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Abstract: A group G is said to be(2, 3, t)-generated if it can be generated by two elementsx andy such that
o(x) = 2, o(y) = 3 ando(xy) = t. In this paper, we determine(2, 3, t)-generations for the Tits simple group
T ∼= 2F4(2)′ wheret is divisor of|T|. Most of the computations were carried out with the aid of computer algebra
systemGAP [17].
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1 Introduction

A groupG is called(2, 3, t)-generated if it can be gen-
erated by an involutionx and an elementy of order3
such thato(xy) = t. The (2, 3)-generation problem
has attracted a vide attention of group theorists. One
reason is that(2, 3)-generated groups are homomor-
phic images of the modular groupPSL(2, Z), which
is the free product of two cyclic groups of order two
and three. The motivation of(2, 3)-generation of sim-
ple groups also came from the calculation of the genus
of finite simple groups [22]. The problem of finding
the genus of finite simple group can be reduced to one
of generations (see [24] for details).

Moori in [15] determined the(2, 3, p)-generations
of the smallest Fischer groupF22. In [11], Ganief
and Moori established(2, 3, t)-generations of the third
Janko groupJ3. In a series of papers [1], [2], [3],
[4], [5], [12] and [13], the authors studied(2, 3)-
generation and generation by conjugate elements of
the sporadic simple groupsCo1, Co2, Co3, He, HN ,
Suz, Ru, HS, McL, Th andFi23. The present arti-
cle is devoted to the study of(2, 3, t)-generations for
the Tits simple group T, wheret is any divisor of|T|.
For more information regarding the study of(2, 3, t)-
generations, generation by conjugate elements as well
as computational techniques used in this article, the
reader is referred to [1], [2], [3], [4], [5], [11], [15],
[16] and [22].

The Tits group T∼= 2F4(2)′ is a simple group
of order17971200 = 211.33.52.13. The group T is
a subgroup of the Rudvalis sporadic simple group Ru
of index8120. The group T also sits maximally inside
the smallest Fischer groupFi22 with index3592512.
The maximal subgroups of the Tits simple group T

was first determined by Tchakerian [19]. Later but
independently, Wilson [20] also determined the max-
imal subgroups of the simple group T, while studying
the geometry of the simple groups of Tits and Rud-
valis.

For basic properties of the Tits group T and infor-
mation on its subgroups the reader is referred to [20],
[19]. TheATLAS of Finite Groups [9] is an impor-
tant reference and we adopt its notation for subgroups,
conjugacy classes, etc. Computations were carried out
with the aid ofGAP [17].

2 Preliminary Results
Throughout this paper our notation is standard
and taken mainly from [1], [2], [3], [4], [5], [15]
and [11]. In particular, for a finite groupG with
C1, C2, . . . , Ck conjugacy classes of its elements
and gk a fixed representative ofCk, we denote
∆(G) = ∆G(C1, C2, . . . , Ck) the number of dis-
tinct tuples (g1, g2, . . . , gk−1) with gi ∈ Ci such
that g1g2 . . . gk−1 = gk. It is well known that
∆G(C1, C2, . . . , Ck) is structure constant for the con-
jugacy classesC1, C2, . . . , Ck and can easily be com-
puted from the character table ofG (see [14], p.45)
by the following formula∆G(C1, C2, . . . , Ck) =
|C1||C2|...|Ck−1|

|G| ×
∑m

i=1
χi(g1)χi(g2)...χi(gk−1)χi(gk)

[χi(1G)]k−2

where χ1, χ2, . . . , χm are the irreducible
complex characters of G. Further, let
∆∗(G) = ∆∗

G(C1, C2, . . . , Ck) denote the num-
ber of distinct tuples (g1, g2, . . . , gk−1) with
gi ∈ Ci and g1g2 . . . gk−1 = gk such thatG =<
g1, g2, . . . , gk−1 >. If ∆∗

G(C1, C2, . . . , Ck) > 0,
then we say thatG is (C1, C2, . . . , Ck)-generated.
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If H is any subgroup ofG containing the fixed ele-
ment gk ∈ Ck, then ΣH(C1, C2, . . . , Ck−1, Ck)
denotes the number of distinct tuples
(g1, g2, . . . , gk−1) ∈ (C1 × C2 × . . . × Ck−1) such
that g1g2 . . . gk−1 = gk and〈g1, g2, . . . , gk−1〉 ≤ H
whereΣH(C1, C2, . . . , Ck) is obtained by summing
the structure constants∆H(c1, c2, . . . , ck) of H over
all H-conjugacy classesc1, c2, . . . , ck−1 satisfying
ci ⊆ H ∩ Ci for 1 ≤ i ≤ k − 1.

