
AN APPLICATION OF LAGRANGEAN DECOMPOSITION TO
THE SCHEDULING OF HOT CHARGED ROLLING IN STEEL

PRODUCTION

T.-C. Chen
Department of Information Management

 National Formosa University
64, Wen-Hua Rd., , Huwei, Yulin, 632, TAIWAN

Abstract:-In this paper a Lagrangean decomposition technique for solving the scheduling problem for Hot
Charged Rolling (HCR) in the continuous casting process which involves sequencing and grouping. This
Lagrangian relaxation algorithm is proposed that incorporate two sets of constraints into the objective function
after applying the variable splitting technique. The relaxed problem has a special structure and can be solved
as three versions of subproblems. The subgradient algorithm is then used to maximize the Lagrangian dual.
Two heuristic algorithms are also proposed to find good primal feasible solutions. Through the three versions
of subproblems and two heuristic algorithms, the best one from six combinations is selected to incorporate with
branch-and-bound algorithm to find the optimal solution when job size is large. Our methodology provides the
optimal solutions for the difficult scheduling problem resulted from the continuous casting process.

Key-Words: Hot Charged Rolling, Lagrangian relaxation, Continuous casting.

1 Introduction
In the continuous casting process, the most
modernized steel mills which have the capability of
Hot Charged Rolling (HCR). The HCR is a modern
steel manufacturing concept where the steel making,
slab casting and hot coil production processes are
physically integrated into one directly connected and
synchronously controlled process.
 The major advantage of the HCR is in the reduction
of the slab inventory and the savings in energy cost
normally wasted for reheating slabs for hot coil
production. However, the scheduling task for the
HCR becomes significantly more difficult than the
one for the conventional steel manufacturing process.
 The HCR process includes three processes: steel
making, slab casting, and hot coil production. The
melted pig iron produced at the blast furnace is
converted into melted steel at the steel making
process. The melted steel is produced in the
converter having a certain capacity and shipped in an
open ladle to the slab casting process. This melted
steel in the open ladle is then put into the continuous
caster, where the melted steel is formed into slabs.
Then these slabs pass through the rollers at the hot
strip mill to become hot coils.
 The jobs to be scheduled for the HCR process are
hot coils having the following attributes: weight,
thickness, width, and quantity. The weights are
within a certain range of tons. There are several
different thickness groups and width groups. This

scheduling problem for the HCR involves both
grouping and sequencing.
 For steel making, jobs must be grouped into lots
called "charges". These charges are then grouped
into larger lots called "casts". Charges in the same
cast must be properly sequenced according to the
charge sequencing rules, i.e., (1) Width must be
nonincreasing; (2) Thickness must be nondecreasing;
(3) Each charge will not weight more than the
limitation.
 The approach used in this paper is based on
Lagrangian relaxation. This problem has a special
structure that allows the Lagrangian problem to be
decomposed into three easy problems: a minimum
spanning tree, an assignment problem and a
minimum cost network flow problem. The
subgradient method is then used in a dual algorithm
to tighten the Lagrangian lower bounds. We also
have developed two heuristic methods to tighten the
upper bounds because it may be that optimal values
for the subproblems are not feasible. For this reason,
it is worthwhile to seek a feasible solution by means
of a heuristic. Our contribution is to present a
dual-based heuristic procedure, incorporated in the
Lagrangian algorithm, to generate good primal
feasible solutions. The lower bound generated by the
subgradient algorithm is then used to measure the
quality of the heuristic solution in terms of the duality
gap. A branch-and-bound algorithm based on
Lagrangian relaxation algorithm is proposed to
search for all optimal solutions.

