On Symbolic Jacobian Accumulation

EBADOLLAH VARNIK and UWE NAUMANN RWTH Aachen University, Department of Computer Science Seffenter Weg 23, D-52056 Aachen, Germany

Abstract: Derivatives are essential ingredients of a wide range of numerical algorithms. We focus on the accumulation of Jacobian matrices by Gaussian elimination on a sparse implementation of the extended Jacobian. A symbolic algorithm is proposed to determine the fill-in. Its runtime undercuts that of the original accumulation algorithm by a factor of ten. On the given computer architecture we are able to handle problems with roughly four times the original size.

Key-Words: Jacobian Accumulation, Extended Jacobian, Symbolic Elimination.

1 Introduction

The context of this paper is *automatic differentiation* [1, 3, 2] of numerical programs. We consider vector functions

$$F: \mathbb{R}^n \supset D \to \mathbb{R}^m, \quad \mathbf{y} = F(\mathbf{x})$$
, (1)

that map a vector $\mathbf{x} \equiv (x_i)_{i=1,\dots,n}$ of independent variables onto a vector $\mathbf{y} \equiv (y_j)_{j=1,\dots,m}$ of dependent variables. We assume that F has been implemented as a computer program. Hence, it can be decomposed into a sequence of p single assignments of the value of scalar elemental functions φ_i to unique intermediate variables v_j . This code list of F is given as

$$(\mathbb{R}\ni) v_j = \varphi_j(v_i)_{i\prec j} \quad , \tag{2}$$

where $j=n+1,\ldots,q$ and q=n+p+m. The binary relation $i \prec j$ denotes a direct dependence of v_j on v_i . So, $P_j=\{i:i\prec j\}$ is the index set of the arguments of φ_j . Similarly, $S_j=\{i:j\prec i\}$ is the index set of the elemental functions that have v_j as an argument. The variables $\mathbf{v}=(v_i)_{i=1,\ldots,q}$ are partitioned into the sets X containing the *independent* variables $(v_i)_{i=1,\ldots,n}$, Y containing the *de*-

pendent variables $(v_i)_{i=n+p+1,\dots,q}$, and Z containing the intermediate variables $(v_i)_{i=n+1,\dots,n+p}$. The code list of F can be represented as a directed acyclic computational graph G = G(F) = (V, E) with integer vertices $V = \{i : i \in \{1, ..., q\}\}$ and edges $(i,j) \in E$ if and only if $i \prec j$. Moreover, $V = X \cup Z \cup Y$, where $X = \{1, \dots, n\}$, $Z = \{n+1, \dots, n+p\}, \text{ and } Y = \{n+p+1, \dots, q\}.$ Hence, X, Y, and Z are mutually disjoint. We distinguish between independent $(i \in X)$, intermediate $(i \in Z)$, and dependent $(i \in Y)$ vertices. Under the assumption that all elemental functions are continuously differentiable in some neighborhood of their arguments all edges (i, j) can be labeled with the partial derivatives $c_{j,i} \equiv \frac{\partial v_j}{\partial v_i}$ of v_j w.r.t. v_i . This labeling yields the *linearized* computational graph Gof F. From now on we use the notation G to refer to the linearized computational graph.

Equation (2) can be written as a system of nonlinear equation $C(\mathbf{v})$ [4] as follows:

$$\varphi_j(v_i)_{i < j} - v_j = 0 \quad \text{for } j = n + 1, \dots, q \quad . \quad (3)$$

Differentiation with respect to v leads to

$$C' = C'(\mathbf{v}) \equiv (c'_{j,i})_{i,j=1,\dots,q} = \begin{cases} c_{j,i} & \text{if } i \prec j & c_{k,i} := c_{k,i} + c_{k,j} \cdot c_{j,i} \quad \forall i \prec j \land \forall k : j \prec k \\ -1 & \text{if } i = j & c_{j,i} := 0 \quad \forall i \prec j \\ 0 & \text{otherwise} & c_{k,j} := 0 \quad \forall k : j \prec k \end{cases}$$

