$(2,3, t)$-Generations for the Tits simple group ${ }^{2} F_{4}(2)^{\prime}$

MOHAMMED ALI FAYA IBRAHIM
King Khalid University
Department of Mathematics
P.O. Box 9004, Abha
SAUDI ARABIA

FARYAD ALI
King Khalid University
Department of Mathematics
P.O. Box 9004, Abha
SAUDI ARABIA

Abstract

A group G is said to be $(2,3, t)$-generated if it can be generated by two elements x and y such that $o(x)=2, o(y)=3$ and $o(x y)=t$. In this paper, we determine $(2,3, t)$-generations for the Tits simple group $\mathrm{T} \cong{ }^{2} F_{4}(2)^{\prime}$ where t is divisor of $|\mathrm{T}|$. Most of the computations were carried out with the aid of computer algebra system $\mathbb{G A} \mathbb{P}$ [17].

Key-Words: Tits group ${ }^{2} F_{4}(2)^{\prime}$, simple group, $(2,3, t)$-generation, generator.

1 Introduction

A group G is called $(2,3, t)$-generated if it can be generated by an involution x and an element y of order 3 such that $o(x y)=t$. The $(2,3)$-generation problem has attracted a vide attention of group theorists. One reason is that $(2,3)$-generated groups are homomorphic images of the modular group $P S L(2, \mathbb{Z})$, which is the free product of two cyclic groups of order two and three. The motivation of $(2,3)$-generation of simple groups also came from the calculation of the genus of finite simple groups [22]. The problem of finding the genus of finite simple group can be reduced to one of generations (see [24] for details).

Moori in [15] determined the $(2,3, p)$-generations of the smallest Fischer group F_{22}. In [11], Ganief and Moori established $(2,3, t)$-generations of the third Janko group J_{3}. In a series of papers [1], [2], [3], [4], [5], [12] and [13], the authors studied $(2,3)$ generation and generation by conjugate elements of the sporadic simple groups $\mathrm{Co}_{1}, \mathrm{Co}_{2}, \mathrm{Co}_{3}, \mathrm{He}, \mathrm{HN}$, $S u z, R u, H S, M c L, T h$ and $F i_{23}$. The present article is devoted to the study of $(2,3, t)$-generations for the Tits simple group T , where t is any divisor of $|\mathrm{T}|$. For more information regarding the study of $(2,3, t)$ generations, generation by conjugate elements as well as computational techniques used in this article, the reader is referred to [1], [2], [3], [4], [5], [11], [15], [16] and [22].

The Tits group $\mathrm{T} \cong{ }^{2} F_{4}(2)^{\prime}$ is a simple group of order $17971200=2^{11} \cdot 3^{3} \cdot 5^{2} .13$. The group T is a subgroup of the Rudvalis sporadic simple group Ru of index 8120 . The group T also sits maximally inside the smallest Fischer group $F i_{22}$ with index 3592512. The maximal subgroups of the Tits simple group T
was first determined by Tchakerian [19]. Later but independently, Wilson [20] also determined the maximal subgroups of the simple group T, while studying the geometry of the simple groups of Tits and Rudvalis.

For basic properties of the Tits group T and information on its subgroups the reader is referred to [20], [19]. The $\mathbb{A} T L \mathbb{A} \mathbb{S}$ of Finite Groups [9] is an important reference and we adopt its notation for subgroups, conjugacy classes, etc. Computations were carried out with the aid of $\mathbb{G} \mathbb{P} \mathbb{P}$ [17].