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp263-271)

2. Literature Survey
In 1970, Held and Karp [14] used a Lagrangian
problem based on minimum spanning trees to devise
a successful algorithm for the Traveling Salesman
Problem. Because of their success, they were widely
applied to scheduling problems, general integer
programming problems, location problems, set
covering problems, and so on.
 Altinkemer and Gavish [2] present a 0-1
formulation of a vehicle delivery problem and give a
number of heuristics for the problem. A lower bound,
based upon Lagrangian relaxation and subgradient
optimization, is used to evaluate the quality of the
heuristic solutions. Admadi and Tang [1] present a
paper dealing with the operation partitioning problem.
This is the problem of assigning operations to
machines so as to minimize the total movement of
jobs between machines. They presented two 0-1
formulations of the problem and used Lagrangian
relaxation, subgradient optimization and Lagrangian
heuristics. Fetterolf and Anandalingam [7] use the
Lagrangian relaxation technique to optimize the
interconnection of local area networks. After two
sets of constraints are relaxed, the problem is easily
solved by decomposing it into two subsets of
problems. The subgradient optimization and
Lagrangian heuristic are applied. In this paper when
the networks are large, it is hard to find feasible
solutions just by the Lagrangian heuristic. Daskin
and Panayotopoulos [4] solve the problem of
assigning aircraft to routes to maximize profits in a
hub and spoke network. The Lagrangian heuristic
and the subgradient optimization are also used and
two heuristics are developed for obtaining the
feasibility when the Lagrangian solution is not
feasible. Because of the heuristics, good feasible
solutions are found more easily and the Lagrangian
problem converged more quickly. Resnoso and
Maculan [19] present a new Lagrangian
decomposition scheme for integer linear
programming problems. This scheme is based on a
reformation of the problem by introducing one or
more copies of some of the decision variables and a
number of coupling constraints. By defining a
Lagrangian relaxation of the copy and coupling
constraints, it is possible to decompose the problem
into two or more independent subproblems.
 A branch-and-bound algorithm, using a lower
bound obtained from the solution of linear
assignment problem, is proposed by Rinnooy [21] for
problems with a more general objective function.
Some fathoming rules are presented by Etcheberry [5]
and Fisher [11]. Potts [18] used a Lagrangian based
branch-and-bound algorithm for the single machine

sequencing where the heuristic method is used prior
to the application of branch-and-bound. He applies
the tree optimal heuristic of Morton and Dhara [16].
This method has the advantage that in some problems
with only a few precedence constraints, the heuristic
will indicate that the heuristic generated is optimal.
 The paper applies the advantages of these papers.
Like most of the papers the Lagrangian relaxation,
subgradient optimization algorithm, and two
Lagrangian heuristic methods proposed here to solve
the Lagrangian problems. At each iteration of the
Lagrangian heuristic we get a feasible solution from
our heuristics so that the optimal solutions are more
easily found. We also apply branch-and-bound to get
the optimal solution for large job size problems.

3. Solution methology
The approach used in this paper is based on
Lagrangin relaxation using variables splitting
technique, this problem has a special structure that
allows Lagrangian problem to be decomposed into
three easy subproblems: Minimum spanning tree,
assignment problem and minimum cost network flow
problem. We called the combination of these three
subproblems as version 1. In the version 2, the
assignment problem of version has been transferred
into generalized upper bound problem or multiple
choice problems. In version 3, the constrain of X is a
tree is replaced with the strong constraint that X is an
"aborescence." Then relax as in version 2.
 The other algorithm is developed as the branch
and bound for big size problem. This algorithm still
applies the technique of Lagrangian relaxation,
which can be used at each node of the branching tree
to obtain lower bounds and feasible solutions to
avoid doing the unnecessary works. The results from
this algorithm are time consuming and the number of
branching nodes is huge when the size of the problem
is large, though we can get the optimal solutions from
this algorithm.

3.1 Model Formulation
A set of jobs is to be scheduled on a machine. For
some pairs of jobs, no major setup is required if
product immediately follows job , e.g., if the width
and thickness of what:

 Sum of weight for each charge must be within a
certain limit

 Width is nonincreasing and thickness is
nondecreasing.

We wish to sequence the products so as to minimize
the number of major setups required.

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp263-271)

 Represent the jobs by nodes in a network, with arc
from node to node if node requires no major setup
when if follows node. For example, Figure 1
represents a simple case in which the three quantities
in parenthesis at each node represent the width,
thickness and the weight, respectively, in the case in
which we suppose the grades of the jobs are all the
same. The nodes on a path through the network
correspond to a sequence of jobs which can be
processed with a single major setup. Any two such
paths should be disjoint, i.e., should share no
common jobs. So we should find the minimum
number of disjoint paths which span all the nodes of a
directed graph.