For the description of the conjugacy classes, the
character tables, permutation characters and informa-
tion on the maximal subgroups readers are referred to
ATLAS [9]. A general conjugacy class of elements
of ordern in G is denoted bynX. For example2A
represents the first conjugacy class of involutions in a
groupG.

The following results in certain situations are very
effective at establishing non-generations.

Theorem 1 (Scott’s Theorem, [8] and [18]) Let
x1, x2, . . . , xm be elements generating a groupG with
x1x2· · ·xn = 1G, andV be an irreducible module for
G of dimensionn ≥ 2. Let CV (xi) denote the fixed
point space of〈xi〉 onV , and letdi is the codimension
of V/CV (xi). Thend1 + d2 + · · · + dm ≥ 2n .

Lemma 2 ([8]) Let G be a finite centerless
group and supposelX, mY , nZ are G-conjugacy
classes for which∆∗(G) = ∆∗

G(lX, mY, nZ) <
|CG(z)|, z ∈ nZ. Then∆∗(G) = 0 and therefore
G is not(lX, mY, nZ)-generated.

3 (2, 3, t)-Generations of Tits group

The Tits group T∼= 2F4(2)′ has8 conjugacy classes
of its maximal subgroups as determined by Wilson
[20] and listed in theATLAS [9]. The group T has
22 conjugacy classes of its elements including2 invo-
lutions namely2A and2B.

In this section we investigate(2, 3, t)-generations
for the Tits group T wheret is a divisor of|T|. It is a
well known fact that if a groupG is (2, 3, t)-generated
simple group, then1/2 + 1/3 + 1/t < 1 (see [7] for
details). It follows that for the(2, 3, t)-generations of
the Tits simple group T, we only need to considert ∈
{8, 10, 12, 13, 16}.

Lemma 3 The Tits simple group T is not
(2A, 3A, tX)-generated for any tX ∈
{8A, 8B, 8C, 8D, 10A}.

Proof. For the triples(2A, 3A, 8A) and(2A, 3A, 8B)
non-generation follows immediately since the
structure constants∆T(2A, 3A, 8A) = 0 and
∆T(2A, 3A, 8B) = 0.

The group T acts on78-dimensional irreducible
complex moduleV . We apply Scott’s theorem (cf.
Theorem 1) to the moduleV and compute that

d2A = dim(V/CV (2A)) = 32,

d3A = dim(C/CV (3A)) = 54

d8C = dim(V/CV (8C)) = 68,

d8D = dim(V/CV (8D)) = 68

d10A = dim(V/CV (10A)) = 68

Now, if the group T is(2A, 3A, tX)-generated, where
tX ∈ {8C, 8D, 10A}, then by Scott’s theorem we
must have

d2A + d3A + dtX ≥ 2 × 78 = 156.

However,d2A+d3A+dtX = 154, and non-generation
of the group T by these triples follows.

Lemma 4 The Tits simple group T is
(2B, 3A, 8Z)−generated, whereZ ∈ {A, B, C, D}
if and only ifZ = A or B.

Proof. Our main proof will consider the following
three cases.

Case (2B, 3A, 8Z), where Z ∈ {A, B}: We
compute∆T (2B, 3A, 8Z) = 128. Amongst the max-
imal subgroup of T, the only maximal subgroups hav-
ing non-empty intersection with any conjugacy class
in the triple (2B, 3A, tZ) is isomorphic toH ∼=
22.[28]:S3. HoweverΣH(2B, 3A, 8Z) = 0, which
means thatH is not (2B, 3A, 8Z)-generated. Thus
∆∗

T(2B, 3A, 8Z) = ∆T (2B, 3A, 8Z) = 128 >
0, and the(2B, 3A, 8Z)-generation of T, forZ ∈
{A, B}, follows.

Case (2B, 3A, 8C): The only maximal sub-
groups of the group T that may contain(2B, 3A, 8C)-
generated subgroups, up to isomorphism, areH1

∼=
L3(3):2 (two non-conjugate copies) andH2

∼=
22.[28]:S3. Further, a fixed elementz ∈ 8C
is contained in two conjugate subgroup of each
copy of H1 and in a unique conjugate subgroup
of H2. A simple computation usingGAP reveals
that ∆T (2B, 3A, 8C) = 112, ΣH1

(2B, 3A, 8C) =
ΣL3(3)(2B, 3A, 8C) = 20 andΣH2

(2B, 3A, 8C) =
32. By considering the maximal subgroups ofH11

∼=
L3(3) andH2, we see that no maximal subgroup of
H11 and H2 is (2B,3A,8C)-generated and hence no
proper subgroup ofH11 and H2 is (2B, 3A, 8C)-
generated. Thus,

∆∗
T(2B, 3A, 8C) = ∆T(2B, 3A, 8C)

−4Σ∗
H11

(2B, 3A, 8S)

−Σ∗
H2

(2B, 3A, 8C)

= 112 − 4(20) − 32 = 0.
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Therefore, the Tits simple group T is not
(2B, 3A, 8C)-generated.

