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Abstract We have recently developed several ways of performing Canonical Correlation
Analysis [1, 5, 7, 4] with probabilistic methods rather than the standard statistical tools. How-
ever, the computational demands of training such methods scales with the square of the number
of samples, making these methods uncompetitive with e.g. artificial neural network methods
[3, 2]. In this paper, we examine a recent development which sparsifies a probabilistic method
of performing principal component analysis and then use this method to sparsify a new proba-
bilistic method of performing canonical correlation analysis.
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1 Introduction

We have recently investigated several ways of
creating probabilistic methods for performing
Canonical Correlation Analysis (CCA) [1, 5, 7,
4]. In particular, we have shown that, while
such methods can be used to reliably find the
canonical correlations between data sets, the
computational demands of the methods are
such that they can only be used with relatively
small data sets (< 1000 samples). In this pa-
per, we investigate a method for sparsification
of data sets by identifying samples which are
most relevant in some way for application to
the task in hand.

Canonical Correlation Analysis is used
when we have two data sets which we believe
have some underlying correlation. Consider
two sets of input data, x1 ∈ X1 and x2 ∈ X2.
Then in classical CCA, we attempt to find the
linear combination of the variables which gives
us maximum correlation between the combina-
tions. Let y1 = wT

1 x1 and y2 = wT
2 x2. Then,

for the first canonical correlaton, we find those
values of w1 and w2 which maximises E(y1y2)
under the constraint that E(y2

1) = E(y2
2) = 1.

2 Probabilistic Principal
Component Analysis

Perhaps the best known method of performing
Probabilistic Principal Component Analysis is
that of [11]. PCA is one of the oldest and most
established of statistical techniques. Recently,
[11] has shown how to give it a probabilistic
underpinning. Consider a data set, Y ∈ RN×D

of N samples of D dimensional data. Then
latent variable modeling consists of relating a
set of latent variables, X ∈ RN×q to the data
through a particular model so that the data can
be best explained by the latent variables. Gen-
erally the model is a probabilistic one and the
parameters are found by adapting the model to
make the data as likely as possible under the
model. In the context of PCA1, we have

yn = Wxn + ηn, ∀n = 1, ..., N (1)

where W ∈ RD×q is the matrix of parameters
to be adjusted and ηn are drawn independently
from zero mean spherical Gaussian noise in the
data space:

p(ηn) = N(0, β−1I) (2)
1We assume centered data.
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with inverse noise variance β. Then

p(yn|xn,W, β) = N(Wxn, β−1I) (3)

[11] defines a prior distribution over the latent
variables by

p(xn) = N(0, I) (4)

which means that they may be integrated out
to give

p(yn|W, β) = N(0,WWT + β−1I) (5)

We adjust the parameters, W to maximise the
likelihood of the data, Y under this model.

Lawrence [6] takes an alternative approach:
instead of integrating out the latent variables
and optimising the weights, he integrates out
the weights and optimises the positions of the
latent variables in the q dimensional latent
space. Thus he puts a prior on the weights
so that

P (W) =
D∏

i=1

P (wi) =
D∏

i=1

N(0, I) (6)

Lawrence [6] derives the log likelihood as

L = −DN ln(2π)−D ln |K|−trace(K−1YYT )
(7)

where K = XXT + β−1I. Gradient ascent on
this provides the method to maximise the like-
lihood of the data under this model:

∂L

∂X
= K−1SK−1X−DK−1X (8)

where S = YYT . A fixed point of this is given
by the first q eigenvectors of S, from which the
principal component filters can be found (ex-
actly as with Kernel PCA [9]) by treating these
vectors as being defined in the basis described
by the data points.

We have previously used a similar method
to Lawrence for CCA [4].

2.1 Sparse Probabilistic Principal
Component Analysis

Tipping [10] proposes to sparsify Kernel PCA
by specifying the covariance matrix of the data
as

C = σ2
nI +

N∑

i=1

aiφ(xi)φ(xi)T = σ2
nI +ΦT AΦ

(9)

where the weights ai are adjustable parameters
which are positioned on the main diagonal of
diagonal matrix , A, in the last equation and
he has performed a nonlinear mapping of the
data using the function, φ(.). Kernel PCA [9]
utilises the “kernel trick”: provided you can
find the scalar product Kij = φ(xi).φ(xj), you
need never actually require the individual func-
tions φ(.). By maximising the likelihood of
the data under this model, he shows that we
are performing a reduced PCA. Tipping derives
an algorithm based on Kernel PCA [9] to find
these weights by iterating

Σ = (A−1 + K)−1 (10)
µn = σ−2Σkn (11)

anew
i =

∑N
n=1 µ2

ni

N(1− Σii/ai
(12)

where K is the positive definite kernel matrix.

2.2 Experimental Results

We illustrate the effect of the sparsification on
a two dimensional artificial data set shown in
Figure 1. We also show in that figure the
weights greater than 0.02 in the linear case
(left) and non-zero weights when using the
squared exponential covariance matrix (right).
We see that in both cases an informative dis-
crimination is taking place.