Fig.1 Example of network structure

 In addition, we should impose the limitation of the
total weight for each path, i.e., the sum of weight for
each charge must be within a certain limit. Figure 2
represents one feasible solution with paths shown in
bold if we suppose the weight limitation is 35 units of
weight limit.

Fig.2 A feasible solution

3.1.1 Mathematical Programming Model
Given the directed graph (digraph) G:
G=(N,A), where N={1,2,3,......n}= set of nodes.
 A= set of arcs (),
we define the variables:

⎩
⎨
⎧

=
otherise0

path aon included is j)(i, arc if1
jiX

 j)(i, arc of Flows=jif
 limitWeight =W
 i node ofWeight =iw

Clearly
Xij = 1 for at most one j for each i
That is, at most one arc enters node j and at most one
arc leaves node i. Thus, we have the constraints as
follows:

1
1

≤∑
=

n

j
jiX for each Ni∈

 However, the above constraints permit circuits.
For this reason we have to add a constraint that the
edges of the subgraph indicated by X form a "forest",
i.e., a collection of trees. Each tree is a subgraph
containing no cycle. In order to facilitate defining the
objective function (which is to be the number of paths)
in terms of X, define a new node 0. Let G'=(N',A')
where

 { }
() () (){ }nAA

NN
,0,......2,0,1,0

0
∪=
∪=

Let
⎩
⎨
⎧

=
otherwise0

path a of beginning theis i node if1
0 jX

When we add the node 0 to the network, then the
network would appear as Figure 3.

Fig.3 A redefined network

 After adding the constraint to form a new problem
and solving it, we find that the optimal solution of
this new problem is a spanning tree. See Figure 4.
This property will make it more convenient to handle
this problem.

Fig.4. A collection of trees

3.1.2 Formulation

Problem (D)

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp263-271)

Z = Minimize (1) ∑
=

n

j
jX

1
0

subject to
TX ∈ = set of all spanning tree of G' (2)

1
1

≤∑
=

n

j
jiX for each (3) Ni∈

1
0

=∑
=

n

i
jiX for each (4) Nj∈

A j)(i,each for {0,1} x ∈∈ (5)

∑∑
==

=
n

j
j

n

j
j wf

11
0

 (6)

∑∑ +=
j

jii
k

ik fwf for each (7) Ni∈

jiji WXf ≤ for each and Ni∈ j ∈ N (8)

0≥jif for each () (9) , Aji ∈

 The constraint (6) specifies that the total weight of
the flow entering each path should be equal to the
sum of all job's weights. The constraint (7) is the
conservation of flow in the network, where the is
the net flow into node i , i.e., the weight of job i .
The constraint (8) indicates that if arc (i, j) is not
included on the spanning tree, then there is no flow in
that arc.

iw

 This formulation appears to be a good candidate
for Lagrangian relaxation because its structure can be
separated into three parts, the minimum spanning tree
problem, the assignment problem and the minimum
cost network flow problem.
 As we know the spanning tree constraint is not
easily expressed a system of explicit linear
constraints, so that relaxing them is problematic. We
use the variable "splitting" method to solve this
difficulty.

3.1.3 Variable "Splitting"
For each variable Xij of the problem, define a variable
Yij. If we require that X be a spanning tree and Y be a
feasible assignment, then we have to add a new set of
constraints to our problem, namely Xij = Yij for each i
and j, () . The problem is then written as
follows:

 , Aji ∈

 Z = Minimize (10)
subject to

TX ∈ = set of all spanning tree of G' (11)

1
1

≤∑
=

n

j
jiY

for each (12) Ni∈

1
0

=∑
=

n

i
jiY for each (13) Nj∈

 (14) ∑∑
==

=
n

j
j

n

j
j wf

11
0

∑∑ +=
j

jii
k

ik fwf for each (15) Ni∈

jiji WYf ≤ for each Ni∈ and j ∈ N (16)

jiji YX = for each Ni∈ and j ∈ N (17)
A j)(i,each for {0,1} Y ∈∈ (18)

0≥jif for each () , Aji ∈ (19)
for some specified weight which distributes the cost
between the two sets of variables)10(≤≤α .

