investigated to find which combination is the most 
effective.  And then the best combination will be 
utilized in the branch-and-bound method to get good 
bounds. 
The Lagrangian algorithm was tested using several 
problems which were generated randomly.  The 
respective problem sizes, the total iterations and CPU 
time on a HP-UX series 700 workstation are 
described in Table 1.  
The duality gap is characterized by ZSTAR, the 
primal optimum obtained by enumeration, and GLB, 
the optimal dual obtained with Lagrangian relaxation.  
The duality gap is defined as follows: 

( ) %100
ZSTAR

GLBZSTARgapDuality ×
−

=  

Now the six combinations of three relaxations with 
two heuristic methods will be studied, with the aim of 
getting the best one from these combinations.  Five 
sets of results obtained by these six combinations are 
shown from Table 1.  
 For each six different size jobs, thirty randomly 
generated problems were tested here.  Each problem 
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was run 35 times with different initial values for the 
multipliers for each of the six combinations, where 
we set the weight limit large enough that 
convergence is not hard to achieve.  Then mean 
iteration counts and CPU time were then computed.  
 
Table 1. Results from six test problems with 35 runs 

for each problems 

 
Note: F indicates that the Lagrangian relaxation did not 

converge after 250 iterations; T indicates that the 
Lagrangian relaxation did not converge within 1200 
seconds CPU time. 
# of jobs : number of jobs of this problem 
iter : The mean value of the total iterations. 
cpu : The mean value of the total CPU time. 
LRP : Lagrangian Relaxation Problem. 

 
 According to the results in the table, the 
combination of version 2 with the greedy heuristic is 
the best one of these six combinations, because as the 
number of job increases, the mean iterations and the 
mean CPU time increase smoothly.  Compared with 
the version 1 and version 3, the combination of 
version 2 and greedy heuristic can accomplish 
convergence and take the least time when the number 
of jobs is 50.  From this observation, the combination 
of version 2 with the greedy heuristic is more 
attractive than other five.  
 It seems that the combination of the version 2 with 
the greedy heuristic is the best one to search for the 
optimal solution so that we will incorporate this 
combination into the branch-and-bound method for 
getting the optimal solution.  When the problem is 
such that convergence is not achieved, we need to 
utilize the branch-and-bound method to seek for the 
optimal solution.  
 Six different sizes of jobs were test by the 
branch-and-bound algorithm to find the optimal 
solutions.  For each size of problem includes thirty 
randomly generated problems.  At each branching 

node a maximum of 150 iterations of the Lagrangian 
relaxation will be performed if it cannot be fathomed.  
Then an edge will be selected to form the next pair of 
branching nodes.  The average of the cpu time of 
finding optimal solutions for the large size of jobs is 
described in Figure 6.  
 

 
Fig.6 The cpu time from test problems by 
branch-and-bound algorithm. 
 
 As expected, CPU time increases when the 
number of jobs is increased.  But when the jobs are 
increased form 80 to 90, the CPU time will suddenly 
more than double.  When there are 100 jobs, in 
general, they will take much more time, the CPU time 
increases exponentially with the number of jobs for 
most cases.  
 After testing the six combinations of three 
Lagrangian relaxation with two heuristic methods, 
we have concluded that version 2 and the greedy 
heuristic is the best combination to solve this 
Lagrangian problem, and that means this 
combination is good enough to be applied in the 
branch-and-bound method for finding the optimal 
solution when the job size is more than fifty.  
 While the problem size is less than 50, the optimal 
solution can be obtained by using Lagrangian 
heuristic.  However, if the problem is more than 60 
jobs, this combination of version 2 and greedy 
heuristic fails to converge (gap>5%).  It indicates that 
while job number is greater than 60, an alternative 
solution method should be developed for finding the 
optimal solutions. The obvious advantage of this 
Lagrangian heuristic is that it takes less CPU time for 
solving the problem than branch-and-bound did, 
especially in the large size problems.  
 
5. Conclusions 
This research studies job scheduling involving 
sequencing and grouping problems encountered by 
the continuous casting process in which the number 
of the major setup plays a big role in the production 
cost.  When applying the variable splitting technique 
and relaxing two sets of constraints into the objective 
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function with Lagrange multipliers, the problem can 
be separated into three subproblems.  Based on the 
three subproblems with more relaxation, the other 
two versions of subproblems were constructed. 
 Three versions of ubproblems were proposed to 
provide the lower bound and two heuristic methods 
were designed to convert the Lagrangian solution 
into a primal feasible solution.  Tests comparing the 
six combinations of three relaxation versions with 
two heuristics indicate that the version 2 with the 
greedy heuristic is the most effective at solving the 
problem to guarantee get the optimal solutions or 
'near' optimal solution when the number of the jobs is 
more than 60.  In practice, the problem size usually 
falls into the small to moderate categories.  The hope 
is that this research can be considered as a prototype 
or demonstration preparatory to further research.  
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