On Symbolic Jacobian Accumulation

EBADOLLAH VARNIK and UWE NAUMANN
RWTH Aachen University, Department of Computer Science
Seffenter Weg 23, D-52056 Aachen, Germany

Abstract

Derivatives are essential ingredients of a wide range of numerical algorithms. We focus on the accumulation of Jacobian matrices by Gaussian elimination on a sparse implementation of the extended Jacobian. A symbolic algorithm is proposed to determine the fill-in. Its runtime undercuts that of the original accumulation algorithm by a factor of ten. On the given computer architecture we are able to handle problems with roughly four times the original size.

Key-Words: Jacobian Accumulation, Extended Jacobian, Symbolic Elimination.

1 Introduction

The context of this paper is automatic differentiation [$1,3,2$] of numerical programs. We consider vector functions

$$
\begin{equation*}
F: \mathbb{R}^{n} \supseteq D \rightarrow \mathbb{R}^{m}, \quad \mathbf{y}=F(\mathbf{x}) \tag{1}
\end{equation*}
$$

that map a vector $\mathbf{x} \equiv\left(x_{i}\right)_{i=1, \ldots, n}$ of independent variables onto a vector $\mathbf{y} \equiv\left(y_{j}\right)_{j=1, \ldots, m}$ of dependent variables. We assume that F has been implemented as a computer program. Hence, it can be decomposed into a sequence of p single assignments of the value of scalar elemental functions φ_{i} to unique intermediate variables v_{j}. This code list of F is given as

$$
\begin{equation*}
(\mathbb{R} \ni) v_{j}=\varphi_{j}\left(v_{i}\right)_{i \prec j}, \tag{2}
\end{equation*}
$$

where $j=n+1, \ldots, q$ and $q=n+p+m$. The binary relation $i \prec j$ denotes a direct dependence of v_{j} on v_{i}. So, $P_{j}=\{i: i \prec j\}$ is the index set of the arguments of φ_{j}. Similarly, $S_{j}=\{i: j \prec i\}$ is the index set of the elemental functions that have v_{j} as an argument. The variables $\mathbf{v}=\left(v_{i}\right)_{i=1, \ldots, q}$ are partitioned into the sets X containing the independent variables $\left(v_{i}\right)_{i=1, \ldots, n}, Y$ containing the $d e-$
pendent variables $\left(v_{i}\right)_{i=n+p+1, \ldots, q}$, and Z containing the intermediate variables $\left(v_{i}\right)_{i=n+1, \ldots, n+p}$. The code list of F can be represented as a directed acyclic computational graph $G=G(F)=(V, E)$ with integer vertices $V=\{i: i \in\{1, \ldots, q\}\}$ and edges $(i, j) \in E$ if and only if $i \prec j$. Moreover, $V=X \cup Z \cup Y$, where $X=\{1, \ldots, n\}$, $Z=\{n+1, \ldots, n+p\}$, and $Y=\{n+p+1, \ldots, q\}$. Hence, X, Y, and Z are mutually disjoint. We distinguish between independent $(i \in X)$, intermediate ($i \in Z$), and dependent $(i \in Y)$ vertices. Under the assumption that all elemental functions are continuously differentiable in some neighborhood of their arguments all edges (i, j) can be labeled with the partial derivatives $c_{j, i} \equiv \frac{\partial v_{j}}{\partial v_{i}}$ of v_{j} w.r.t. v_{i}. This labeling yields the linearized computational graph G of F. From now on we use the notation G to refer to the linearized computational graph.

Equation (2) can be written as a system of nonlinear equation $C(\mathbf{v})$ [4] as follows:

$$
\begin{equation*}
\varphi_{j}\left(v_{i}\right)_{i \prec j}-v_{j}=0 \quad \text { for } j=n+1, \ldots, q \tag{3}
\end{equation*}
$$

Differentiation with respect to \mathbf{v} leads to
$C^{\prime}=C^{\prime}(\mathbf{v}) \equiv\left(c_{j, i}^{\prime}\right)_{i, j=1, \ldots, q}=\left\{\begin{array}{ll}c_{j, i} & \text { if } i \prec j \\ -1 & \text { if } i=j \\ 0 & \text { otherwise } .\end{array}\right.$.
The extended Jacobian C^{\prime} is lower triangular. Its rows and columns are enumerated as $j, i=1, \ldots, q$. Row j of C^{\prime} corresponds to vertex j of G and contains the partial derivatives $c_{j, k}$ of vertex j w.r.t. all of its predecessors $k \in P_{j}$. In the following we refer to a row i as independent for $i \in\{1, \ldots, n\}$, as intermediate for $i \in\{n+1, \ldots, n+p\}$, and as dependent if $i \in\{n+p+1, \ldots, q\}$.