3.2 Lagrangian Relaxation

In the problem D, the constraints (16) and (17) are
problematic, because the constraint (16) couples the
binary decision variables of assignment problem with
the network flow variables and the constraint (17)
couples the minimum spanning tree variables with
the assignment problem variables. If they are relaxed
and incorporated into the objective function with
Lagrange multipliers, the resulting Lagrangian
problem is as follows:
Problem (D1)

() () ()∑∑ ∑ ∑
== = =

−+−+=Φ
n

j
jijiji

n

j

n

j

n

i
jj YXYXMin

11 1 0
00 1., λααµλ

()∑∑
==

−+
n

j
jijiji

n

i
WYfu

10

subject to
TX ∈ = set of all spanning tree of G'

1
1

≤∑
=

n

j
jiY for each Ni∈

1
0

=∑
=

n

i
jiY for each j ∈ N

∑∑
==

=
n

j
j

n

j
j wf

11
0

∑∑ +=
j

jii
k

ik fwf for each Ni∈

() ,each for {0,1} Y Aji ∈∈
0≥jif for each () , Aji ∈

where the jiλ is the Lagrangian multiplier of

relaxed constraint (17), and 0≥jiµ is the
Lagrangian multiplier of relaxed constraint (16).
 After these two constraints are relaxed, the
constraints of problem (D1) are separable in the three
sets of variables X, Y, and f. This allows us to
decompose the problem into three subproblems

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp263-271)

which are designated by the coefficients of the three
sets of variables. We state this subproblem as
follows:
Problem (D1-1): Minimum spanning tree

() () ∑∑∑
= ==

++=Φ
n

i

n

j
jijij

n

j
jX XXMin

1 1
0

1
0. λλαλ

subject to

TX ∈ = set of all spanning tree of G'
Problem (D1-2): Assignment problem

() () j

n

j
jjY YWMin 0

1
001., ∑

=

−−−=Φ µλαµλ

()∑∑
= =

+−
n

i
ji

n

j
jiji YW

1 1

µλ

subject to

1
1

≤∑
=

n

j
jiY for each Ni∈

1
0

=∑
=

n

i
jiY for each j ∈ N

A),(each for }1,0{ ∈∈ jiY
Problem (D1-3): Uncapacitated minimum cost
network flow problem

() ∑∑
= =

=Φ
n

i
ji

n

j
jiF fMin

0 1
. µµ

subject to

∑∑
==

=
n

j
j

n

j
j wf

11
0

∑∑ +=
j

jii
k

ik fwf for each Ni∈

0≥jif for each () , Aji ∈
 In this problem, node 0 serves as a source for the
flows, and each node has a demand for
units. Because of the lack of capacities on the arcs,
the minimum cost flow node 0 to node i is along the
shortest path from node 0 to node i.

Ni∈ iw

 For any matrix jiλ and jiµ of the Lagrangian
multipliers ()0≥jiµ , the sum of the optimal values
of the three subproblems provides a lower bound on
the optimal value of the original problem.
() () () () *,, ZFYX ≤Φ+Φ+Φ=Φ µµλλµλ , where *Z is

the optimal solution of the original problem Z. It
may be that the optimal values of X and Y for the
subproblems are never feasible paths. For this reason,
it is worthwhile to seek a feasible solution (which
also provides an upper bound) by means of heuristic
algorithms which use information provided by the
Lagrangian multipliers. This feasible solution
constitutes an upper bound on the optimal solution to
our problem. That will be described in Section 3.4.

3.3 The Subgradient Optimization

To tighten the bound generated by the Lagrangian
relaxation, it is desirable to find the vectors λ and
µ such that the objective ()µλ,Φ is maximized.
That is, find the optimal dual value such that dZ
 ()µλ,Φ= MaxZ d subject to 0≥µ
 It is well known that the function ()µλ,Φ is
concave and differentiable at all points, except where
the Lagrangian relaxation has multiple optimal
solutions (see Fisher [7]). Unfortunately, these
points occur frequently, and thus unconstrained
optimization using gradients is not acceptable. A
method that has gained wide acceptance over the past
several years is subgradient optimization. The
application of this method to integer programming
was pioneered by Held and Karp [14], and by Held,
Wolfe and Crowder [15]. At differentiable ()µλ,
points the subgradient set of consists of a singleton
equal to the gradient, while at nondifferentiable
points the subgradient set consists of all of the
gradients of all underestimating linear function
which are equal to Φ at ()µλ, . Like gradients, the
subgradients have the property that they point in a
direction of ascent.
 The search for the optimal dual variables and
can be performed by subgradient optimization. One
of the components of the subgradient of the dual
objective, ()µλ,Φ , is the matrix
 ()λ