2 Preliminary Results

Throughout this paper our notation is standard and taken mainly from [1], [2], [3], [4], [5], [15] and [11]. In particular, for a finite group G with $C_{1}, C_{2}, \ldots, C_{k}$ conjugacy classes of its elements and g_{k} a fixed representative of C_{k}, we denote $\Delta(G)=\Delta_{G}\left(C_{1}, C_{2}, \ldots, C_{k}\right)$ the number of distinct tuples $\left(g_{1}, g_{2}, \ldots, g_{k-1}\right)$ with $g_{i} \in C_{i}$ such that $g_{1} g_{2} \ldots g_{k-1}=g_{k}$. It is well known that $\Delta_{G}\left(C_{1}, C_{2}, \ldots, C_{k}\right)$ is structure constant for the conjugacy classes $C_{1}, C_{2}, \ldots, C_{k}$ and can easily be computed from the character table of G (see [14], p.45) by the following formula $\Delta_{G}\left(C_{1}, C_{2}, \ldots, C_{k}\right)=$ $\frac{\left|C_{1}\right|\left|C_{2}\right| \ldots\left|C_{k-1}\right|}{|G|} \times \sum_{i=1}^{m} \frac{\chi_{i}\left(g_{1}\right) \chi_{i}\left(g_{2}\right) \ldots \chi_{i}\left(g_{k-1}\right) \overline{\chi_{i}\left(g_{k}\right)}}{\left[\chi_{i}\left(1_{G}\right)\right]^{k-2}}$ where $\chi_{1}, \chi_{2}, \ldots, \chi_{m}$ are the irreducible complex characters of G. Further, let $\Delta^{*}(G)=\Delta_{G}^{*}\left(C_{1}, C_{2}, \ldots, C_{k}\right)$ denote the number of distinct tuples $\left(g_{1}, g_{2}, \ldots, g_{k-1}\right)$ with $g_{i} \in C_{i}$ and $g_{1} g_{2} \ldots g_{k-1}=g_{k}$ such that $G=<$ $g_{1}, g_{2}, \ldots, g_{k-1}>$. If $\Delta_{G}^{*}\left(C_{1}, C_{2}, \ldots, C_{k}\right)>0$, then we say that G is $\left(C_{1}, C_{2}, \ldots, C_{k}\right)$-generated.

If H is any subgroup of G containing the fixed element $g_{k} \in C_{k}$, then $\Sigma_{H}\left(C_{1}, C_{2}, \ldots, C_{k-1}, C_{k}\right)$ denotes the number of distinct tuples $\left(g_{1}, g_{2}, \ldots, g_{k-1}\right) \in\left(C_{1} \times C_{2} \times \ldots \times C_{k-1}\right)$ such that $g_{1} g_{2} \ldots g_{k-1}=g_{k}$ and $\left\langle g_{1}, g_{2}, \ldots, g_{k-1}\right\rangle \leq H$ where $\Sigma_{H}\left(C_{1}, C_{2}, \ldots, C_{k}\right)$ is obtained by summing the structure constants $\Delta_{H}\left(c_{1}, c_{2}, \ldots, c_{k}\right)$ of H over all H-conjugacy classes $c_{1}, c_{2}, \ldots, c_{k-1}$ satisfying $c_{i} \subseteq H \cap C_{i}$ for $1 \leq i \leq k-1$.

For the description of the conjugacy classes, the character tables, permutation characters and information on the maximal subgroups readers are referred to ATLLAS [9]. A general conjugacy class of elements of order n in G is denoted by $n X$. For example $2 A$ represents the first conjugacy class of involutions in a group G.

The following results in certain situations are very effective at establishing non-generations.

Theorem 1 (Scott's Theorem, [8] and [18]) Let $x_{1}, x_{2}, \ldots, x_{m}$ be elements generating a group G with $x_{1} x_{2} \cdots x_{n}=1_{G}$, and V be an irreducible module for G of dimension $n \geq 2$. Let $C_{V}\left(x_{i}\right)$ denote the fixed point space of $\left\langle x_{i}\right\rangle$ on V, and let d_{i} is the codimension of $V / C_{V}\left(x_{i}\right)$. Then $d_{1}+d_{2}+\cdots+d_{m} \geq 2 n$.

Lemma 2 ([8]) Let G be a finite centerless group and suppose $l X, m Y, n Z$ are G-conjugacy classes for which $\Delta^{*}(G)=\Delta_{G}^{*}(l X, m Y, n Z)<$ $\left|C_{G}(z)\right|, z \in n Z$. Then $\Delta^{*}(G)=0$ and therefore G is not ($l X, m Y, n Z$)-generated.

$3(2,3, t)$-Generations of Tits group

The Tits group $\mathrm{T} \cong{ }^{2} F_{4}(2)^{\prime}$ has 8 conjugacy classes of its maximal subgroups as determined by Wilson [20] and listed in the $\mathbb{A T L A S}$ [9]. The group T has 22 conjugacy classes of its elements including 2 involutions namely $2 A$ and $2 B$.

In this section we investigate $(2,3, t)$-generations for the Tits group T where t is a divisor of $|\mathrm{T}|$. It is a well known fact that if a group G is $(2,3, t)$-generated simple group, then $1 / 2+1 / 3+1 / t<1$ (see [7] for details). It follows that for the $(2,3, t)$-generations of the Tits simple group T, we only need to consider $t \in$ $\{8,10,12,13,16\}$.