The focus of this paper is on finding fill-in generated during the Jacobian accumulation by Gaussian elimination on C^{\prime}. The structure of the paper is as follows: In Section 2 we introduce a symbolic algorithm that uses a sparse bit pattern to detect fill-in. Section 3 presents runtime and memory analysis.

1.1 Elimination Techniques

The Jacobian matrix (or simply Jacobian) of F as defined in Equation (1) at point \mathbf{x}_{0} is defined as follows:
$\left(\mathbb{R}^{m \times n} \ni\right) F^{\prime}=F^{\prime}\left(\mathbf{x}_{0}\right) \equiv\left(\frac{\partial y_{i}}{\partial x_{j}}\left(\mathbf{x}_{0}\right)\right)_{j=1, \ldots, n}^{i=1, \ldots, m}$.
F^{\prime} can be obtained by eliminating all intermediate vertices $j \in Z$ from G as introduced in [5]. Each predecessor $i \in P_{j}$ of j is connected with all successors $k \in S_{j}$. If $(i, k) \notin E$, then it has to be generated and labeled with $c_{k, i}:=c_{k, j} \cdot c_{j, i}$. Otherwise the value of $c_{k, i}$ is updated as $c_{k, i}:=c_{k, i}+c_{k, j} \cdot c_{j, i}$. In the former case we say that fill-in is generated whereas absorption takes place in the latter. The elimination of vertex j can be understood as some sort of Gaussian elimination of all non-zero entries in row/column j of C^{\prime}. Therefore one has to find all those rows k with $j \prec k$. In order to eliminate row/column j we perform the following transformation on C^{\prime}.

Definition 1 (Row/Column Elimination in C^{\prime})

$$
\begin{align*}
c_{k, i} & :=c_{k, i}+c_{k, j} \cdot c_{j, i} \quad \forall i \prec j \wedge \forall k: j \prec k \tag{5}\\
c_{j, i} & :=0 \quad \forall i \prec j \tag{6}\\
c_{k, j} & :=0 \quad \forall k: j \prec k \tag{7}\\
c_{j, j} & :=0 \quad . \tag{8}
\end{align*}
$$

Note that $c_{k, i}=0$ if $i \nprec k$. The new partial derivatives of $v_{k}, j \prec k$, with respect to $v_{i}, i \prec j$, are computed by applying the chain rule in Equation (5). Hence, any sensitivities of the v_{k} on v_{j} as well as of v_{j} on any of the v_{i} are removed in Equation (6) and Equation (7), respectively. Fill-out is generated. Setting the diagonal entry $c_{j, j}$ to zero in Equation (8) leads to the removal of the j-th row and column in C^{\prime}. If $c_{k, i}=0$ then Equation (5) leads to fill-in, otherwise it yields absorption.

1.2 Example

Consider the vector function $F: R^{3} \rightarrow R^{3}$ whose code list is given in Figure 1(a). The corresponding G and C^{\prime} are shown in Figure 1 (b) and (c), respectively. The symbols \triangle represent independent, ∇ dependent, and \bigcirc intermediate vertices. Consider row 5 in Figure 1 (c) containing $c_{5,1}$ and $c_{5,2}$. These are labels of incoming edges $(1,5)$ and $(2,5)$ of vertex 5 in Figure 1 (b). Column 5 contains the partial derivatives $c_{8,5}$ and $c_{9,5}$ that are the labels of outgoing edges $(5,8)$ and $(5,9)$ of vertex 5 . In the context of symbolic elimination we are merely interested in the sparsity structure of C^{\prime}. Hence, \times represents fillin, \bigcirc represents fill-out, and blanks represent zeros in C^{\prime}.

Eliminating $c_{5,1}$ is equivalent to front-elimination [6] of $(1,5)$ as shown in Figure 2 (a). Fill-in is generated as $c_{8,1}[(1,8)]$ and $c_{9,1}[(1,9)]$ since rows [vertices] 8 and 9 have non-zeros [incoming edges] in [from] column [vertex] 5.