λ δ ji=∆ where ()jijiji YX −=λδ
The other component of the subgradient is as that:

()µ
µ δ ji=∆ where ()jijiji WYf −=µδ

The adjustments of the two multiplier vectors are as
follows:
 ()()

λ

λ

µλ
τλλ ∆

∆

Φ−
+= 2

* , oldold
oldnew

Z

 ()()
µ

µ

µλ
τµµ ∆

∆

Φ−
+= 2

* , oldold
oldnew

Z

 where τ is a step size parameter satisfying
20 ≤< τ , and *Z is an upper bound on ()µλ,Φ ,

i.e., the value of the best known primal feasible
solution, frequently obtained by applying a heuristic
algorithm as stated in the next section to the original
problem (D). The denominator is the sum of the
squares of the elements in the subgradient.

3.4 The Heuristic Algorithms
If the solution of the Lagrangian relaxation satisfies
all of the relaxed constraints, the solution is feasible
for the original problem. In this case, we can then use
the value of the original objective function to update
the upper bound. In our experience, however this

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp263-271)

rarely happens. This is not surprising because of the
very large number of relaxed constraints, all of which
must be satisfied for the Lagrangian solution to be
primal feasible.
 In other words, it is possible that the optimal
values of X and Y for the subproblems are never
feasible paths in most cases. For this reason, to deal
with the likely infeasibility of the solution to the
relaxed problem, two heuristic methods have been
developed to convert an infeasible Lagrangian
solution into a feasible primal solution. They are the
Greedy algorithm and the Random-search algorithm
and are described as follows:
1. The greedy algorithm:
Initially, the path set P and are empty

 .
 Q

) (P ∅←←Q
(a) If all nodes lie on a path, i.e., , Stop. Else,

begin a new path by selecting the node
,which minimizes

 QN =

 * QNi −∈ i0λ

Let and }) (0, { PP *i∪← { }* iQ← , , QQQ ∪=
(b) If {(i*, j) : j does not lie on a path, i.e.,

} is empty, go to step (a).
Otherwise, let.

 QQNj −−∈

} : argmin{ * QQNjj ji
* −−∈← λ

(c) If { }*, jQiWwi ∪∈≥∑ , go to step (a).
Otherwise go to (d).

(d) Let , }) (i, { PP *i∪← { }*jQQ ∪← , and

 ; Return to step (b). ** ji ←
2. The random search algorithm:
(a) If all nodes lie on a path, i.e., N=Q', Stop. Else,

begin a new path by selecting the node
 which minimizes * QNi −∈ i0λ

Let and }) (0, { PP *i∪← { }* iQ←

(b) If { (, j) *i A∈ : j does not lie on a path, i.e.,
} is empty, go to step (a).

Otherwise, the choice of j
 QQNj −−∈

* is random, with
probability depending upon the current value of
the Lagrange multipliers λ i

*
j. Specially,

randomly select j* from the set where
the probability of selecting j

 QQN −−
* is stated as follows:

Fixed: i , we define
(){ }AjiC jiji ∈+= ,:maxmax µλ

(){ }AjiC jiji ∈+= ,:minmin µλ

() ()jijii CCCP µλθ +−−+= minmaxmax
 , where θ=0.25.

∑
=

i

i
i P

PP

(c) If { }*, jQiWwi ∪∈≥∑ , go to step (a). Otherwise,
go to (d).

 (d) Let , }) (i, { PP *i∪← { }*jQQ ∪← , and ;
Return to step (b).