Lemma 3 The Tits simple group T is not $(2 A, 3 A, t X)$-generated for any $t X \in$ $\{8 A, 8 B, 8 C, 8 D, 10 A\}$.

Proof. For the triples $(2 A, 3 A, 8 A)$ and $(2 A, 3 A, 8 B)$ non-generation follows immediately since the structure constants $\Delta_{\mathrm{T}}(2 A, 3 A, 8 A)=0$ and $\Delta_{\mathrm{T}}(2 A, 3 A, 8 B)=0$.

The group T acts on 78 -dimensional irreducible complex module V. We apply Scott's theorem (cf. Theorem 1) to the module V and compute that

$$
\begin{aligned}
d_{2 A} & =\operatorname{dim}\left(V / C_{V}(2 A)\right)=32, \\
d_{3 A} & =\operatorname{dim}\left(C / C_{V}(3 A)\right)=54 \\
d_{8 C} & =\operatorname{dim}\left(V / C_{V}(8 C)\right)=68, \\
d_{8 D} & =\operatorname{dim}\left(V / C_{V}(8 D)\right)=68 \\
d_{10 A} & =\operatorname{dim}\left(V / C_{V}(10 A)\right)=68
\end{aligned}
$$

Now, if the group T is $(2 A, 3 A, t X)$-generated, where $t X \in\{8 C, 8 D, 10 A\}$, then by Scott's theorem we must have

$$
d_{2 A}+d_{3 A}+d_{t X} \geq 2 \times 78=156
$$

However, $d_{2 A}+d_{3 A}+d_{t X}=154$, and non-generation of the group T by these triples follows.

Lemma 4 The Tits simple group T is $(2 B, 3 A, 8 Z)$-generated, where $Z \in\{A, B, C, D\}$ if and only if $Z=A$ or B.

Proof. Our main proof will consider the following three cases.

Case $(2 B, 3 A, 8 Z)$, where $Z \in\{A, B\}$: We compute $\Delta_{T}(2 B, 3 A, 8 Z)=128$. Amongst the maximal subgroup of T , the only maximal subgroups having non-empty intersection with any conjugacy class in the triple $(2 B, 3 A, t Z)$ is isomorphic to $H \cong$ $2^{2} .\left[2^{8}\right]: S_{3}$. However $\Sigma_{H}(2 B, 3 A, 8 Z)=0$, which means that H is not ($2 B, 3 A, 8 Z$)-generated. Thus $\Delta_{\mathrm{T}}^{*}(2 B, 3 A, 8 Z)=\Delta_{T}(2 B, 3 A, 8 Z)=128>$ 0 , and the $(2 B, 3 A, 8 Z)$-generation of T, for $Z \in$ $\{A, B\}$, follows.

Case $(2 B, 3 A, 8 C)$: The only maximal subgroups of the group T that may contain $(2 B, 3 A, 8 C)$ generated subgroups, up to isomorphism, are $H_{1} \cong$ $L_{3}(3): 2$ (two non-conjugate copies) and $H_{2} \cong$ $2^{2} .\left[2^{8}\right]: S_{3}$. Further, a fixed element $z \in 8 C$ is contained in two conjugate subgroup of each copy of H_{1} and in a unique conjugate subgroup of H_{2}. A simple computation using $\mathbb{G A P}$ reveals that $\Delta_{T}(2 B, 3 A, 8 C)=112, \Sigma_{H_{1}}(2 B, 3 A, 8 C)=$ $\Sigma_{L_{3}(3)}(2 B, 3 A, 8 C)=20$ and $\Sigma_{H_{2}}(2 B, 3 A, 8 C)=$ 32. By considering the maximal subgroups of $H_{11} \cong$ $L_{3}(3)$ and H_{2}, we see that no maximal subgroup of H_{11} and H_{2} is (2B,3A,8C)-generated and hence no proper subgroup of H_{11} and H_{2} is $(2 B, 3 A, 8 C)$ generated. Thus,

$$
\begin{aligned}
\Delta_{\mathrm{T}}^{*}(2 B, 3 A, 8 C)= & \Delta_{\mathrm{T}}(2 B, 3 A, 8 C) \\
& -4 \Sigma_{H_{11}}^{*}(2 B, 3 A, 8 S) \\
& -\Sigma_{H_{2}}^{*}(2 B, 3 A, 8 C) \\
= & 112-4(20)-32=0 .
\end{aligned}
$$

Therefore, the Tits simple group T is not ($2 B, 3 A, 8 C$)-generated.