The elimination of the row/column [vertex] 5 in C^{\prime} $[G]$ can be done by elimination [front-elimination] of all non-zeros [incoming edges] in [to] row/column [vertex] 5. The resulting fill-in, namely $c_{8,1}$,

(a)

(b)
$\left[\begin{array}{ccccccccc}-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ c_{4,1} & 0 & c_{4,3} & -1 & 0 & 0 & 0 & 0 & 0 \\ c_{5,1} & c_{5,2} & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & c_{6,2} & c_{6,3} & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & c_{7,4} & 0 & c_{7,6} & -1 & 0 & 0 \\ 0 & 0 & 0 & c_{8,4} & c_{8,5} & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & c_{9,5} & c_{9,6} & 0 & 0 & -1\end{array}\right]$
(c)

Figure 1: Code list (a); linearized computational graph $G(\mathrm{~b}) ; C^{\prime}(\mathrm{c})$ of F.

Figure 2: $G\left[C^{\prime}\right]$ after front-elimination [elimination] of $(1,5)\left[c_{5,1}\right]$ (a) $[$ (b) $]$.
$c_{8,2}, c_{9,1}$, and $c_{9,2}[(1,8),(2,8),(1,9)$, and $(2,9)]$ in $C^{\prime}[G]$ is shown in Figure 3 (b) [(a)]. A total of $p!$ different row [vertex] elimination orderings in C^{\prime} [G^{\prime}] are possible. In this paper we focus on reverse elimination $(n+p, \cdots, n+1)$. Hence, the Jacobian F^{\prime} [the bipartite graph G^{\prime}] is derived from $C^{\prime}[G]$ by elimination of all intermediate rows [vertices] in order $(6,5,4)$. The result is shown in Figure 4 (b) [(a)].

2 Symbolic Elimination Algorithm

Our symbolic fill-in detection algorithm uses a bit pattern $B=B(F)$ to hold the sparsity structure of C^{\prime}. Figure 5 (a) shows the corresponding integer matrix for the extended Jacobian C^{\prime} in Figure 1 (c). The binary representation is shown in Figure 5 (b). The symbolic algorithm is implemented in C++. Therefore we start counting with zero. Whenever we refer to the j-th row in B we mean the row with index $j-1$.

Algorithm 1 (Symbolic Algorithm)

IN : B-bit pattern of C^{\prime}

Figure 3: $G\left[C^{\prime}\right]$ after elimination of vertex [row/column] 5 (a) [(b)].

$$
\left(\begin{array}{c}
0 \\
0 \\
0 \\
40960 \\
\mathbf{4 9 1 5 2} \\
24576 \\
5120 \\
6144 \\
3072
\end{array}\right)\left(\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\mathbf{1} & \mathbf{1} & \mathbf{0} \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0
\end{array}\right)
$$

(a)
(b)

Figure 5: Bit pattern B as an integer matrix (a) and binary representation of $C^{\prime}(\mathrm{b})$.

OUT: B - filled bit pattern after reverse elimination

$$
\begin{aligned}
& {[1]} \\
& \text { FOR } i=n+p-1, \ldots, n \\
& {[2]} \\
& {[3]} \\
& \text { FOR } j=q-1, \ldots, i \\
& {[4]} \\
& {[5]} \\
& {[6]}
\end{aligned} \quad \text { IF }(B[j][k] \wedge 1 \ll(15-i \% 16)),
$$

Consider the symbolic elimination of row 6 in Fig-
ure 5 (a) using Algorithm 1 with $i=5$ and $j=8$
Consider the symbolic elimination of row 6 in Fig-
ure 5 (a) using Algorithm 1 with $i=5$ and $j=8$
[2]
[3]
[6]
in line [1] and [2], respectively. The integer values corresponding to rows 6 and 9 are stored in column $k=0$ (line [3]) with $B[5][0]=24576$ and $B[8][0]=$ 3072. $6 \prec 9$ as in line [4] $24576 \wedge 2^{15-5}=$ true. Hence, $B[8][0]=27648=24576 \vee 3072$. Line [5] in Algorithm 1 performs the bitwise $O R$ for all affected columns of B.

In the following we apply Algorithm 1 to the bit pattern of F shown in Figure 5 (a). The result is shown in Figure 6 (b). Symbolic elimination proceeds as follows:

$$
\left(\begin{array}{c}
0 \\
0 \\
0 \\
40960 \\
49152 \\
24576 \\
5120 \\
6144 \\
3072
\end{array}\right) \stackrel{\underset{\rightarrow}{\operatorname{elim}(6)}}{ }\left(\begin{array}{c}
0 \\
0 \\
0 \\
40960 \\
49152 \\
24576 \\
\mathbf{2 9 6 9 6} \\
6144 \\
\mathbf{2 7 6 4 8}
\end{array}\right)
$$