** ji ←

3.5 Other Possible Relaxations
Other relaxations are possible. In Section 3.3, our
relaxation decomposed into three subproblems,
namely minimum spanning tree problem, assignment
problem and the minimum cost network flow
problem. We will refer to this relaxation as version 1.
The other two possible relaxation we describe the
Versions 2 and 3 are as follows:
Version 2: Relax, in addition to those relaxed in the
approach just presented, the constraint on the
in-degree of each node from the original problem
(10):

 for each j∈N 1
0

=∑
=

n

i
jiY

 The subproblem in Y is then a simple GUB
(generalized upper bound) problem, or "multiple
choice" problem, more easily solved than the
assignment problem
The objective function of version 2 is

∑ ∑∑∑∑∑
= =====

⎟
⎠

⎞
⎜
⎝

⎛
−+−+−+

n

j

n

i
jijji

n

j
jiji

n

i

n

j
j

n

j
j YYXYXMin

1 0101
0

1
0 1)()1(. νλαα

 ()jiji

n

j
ji

n

i
WYf −+ ∑∑

== 10
µ

Subject to constraints (11), (12), (14), (15), (16), (18)
and (19).
where υ is a dual Lagrangian multiplier vector for
the constraint (13).
This vector ν is adjusted by

()()
ν

ν

ν
τνν ∆

∆

Φ−
+= 2

*
old

oldnew
Z where ()ν

ν δ ji=∆ and

()1−= jiji Yνδ
This problem still could be decomposed into three
subproblems, namely:
1. Minimum Spanning Tree subproblem

() () ∑∑∑
= ==

++=Φ
n

i

n

j
jijij

n

j
jX XXMin

1 1
0

1
0. λλαλ

subject to constraint (11)
2. Generalized Upper Bound subproblem

() () j

n

j
jjjY YWMin 0

1
001., ∑

=

−+−−=Φ µνλαµλ

 () ∑∑∑
===

−−−+
n

j
jji

n

j
jijij

n

i
YW

111
νµλν

 subject to constraints (12) and (18)
3. Minimum Cost Networks Flow subproblem

() ∑∑
= =

=Φ
n

i
ji

n

j
jiF fuMin

0 1
.µ

subject to constraints (14), (15) and (16).
Version 3: In this version, the same constraints are
relaxed as in version 2, the constraint that X is a tree

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp263-271)

is replaced by the stronger constraint that X is an
"arborescence". An arborescence can be thought of
as a directed tree that can be used as a grapevine. The
root of an arborescence is the unique vertex included
in the arborescence that has no arcs directed into it. A
branching is defined as a forest in which each tree is
an arborescence. The maximum branching algorithm
can be used to find a maximum spanning
arborescence rooted at a specified vertex, say vertex
0.

3.6 Branch-and-Bound Algorithm
In case the upper bound (provided by the heuristics)
and the lower bound (provided by Langrangian
relaxation) do not converge within a specified
number of iterations, a branch-and-bound algorithm
will be used to solve this problem. In this section we
give a complete description of the branch-and-bound
algorithm, except for the lower bounding rule which
has already been described in detail in Section 3.3. In
particular, a heuristic method is still used to find the
feasible solution, i.e., upper bounds. The branching
rule and the search strategy are described as follows.
 The branching rule in the algorithm consists of
applying the Lagrangian relaxation algorithm to a
particular edge. We identify the set of edges which
are incident to the nodes with excess in-degree or
out-degree, and then the particular edge with
maximum length is selected from this set of edges.
We define the multipliers of spanning tree as the
distance for the set of edges. After selecting the
particular edge, we first exclude it from the network
to generate a new node of the searching tree and then
apply the Lagrangian relaxation algorithm to check if
the subproblem should be fathomed or not. If it is not
fathomed by excluding the edge then we select the
next edge for branching until the subproblem is
fathomed. After a subproblem fathomed by
excluding an edge, the edge is then forced into the
network to form another subproblem, i.e., node of the
branching tree. If any of the following possibilities
occurs, the subproblem should be fathomed, i.e., no
further branching is done.
(1) The greatest lower bound (or its ceiling)

computed for the subproblem is greater than or
equal to the current incumbent.

(2) The greatest lower bound at the node is less than
the current incumbent but a feasible solution can
not be obtained when any edge is selected from
the set of candidates for branching.

 When all subproblems are fathomed, the solution
corresponding to the current value of is optimal.
The branch-and-bound algorithm using Lagrangian
relaxation is described in the flow chart in Figure 5.