Case (2B, 3A, 8D): In this case,
∆T(2B, 3A, 8D) = 112. We prove that Tits
simple group T is not(2B, 3A, 8D)-generated by
constructing the(2B, 3A, 8D)-generated subgroup
of the group He explicitly. We use the ”standard
generators” of the group T given by Wilson in
[21]. The group T has a26-dimensional irreducible
representation overGF(2). Using this representation
we generate the Tits group T= 〈a, b〉, where a
and b are26 × 26 matrices overGF(2) with orders
2 and 3 respectively such thatab has order13.
Using GAP, we see thata ∈ 2A, b ∈ 3A. We
producec = (ababab2)6, p = abababab2abab2ab2,
d = (acp)6, x = p16dp−16 such thatc, d, x ∈ 2B,
p ∈ 10A andxb ∈ 8D. Let H = 〈x, b〉 thenH < T
with H ∼= L3(3):2. Since no maximal subgroup
of H is (2B, 3A, 8D)-generated, that is no proper
subgroup ofH is (2B, 3A, 8D)-generated and we
haveΣ∗

H(2B, 3A, 8D) = ΣH(2B, 3A, 8D). Since
ΣH(2B, 3A, 8D) = 28 andz ∈ 8D is contained in
exactly two conjugate subgroups of each copy ofH,
we obtain that∆∗

T(2B, 3A, 8D) = 0. Hence the Tits
simple group T is not(2B, 3A, 8D)-generated. This
completes the lemma.

Lemma 5 The Tits group T is
(2B, 3A, 10A)−generated.

Proof. Up to isomorphism, the only maximal sub-
groups having non-empty intersection with any con-
jugacy class in the triple(2B, 3A, 10A) are isomor-
phic to H ∼= 22.[28]:S3, K ∼= A6·2

2(two non-
conjugate copies). Since∆T (2B, 3A, 10A) = 100
and ΣH(2B, 3A, 10A) = 0 = ΣK(2B, 3A, 10A).
we conclude that no maximal subgroup of T is
(2B, 3A, 10A)-generated. Thus

∆∗
T(2B, 3A, 10A) = ∆T(2B, 3A, 10A) = 100

and the(2B, 3A, 10A)-generation of Tits group T fol-
lows.

Lemma 6 The Tits group T is not
(2X, 3A, 12Z)−generated whereX, Z ∈ {A, B}.

Proof. First we consider the caseX = A.
The maximal subgroups of the group T that may
contain(2A, 3A, 12Z)-generated subgroups are iso-
morphic to H ∼= 22.[28]:S3 and K ∼= 52:4A4

(two non-conjugate copies). We compute that
∆T (2A, 3A, 12Z) = 32, ΣH(2A, 3A, 12Z) = 12
and ΣK(2A, 3A, 12Z) = 15. A fixed element of
order 12 in T is contained in a unique conjugate
subgroup ofH and two conjugate subgroups ofK.

Since no maximal subgroup of eachH and K is
(2A, 3A, 12Z)-generated, we obtain

∆∗
T(2A, 3A, 12Z) = ∆T(2A, 3A, 12Z)

−Σ∗
H(2A, 3B, 12Z)

−4Σ∗
K(2A, 3A, 12Z)

= 32 − 12 − 2(15) < 0

and the non-generation of the group Tits by the triple
(2A, 3A, 12Z) follows.

Next, suppose ThatX = B. There are six
maximal subgroups of the group T having non-empty
intersection with each conjugacy class in the triple
(2B, 3A, 12Z), are isomorphic toH1 = L3(3):2
(two non-conjugate copies),H2

∼= L2(25), H3
∼=

22.[28]:S3 and H4 = 52:4A4 (two non-conjugate
copies). Further, a fixed element of order12 in
Tits group is contained in a unique conjugate sub-
groups of each ofH1, H2, H3 andH4. We calculate
∆T(2B, 3A, 12Z) = 84, ΣH1

(2B, 3A, 12Z) = 27,
ΣH2

(2B, 3A, 12Z) = 24, ΣH3
(2B, 3A, 12Z) = 12

andΣH4
(2B, 3A, 12Z) = 0. Since no maximal sub-

group of each of the groupsH1, H2, H3 andH4 is
(2B, 3A, 12Z)-generated. We conclude that

∆∗
T(2B, 3A, 12Z) = ∆T(2B, 3A, 12Z)

−2Σ∗
H1

(2B, 3A, 12Z)

−Σ∗
H2

(2B, 3A, 12Z)

−Σ∗
H3

(2B, 3A, 12Z)

= 84 − 2(27) − 24 − 12 < 0.