Figure 4: Bipartite graph G^{\prime} (a) and the corresponding structure of C^{\prime} (b) after reverse elimination; The Jacobian is the 3×3 matrix in the lower left corner of C^{\prime} after the elimination procedure.

$$
\xrightarrow{\operatorname{elim}(5)}\left(\begin{array}{c}
0 \\
0 \\
0 \\
40960 \\
49152 \\
24576 \\
29696 \\
\mathbf{5 5 2 9 6} \\
\mathbf{6 0 4 1 6}
\end{array}\right) \xrightarrow{\operatorname{elim}(4)}\left(\begin{array}{c}
0 \\
0 \\
0 \\
40960 \\
49152 \\
24576 \\
\mathbf{6 2 4 6 4} \\
\mathbf{6 3 4 8 8} \\
60416
\end{array}\right)
$$

where

$$
\begin{aligned}
& 29696=2^{14}+2^{13}+5120 \\
& 27648=2^{14}+2^{13}+3072 \\
& 55296=2^{15}+2^{14}+6144 \\
& 60416=2^{15}+27648 \\
& 62464=2^{15}+29696 \\
& 63488=2^{13}+55296
\end{aligned}
$$

3 Numerical Results

We compare runtime and memory consumption of our new symbolic algorithm (SymAlgOnB) on bit
$\left(\begin{array}{c}0 \\ 0 \\ 0 \\ 40960 \\ 49152 \\ 24576 \\ \mathbf{6 2 4 6 4} \\ 63488 \\ 60416\end{array}\right)\left(\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0\end{array}\right)$
(a)
(b)

Figure 6: B (a) and the corresponding binary representation (b) after symbolic elimination.
pattern B with reverse elimination of all intermediate rows of C^{\prime} (REOnEJ). Both methods are applied to the following function:

Listing 1: f.cpp

```
void f(double* x, int n, int l) {
    double * h = new double [n];
    for(i=0; i<l ; i++){
        if(i%2==0) {
            h[0] = x[n-1]*x[0];
```


Figure 7: Runtime of SymAlgOnB vs. REOnEJ.

```
        for(j=1; j<n; j++)
            h[j] = x[j-1]*x[j]; }
        else {
            x[0] = h[n-1]*h[0];
            for(j=1; j<n; j++)
                x[j]=h[j-1]*h[j];
        }
    }
}
```

We set $n=100$ and $l \in\{10, \cdots, 150\}$. Obviously, $C^{\prime} \in \mathbb{R}^{q \times q}$ where $q=(l+1) \cdot n$. All results have been obtained on an Intel Pentium 4 CPU running at 3.00 GHz with 1 GB of memory. We observe that the symbolic reverse elimination on B is about ten times faster than the corresponding procedure on C^{\prime} as illustrated in Figure 7. On the given computer architecture we are able to handle problems of sizes $l=250$ and $l=1000$ (for $n=100$) using REOnEJ and SymAlgOnB, respectively.

4 Conclusion

Jacobian accumulation on the extended Jacobian can be improved significantly - both in terms of memory requirement and overall runtime - by using static sparse storage allocated based on the result of a sym-
bolic elimination algorithm to determin the generated fill. The use of bit pattern implementation as integer array has proved suitable for performing the symbolic elimination at a computational cost that undercuts that of the original algorithm significantly. We intent to use the symbolic algorithm in the context of a novel Jacobian accumulation method that uses elimination techniques on a sparse represenation of the extended Jacobian.

References:

[1] M. Berz, C. Bischof, G. Corliss, and A. Griewank, editors. Computational Differentiation: Techniques, Applications, and Tools, Proceedings Series, Philadelphia, 1996. SIAM.
[2] G. Corliss, C. Faure, A. Griewank, L. Hascoet, and U. Naumann, editors. Automatic Differentiation of Algorithms - From Simulation to Optimization, New York, 2002. Springer.
[3] G. Corliss and A. Griewank, editors. Automatic Differentiation: Theory, Implementation, and Application, Proceedings Series, Philadelphia, 1991. SIAM.
[4] A. Griewank. Evaluating Derivatives. Principles and Techniques of Algorithmic Differentiation. Number 19 in Frontiers in Applied Mathematics. SIAM, Philadelphia, 2000.
[5] A. Griewank and S. Reese. On the calculation of Jacobian matrices by the Markovitz rule. In [3], pages 126-135, 1991.
[6] U. Naumann. Efficient Calculation of Jacobian Matrices by Optimized Application of the Chain Rule to Computational Graphs. PhD thesis, Technical University of Dresden, December 1999.