Fig.5 Branch-and-Bound algorithm

4. Results and Discussion

In this section the strengths and weaknesses of the
combinations of three versions of Lagrangian
relaxation with two heuristic methods will be
investigated to find which combination is the most
effective. And then the best combination will be
utilized in the branch-and-bound method to get good
bounds.
The Lagrangian algorithm was tested using several
problems which were generated randomly. The
respective problem sizes, the total iterations and CPU
time on a HP-UX series 700 workstation are
described in Table 1.
The duality gap is characterized by ZSTAR, the
primal optimum obtained by enumeration, and GLB,
the optimal dual obtained with Lagrangian relaxation.
The duality gap is defined as follows:

() %100
ZSTAR

GLBZSTARgapDuality ×
−

=

Now the six combinations of three relaxations with
two heuristic methods will be studied, with the aim of
getting the best one from these combinations. Five
sets of results obtained by these six combinations are
shown from Table 1.
 For each six different size jobs, thirty randomly
generated problems were tested here. Each problem

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp263-271)

was run 35 times with different initial values for the
multipliers for each of the six combinations, where
we set the weight limit large enough that
convergence is not hard to achieve. Then mean
iteration counts and CPU time were then computed.

Table 1. Results from six test problems with 35 runs

for each problems

Note: F indicates that the Lagrangian relaxation did not

converge after 250 iterations; T indicates that the
Lagrangian relaxation did not converge within 1200
seconds CPU time.
of jobs : number of jobs of this problem
iter : The mean value of the total iterations.
cpu : The mean value of the total CPU time.
LRP : Lagrangian Relaxation Problem.

 According to the results in the table, the
combination of version 2 with the greedy heuristic is
the best one of these six combinations, because as the
number of job increases, the mean iterations and the
mean CPU time increase smoothly. Compared with
the version 1 and version 3, the combination of
version 2 and greedy heuristic can accomplish
convergence and take the least time when the number
of jobs is 50. From this observation, the combination
of version 2 with the greedy heuristic is more
attractive than other five.
 It seems that the combination of the version 2 with
the greedy heuristic is the best one to search for the
optimal solution so that we will incorporate this
combination into the branch-and-bound method for
getting the optimal solution. When the problem is
such that convergence is not achieved, we need to
utilize the branch-and-bound method to seek for the
optimal solution.
 Six different sizes of jobs were test by the
branch-and-bound algorithm to find the optimal
solutions. For each size of problem includes thirty
randomly generated problems. At each branching

node a maximum of 150 iterations of the Lagrangian
relaxation will be performed if it cannot be fathomed.
Then an edge will be selected to form the next pair of
branching nodes. The average of the cpu time of
finding optimal solutions for the large size of jobs is
described in Figure 6.

Fig.6 The cpu time from test problems by
branch-and-bound algorithm.

 As expected, CPU time increases when the
number of jobs is increased. But when the jobs are
increased form 80 to 90, the CPU time will suddenly
more than double. When there are 100 jobs, in
general, they will take much more time, the CPU time
increases exponentially with the number of jobs for
most cases.
 After testing the six combinations of three
Lagrangian relaxation with two heuristic methods,
we have concluded that version 2 and the greedy
heuristic is the best combination to solve this
Lagrangian problem, and that means this
combination is good enough to be applied in the
branch-and-bound method for finding the optimal
solution when the job size is more than fifty.
 While the problem size is less than 50, the optimal
solution can be obtained by using Lagrangian
heuristic. However, if the problem is more than 60
jobs, this combination of version 2 and greedy
heuristic fails to converge (gap>5%). It indicates that
while job number is greater than 60, an alternative
solution method should be developed for finding the
optimal solutions. The obvious advantage of this
Lagrangian heuristic is that it takes less CPU time for
solving the problem than branch-and-bound did,
especially in the large size problems.

5. Conclusions
This research studies job scheduling involving
sequencing and grouping problems encountered by
the continuous casting process in which the number
of the major setup plays a big role in the production
cost. When applying the variable splitting technique
and relaxing two sets of constraints into the objective

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp263-271)

function with Lagrange multipliers, the problem can
be separated into three subproblems. Based on the
three subproblems with more relaxation, the other
two versions of subproblems were constructed.
 Three versions of ubproblems were proposed to
provide the lower bound and two heuristic methods
were designed to convert the Lagrangian solution
into a primal feasible solution. Tests comparing the
six combinations of three relaxation versions with
two heuristics indicate that the version 2 with the
greedy heuristic is the most effective at solving the
problem to guarantee get the optimal solutions or
'near' optimal solution when the number of the jobs is
more than 60. In practice, the problem size usually
falls into the small to moderate categories. The hope
is that this research can be considered as a prototype
or demonstration preparatory to further research.