The extended Jacobian C' is lower triangular. Its rows and columns are enumerated as $j, i = 1, \dots, q$. Row j of C' corresponds to vertex j of G and contains the partial derivatives $c_{j,k}$ of vertex j w.r.t. all of its predecessors $k \in P_i$. In the following we refer to a row i as independent for $i \in \{1, ..., n\}$, as intermediate for $i \in \{n+1, \dots, n+p\}$, and as dependent if $i \in \{n + p + 1, \dots, q\}$.

The focus of this paper is on finding *fill-in* generated during the Jacobian accumulation by Gaussian elimination on C'. The structure of the paper is as follows: In Section 2 we introduce a symbolic algorithm that uses a sparse bit pattern to detect fill-in. Section 3 presents runtime and memory analysis.

1.1 **Elimination Techniques**

The Jacobian matrix (or simply Jacobian) of F as defined in Equation (1) at point x_0 is defined as fol-

$$(\mathbb{R}^{m \times n} \ni) F' = F'(\mathbf{x}_0) \equiv \left(\frac{\partial y_i}{\partial x_j}(\mathbf{x}_0)\right)_{j=1,\dots,n}^{i=1,\dots,m}$$
.

F' can be obtained by eliminating all intermediate vertices $j \in Z$ from G as introduced in [5]. Each predecessor $i \in P_i$ of j is connected with all successors $k \in S_j$. If $(i, k) \notin E$, then it has to be generated and labeled with $c_{k,i} := c_{k,j} \cdot c_{j,i}$. Otherwise the value of $c_{k,i}$ is updated as $c_{k,i} := c_{k,i} + c_{k,j} \cdot c_{j,i}$. In the former case we say that fill-in is generated whereas absorption takes place in the latter. The elimination of vertex j can be understood as some sort of Gaussian elimination of all non-zero entries in row/column j of C'. Therefore one has to find all those rows k with $i \prec k$. In order to eliminate row/column j we perform the following transformation on C'.

Definition 1 (Row/Column Elimination in C')

$$c_{k,i} := c_{k,i} + c_{k,j} \cdot c_{j,i} \quad \forall i \prec j \land \forall k : j \prec k \quad (5)$$

$$c_{j,i} := 0 \quad \forall i \prec j \tag{6}$$

$$c_{k,j} := 0 \quad \forall k : j \prec k \tag{7}$$

$$c_{i,j} := 0$$
 . (8)

Note that $c_{k,i} = 0$ if $i \not\prec k$. The new partial derivatives of v_k , $j \prec k$, with respect to v_i , $i \prec j$, are computed by applying the chain rule in Equation (5). Hence, any sensitivities of the v_k on v_j as well as of v_i on any of the v_i are removed in Equation (6) and Equation (7), respectively. *Fill-out* is generated. Setting the diagonal entry $c_{i,j}$ to zero in Equation (8) leads to the removal of the j-th row and column in C'. If $c_{k,i} = 0$ then Equation (5) leads to fill-in, otherwise it yields absorption.

1.2 Example

Consider the vector function $F: \mathbb{R}^3 \to \mathbb{R}^3$ whose code list is given in Figure 1(a). The corresponding G and G' are shown in Figure 1 (b) and (c), respectively. The symbols \triangle represent independent,

 dependent, and ○ intermediate vertices. Consider row 5 in Figure 1 (c) containing $c_{5,1}$ and $c_{5,2}$. These are labels of incoming edges (1,5) and (2,5) of vertex 5 in Figure 1 (b). Column 5 contains the partial derivatives $c_{8,5}$ and $c_{9,5}$ that are the labels of outgoing edges (5,8) and (5,9) of vertex 5. In the context of symbolic elimination we are merely interested in the sparsity structure of C'. Hence, \times represents fillin, () represents fill-out, and blanks represent zeros in C'.