We can however examine the non-zero
weights in greater depth. In Figure 2, left, we
see positive weights in the outer circle, mainly
zero in the centre but with two negative values
at the edge of the central cluster. This feature
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is valuable for identification of potential out-
liers in a data set. The same discrimination
can be found with the squared exponential co-
variance function.

3 The Sphere-Concatenate
Method for CCA

Now it may be shown [8] that a method of
finding the canonical correlation directions is
to solve the generalised eigenvalue problem

[
0 Σ12

Σ21 0

] [
w1

w2

]
= ρ

[
Σ11 0
0 Σ22

] [
w1

w2

]

(13)

where Σij is the covariance matrix between the
ith and jth data streams. Note that this is
equivalent to the standard eigenproblem

[
0 Σ

− 1
2

11 Σ12Σ
− 1

2
22

Σ
− 1

2
22 Σ21Σ

− 1
2

11 0

][
v1

v2

]

= ρ

[
v1

v2

]

where

v1 = Σ
1
2
11w1

v2 = Σ
1
2
22w2

This standard eigenproblem can now be seen
to be equivalent to a decomposition of a cross-
covariance matrix of sphered data.

This suggests the following algorithm:

1. Use Probabilistic PCA2 on both data
streams, independently. This gives us
eigenvector matrices, V1,V2 and eigen-
values on the main diagonal of Λ1,Λ2.

2. Project each data stream onto their re-
spective eigenvectors and divide by the
square root of the eigenvalues. This gives
us sphered data.

3. Concatenate these two sphered data
streams.

4. Perform PPCA on this data, to get eigen-
vectors V3 and eigenvalues Λ3.

5. To recover the CCA directions, W1 =

V1Λ
− 1

2
1 V3,1, W2 = V2Λ

− 1
2

2 V3,2, where
we have used the notation V3,i to denote
the appropriate part of V3.

This algorithm is easily shown to perform well
on both artificial and real data.

3.1 Sparse Sphere-Concatenate
CCA

The computational intensity of probabilistic
methods are very dependent on the number of
data samples we have and so one criticism of
the method of this section might be that we
are now performing PPCA in the Step 4 of the
algorithm on a data set which is twice as long
as previously.

We may address this problem with the
Sparse Kernel Principal Component method
[10]. We first calculate appropriate Kernel ma-
trices of the two data streams separately giving
K1 and K2. We may use Tipping’s method in
our algorithm replacing Step 1 with the itera-
tion

Σ1 = (A−1 + K1)−1 (14)
µ1,n = σ−2Σ1k1,n (15)
Σ2 = (A−1 + K2)−1 (16)

µ2,n = σ−2Σ2k2,n (17)

anew
i =

∑N
n=1 µ2

1,ni

N(1− Σ1,ii/ai)
+

∑N
n=1 µ2

2,ni

N(1− Σ2,ii/ai)
Note that while we are sparsifying two data
streams with different covariance matrices, we
are utilising a single A matrix. We require this
since we wish to identify pairs of important
data points simultaneously.

We illustrate the effects of this algorithm
in Figure 3: we create 90 samples of two data
sets, the first 30 of which are such that the

2Note that we retain all eigenvalues,vectors at this stage.
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Figure 1: Left: the discrimination with the linear kernel. Right: discrimination with the squared
exponential kernel; non-zero weights are shown with black ’*’s.
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Figure 2: Left: the discrimination with the linear kernel. Right: discrimination with the squared
exponential kernel.

corresponding elements come from related clus-
ters (the black ’*’s in Figure 3) while the last
60 samples contain no such relationship - 1

2
of these samples in one data set come from
one cluster while the other 1

2 come from an-
other cluster; in the other data set these sam-
ples are drawn from a widely dispersed cluster.
We show the weights from both the linear and
the squared exponential covariance matrices in
that figure.

The degree of sparsification can be con-
trolled by the σ parameter. Even if we set it
low (and thereby do not get an appropriate de-
gree of sparsification) we may identify samples
which have been wrongly included by plotting
the sphered data from the first data set against
the sphered data in the second data set. This is

illustrated in Figure 4 in which we show a sim-
ulation in which three samples from the non-
matching clusters have been identified. We see
that they are easily identified if we plot the first
elements of the sphered data from each data
stream.

4 Conclusion

We have illustrated an existing method of
sparsifying probabilistic principal component
analysis. We have developed a new method of
performing canonical correlation analysis with
probabilistic principal component analysis and
sparsified the method using the sparse principal
component analysis. Future work will investi-
gate the method with real data sets.
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Figure 3: The top row shows the two data sets. The bottom row the weights found with the
linear kernel (left) and the squared exponential kernel (right).
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Figure 4: Left: weights found by linear covariance method. Plots of first sphered coordinate in
both data sets. The wrongly included elements are clearly identified.
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