References:
[1] Ahmadi, R. H. and Tang, C.S., An operation

partitioning problem for automated assembly
system design, Operations Research, Vol.39,
1991, pp.824-835.

[2] Altinkemer, K. and Gavish, B., Parallel
savings-based heuristics for the delivery
problem. Operations Research, Vol.39, 1991,
pp.454-469.

[3] Bricker, D. L., Class notes of Integer
programming and network flows, University
of Iowa, Iowa City, Iowa, 1993.

[4] Daskin, Mark S. and Nicholaos D.
Panayotopoulous. A Lagrangian relaxation
approach to assigning aircraft to routes in hub
and spoke networks, Transportation Science,
Vol.23, No.2, 1989, pp.91-99.

[5] Etcheberry, J., The set-covering problem: A new
implicit enumeration algorithm. Operations
Research, Vol.25, No.5, 1977, pp.760-772.

[6] Evans J.R. and Minieka E., Optimization
Algorithms for Networks and Graphs, Second
Edition Revised and Expended, Marcel Dekker,
Inc.,1992.

[7] Fetterolf P. C. and Anandalingam G.. A
Lagrangian relaxation technique for optimizing
interconnection of local area network,
Operations Research, Vol.40, No. 4, 1992,
pp.678-688.

[8] Fisher, Marshall L., The Lagrangian relaxation
method for solving integer programming
problems, Management Science, Vol.27, No.1,
1981, pp.1-17.

[9] Fisher, Marshall L, An applications oriented
guide to Lagrangian relaxation, Interfaces
Vol.15, No.2, 1985, pp.10-21.

[10] Fisher, Marshall L., Optimal solution of
scheduling problems using Lagrange
 multipliers: Part I, Operations Research, Vol.21,
1973, pp.1114-1127.

[11] Fisher, Marshall L., Jaikumar, R. and
Wassenhove, Luk N. Van., A multiplier
 adjustment method for the generalized
assignment problem, Management Science,
Vol.32, No 9, 1986, pp.1095-1103.

[12] Gavish, B., Topological design of centralized
computer networks-formulations and
algorithms, Networks, Vol.12, 1982,
pp.355-377.

[13] Geoffrion, A. M., Lagrangian relaxation for
integer programming, Mathematical
 Programming Study, Vol.2, 1974, pp.82-114.

[14] Held, M. and Karp, R. M., The
traveling-salesman problem and minimum
 spanning trees, Operations Research, Vol.18,
1970, pp.1138-1162.

[15] 15. Held, M., Wolfe, P. and Crowder, H. D.,
Validation of subgradient optimization,
Mathematical Programming, Vol.6, No.1, 1974,
pp.62-88.

[16] 16. Morton, T. E. and Dharan, B. G., Algorithms
for single-machine sequencing with precedence
constraints, Management Science, Vol.24, 1978,
pp.1011-1020.

[17] Peter B. L and Debra J. Hoitome., Scheduling of
manufacturing systems using the Lagrangian
relaxation technique, IEEE Transactions:
Automatic control, Vol.38, No.7, 1993,
pp.1066-1079.

[18] Potts, C N., A Lagrangian based branch and
bound algorithm for single machine sequencing
with precedence constraints to minimize total
weighted completion time, Management Science,
Vol.31, 1985, pp.1300-1311.

[19] 19. Reinoso, H., and Maculan, N., Lagrangean
decomposition in integer linear
 programming: A new scheme, Information
System and Operation Research, Vol.30,
No.1, 1992, pp.1-5.

[20] 20. Reeves, C. R., Modern heuristic techniques
for combinatorial problems, New York, John
Wiley & Sons, Inc, 1993.

[21] 21. Rinnooy Kan. A.H.G., Lageweg. B. J. and
Lenstra, J.K., Minimizing total costs in
one-machine scheduling, Operation Transaction,
Vol.23, 1975, pp.908-927.

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp263-271)