Therefore Tits group T is not(2B, 3A, 12Z)-
generated. This completes the proof.

Lemma 7 The Tits group T is (2X, 3A, 13Z)-
generated whereX, Z ∈ {A, B} if and only ifX = A

Proof. First we consider the caseX = A. The struc-
ture constant∆T(2A, 3A, 13Z) = 13. The fusion
maps of the maximal subgroup of Tits group T into
the group T shows that there is no maximal subgroup
of T has non-empty intersection with the classes in the
triple (2A, 3A, 13Z). That is no maximal subgroup of
T is (2A, 3A, 13Z)-generated. Hence,

∆∗
T(2A, 3A, 13Z) = ∆T(2A, 3A, 13Z) = 13 > 0

which implies that the Tits groupT is (2A, 3A, 13Z)-
generated forZ ∈ {A, B}.

Next suppose thatX = B. Up to iso-
morphism, the only maximal subgroups of T hav-
ing non-empty intersection with each conjugacy
class in the triple(2B, 3A, 13Z) are isomorphic
to L3(3):2 (two non-conjugate copies) andL2(25).
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Further a fixed element of order13 in the Tits
group T is contained in a unique conjugate of each
of L3(3):2 and in three conjugate ofL2(25) sub-
groups. We compute that∆T (2B, 3A, 13Z) = 104,
ΣL3(3):2(2B, 3A, 13Z) = ΣL3(3)(2B, 3A, 13A) =
13 and ΣL2(25)(2B, 3A, 13Z) = 26. Now by con-
sidering the maximal subgroups ofL3(3) andL2(25),
we see that no maximal subgroup of the groups
L3(3) andL2(25) is (2B, 2A, 13Z)-generated. It fol-
lows that no proper subgroup ofL3(3) or L2(25) is
(2B, 3A, 13Z)-generated. Thus we have

∆∗
T(2B, 3A, 13Z) = ∆T(2B, 3A, 13Z)

−2Σ∗
L3(3)(2B, 3A, 13Z)

−3Σ∗
L2(25)(2B, 3A, 13Z)

= 104 − 2(13) − 3(26) − 12 = 0,

proving non-generation of the Tits group T by the
triple (2B, 3A, 13Z), whereZ ∈ {A, B}.

Lemma 8 The Tits group T is (2X, 3A, 16Z)-
generated, whereX ∈ {A, B} and Z ∈
{A, B, C, D}.

Proof. We treat two cases separately.
Case (2A,3A,16Z): The structure constant

∆T(2A, 3A, 16Z) = 16. We observe that the
group isomorphic to22.[28]:S3 is the only maximal
subgroup of T that may contain(2A, 3A, 16Z)-
generated subgroups. However we calculate
ΣH(2A, 3A, 16Z) = 0 for H ∼= 22.[28]:S3 and hence
∆∗

T (2A, 3A, 16Z) = ∆T (2A, 3A, 16Z) = 16 > 0,
proving that(2A, 3A, 16Z) is a generating triple of
the Tits group.

Case (2B,3A,16Z): Up to isomorphism,H ∼=
22.[28]:S3 is the only one maximal subgroup of T that
may admit(2B, 3A, 16Z)-generated subgroups. A
fixed element of order16 in the Tits group T is con-
tained in a unique conjugate subgroups ofH. Since
∆T (2B, 3A, 16Z) = 112, ΣH(2B, 3A, 16Z) = 32,
we conclude that

∆∗
T(2B, 3A, 16Z) ≥ 112 − 32 = 80 > 0

and the(2B, 3A, 16Z)-generation of T follows.

4 Conclusion

Let tX be a conjugacy class of the Tits simple group
T. Then Tits simple group T is

(i) (2A, 3A, tX)-generated if and only iftX ∈
{13Y, 16Z} where Y ∈ {A, B} and Z ∈
{A, B, C, D},

(ii) (2B, 3A, tX)-generated if and only iftX ∈
{8Y, 10A, 16Z}.
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