Eliminating $c_{5,1}$ is equivalent to front-elimination [6] of (1,5) as shown in Figure 2 (a). Fill-in is generated as $c_{8,1}$ [(1,8)] and $c_{9,1}$ [(1,9)] since rows [vertices] 8 and 9 have non-zeros [incoming edges] in [from] column [vertex] 5.

The elimination of the row/column [vertex] 5 in C'[G] can be done by elimination [front-elimination] of all non-zeros [incoming edges] in [to] row/column [vertex] 5. The resulting fill-in, namely $c_{8,1}$,

Figure 1: Code list (a); linearized computational graph G (b); C' (c) of F.

Figure 2: G[C'] after front-elimination [elimination] of (1,5) $[c_{5,1}]$ (a) [(b)].

 $c_{8,2}$, $c_{9,1}$, and $c_{9,2}$ [(1,8), (2,8), (1,9), and (2,9)] in C' [G] is shown in Figure 3 (b) [(a)]. A total of p! different row [vertex] elimination orderings in C' [G'] are possible. In this paper we focus on *reverse elimination* ($n+p,\cdots,n+1$). Hence, the Jacobian F' [the bipartite graph G'] is derived from C' [G] by elimination of all intermediate rows [vertices] in order (6,5,4). The result is shown in Figure 4 (b) [(a)].

2 Symbolic Elimination Algorithm

Our symbolic fill-in detection algorithm uses a bit pattern B=B(F) to hold the sparsity structure of C'. Figure 5 (a) shows the corresponding integer matrix for the extended Jacobian C' in Figure 1 (c). The binary representation is shown in Figure 5 (b). The symbolic algorithm is implemented in C++. Therefore we start counting with zero. Whenever we refer to the j-th row in B we mean the row with index j-1.

Algorithm 1 (Symbolic Algorithm) $IN: B - bit \ pattern \ of \ C'$

Figure 3: G[C'] after elimination of vertex [row/column] 5 (a) [(b)].

Figure 5: Bit pattern B as an integer matrix (a) and binary representation of C' (b).

in line [1] and [2], respectively. The integer values corresponding to rows 6 and 9 are stored in column k=0 (line [3]) with B[5][0]=24576 and B[8][0]=3072. $6 \prec 9$ as in line [4] $24576 \wedge 2^{15-5}=true$. Hence, $B[8][0]=27648=24576 \vee 3072$. Line [5] in Algorithm 1 performs the bitwise OR for all affected columns of B.

In the following we apply Algorithm 1 to the bit pattern of F shown in Figure 5 (a). The result is shown in Figure 6 (b). Symbolic elimination proceeds as follows:

OUT: B — filled bit pattern after reverse elimination

[1] **FOR**
$$i = n + p - 1, ..., n$$

[2] **FOR** $j = q - 1, ..., i$
[3] $k := i \gg 4;$
[4] **IF** $(B[j][k] \land 1 \ll (15 - i\%16))$
[5] **FOR** $m = 0, ..., k$
[6] $B[j][m] := B[j][m] \lor B[i][m];$

Consider the symbolic elimination of row 6 in Figure 5 (a) using Algorithm 1 with i=5 and j=8

$$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 40960 \\ 49152 \\ 24576 \\ 5120 \\ 6144 \\ 3072 \end{pmatrix} \stackrel{elim(6)}{\rightarrow} \begin{pmatrix} 0 \\ 0 \\ 40960 \\ 49152 \\ 24576 \\ \mathbf{29696} \\ 6144 \\ \mathbf{27648} \end{pmatrix}$$

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp536-541)

4 6

Figure 4: Bipartite graph G' (a) and the corresponding structure of C' (b) after reverse elimination; The Jacobian is the 3×3 matrix in the lower left corner of C' after the elimination procedure.

$$\stackrel{elim(5)}{\rightarrow} \begin{pmatrix} 0\\0\\0\\40960\\49152\\24576\\29696\\\mathbf{55296}\\\mathbf{60416} \end{pmatrix} \stackrel{elim(4)}{\rightarrow} \begin{pmatrix} 0\\0\\40960\\49152\\24576\\\mathbf{62464}\\\mathbf{63488}\\60416 \end{pmatrix}$$

where

$$29696 = 2^{14} + 2^{13} + 5120;$$

$$27648 = 2^{14} + 2^{13} + 3072;$$

$$55296 = 2^{15} + 2^{14} + 6144;$$

$$60416 = 2^{15} + 27648;$$

$$62464 = 2^{15} + 29696;$$

$$63488 = 2^{13} + 55296.$$

3 Numerical Results

We compare runtime and memory consumption of our new symbolic algorithm (SymAlgOnB) on bit

Figure 6: B (a) and the corresponding binary representation (b) after symbolic elimination.

pattern B with reverse elimination of all intermediate rows of C' (**REOnEJ**). Both methods are applied to the following function:

```
Listing 1: f.cpp

void f(double * x , int n , int 1) {
  double * h = new double [n];
  for (i = 0; i < 1; i++) {
    if (i%2==0) {
      h[0] = x[n-1]*x[0];
  }
```


Figure 7: Runtime of **SymAlgOnB** vs. **REOnEJ**.

```
for(j=1; j<n; j++)
    h[j] = x[j-1]*x[j]; }
else {
    x[0] = h[n-1]*h[0];
    for(j=1; j<n; j++)
        x[j]=h[j-1]*h[j];
}
}</pre>
```

We set n=100 and $l\in\{10,\cdots,150\}$. Obviously, $C'\in I\!\!R^{q\times q}$ where $q=(l+1)\cdot n$. All results have been obtained on an Intel Pentium 4 CPU running at 3.00GHz with 1GB of memory. We observe that the symbolic reverse elimination on B is about ten times faster than the corresponding procedure on C' as illustrated in Figure 7. On the given computer architecture we are able to handle problems of sizes l=250 and l=1000 (for n=100) using **REOnEJ** and **SymAlgOnB**, respectively.

4 Conclusion

Jacobian accumulation on the extended Jacobian can be improved significantly – both in terms of memory requirement and overall runtime – by using static sparse storage allocated based on the result of a symbolic elimination algorithm to determin the generated fill. The use of bit pattern implementation as integer array has proved suitable for performing the symbolic elimination at a computational cost that undercuts that of the original algorithm significantly. We intent to use the symbolic algorithm in the context of a novel Jacobian accumulation method that uses elimination techniques on a sparse represenation of the extended Jacobian.

References:

- [1] M. Berz, C. Bischof, G. Corliss, and A. Griewank, editors. Computational Differentiation: Techniques, Applications, and Tools, Proceedings Series, Philadelphia, 1996. SIAM.
- [2] G. Corliss, C. Faure, A. Griewank, L. Hascoet, and U. Naumann, editors. *Automatic Differentiation of Algorithms From Simulation to Optimization*, New York, 2002. Springer.
- [3] G. Corliss and A. Griewank, editors. *Automatic Differentiation: Theory, Implementation, and Application*, Proceedings Series, Philadelphia, 1991. SIAM.
- [4] A. Griewank. Evaluating Derivatives. Principles and Techniques of Algorithmic Differentiation. Number 19 in Frontiers in Applied Mathematics. SIAM, Philadelphia, 2000.
- [5] A. Griewank and S. Reese. On the calculation of Jacobian matrices by the Markovitz rule. In [3], pages 126–135, 1991.
- [6] U. Naumann. Efficient Calculation of Jacobian Matrices by Optimized Application of the Chain Rule to Computational Graphs. PhD thesis, Technical University of Dresden, December 1999.