Case $(2 B, 3 A, 8 D)$ In this case, $\Delta_{\mathrm{T}}(2 B, 3 A, 8 D)=112$. We prove that Tits simple group T is not $(2 B, 3 A, 8 D)$-generated by constructing the $(2 B, 3 A, 8 D)$-generated subgroup of the group He explicitly. We use the "standard generators" of the group T given by Wilson in [21]. The group T has a 26 -dimensional irreducible representation over $\mathbb{G F}(2)$. Using this representation we generate the Tits group $\mathrm{T}=\langle a, b\rangle$, where a and b are 26×26 matrices over $\mathbb{G F}(2)$ with orders 2 and 3 respectively such that $a b$ has order 13. Using $\mathbb{G} \mathbb{A} \mathbb{P}$, we see that $a \in 2 A, b \in 3 A$. We produce $c=\left(a b a b a b^{2}\right)^{6}, p=a b a b a b a b^{2} a b a b^{2} a b^{2}$, $d=(a c p)^{6}, x=p^{16} d p^{-16}$ such that $c, d, x \in 2 B$, $p \in 10 A$ and $x b \in 8 D$. Let $H=\langle x, b\rangle$ then $H<\mathrm{T}$ with $H \cong L_{3}(3): 2$. Since no maximal subgroup of H is $(2 B, 3 A, 8 D)$-generated, that is no proper subgroup of H is $(2 B, 3 A, 8 D)$-generated and we have $\Sigma_{H}^{*}(2 B, 3 A, 8 D)=\Sigma_{H}(2 B, 3 A, 8 D)$. Since $\Sigma_{H}(2 B, 3 A, 8 D)=28$ and $z \in 8 D$ is contained in exactly two conjugate subgroups of each copy of H, we obtain that $\Delta_{\mathrm{T}}^{*}(2 B, 3 A, 8 D)=0$. Hence the Tits simple group T is not $(2 B, 3 A, 8 D)$-generated. This completes the lemma.

Lemma 5 The Tits group T is ($2 B, 3 A, 10 A$)-generated.

Proof. Up to isomorphism, the only maximal subgroups having non-empty intersection with any conjugacy class in the triple $(2 B, 3 A, 10 A)$ are isomorphic to $H \cong 2^{2} \cdot\left[2^{8}\right]: S_{3}, K \cong A_{6} \cdot 2^{2}$ (two nonconjugate copies). Since $\Delta_{T}(2 B, 3 A, 10 A)=100$ and $\Sigma_{H}(2 B, 3 A, 10 A)=0=\Sigma_{K}(2 B, 3 A, 10 A)$. we conclude that no maximal subgroup of T is $(2 B, 3 A, 10 A)$-generated. Thus

$$
\Delta_{\mathrm{T}}^{*}(2 B, 3 A, 10 A)=\Delta_{\mathrm{T}}(2 B, 3 A, 10 A)=100
$$

and the $(2 B, 3 A, 10 A)$-generation of Tits group T follows.

Lemma 6 The Tits group T is not $(2 X, 3 A, 12 Z)$-generated where $X, Z \in\{A, B\}$.

Proof. First we consider the case $X=A$. The maximal subgroups of the group T that may contain ($2 A, 3 A, 12 Z$)-generated subgroups are isomorphic to $H \cong 2^{2} \cdot\left[2^{8}\right]: S 3$ and $K \cong 5^{2}: 4 A_{4}$ (two non-conjugate copies). We compute that $\Delta_{T}(2 A, 3 A, 12 Z)=32, \Sigma_{H}(2 A, 3 A, 12 Z)=12$ and $\Sigma_{K}(2 A, 3 A, 12 Z)=15$. A fixed element of order 12 in T is contained in a unique conjugate subgroup of H and two conjugate subgroups of K.

Since no maximal subgroup of each H and K is $(2 A, 3 A, 12 Z)$-generated, we obtain

$$
\begin{aligned}
\Delta_{\mathrm{T}}^{*}(2 A, 3 A, 12 Z)= & \Delta_{\mathrm{T}}(2 A, 3 A, 12 Z) \\
& -\Sigma_{H}^{*}(2 A, 3 B, 12 Z) \\
& -4 \Sigma_{K}^{*}(2 A, 3 A, 12 Z) \\
= & 32-12-2(15)<0
\end{aligned}
$$

and the non-generation of the group Tits by the triple $(2 A, 3 A, 12 Z)$ follows.

Next, suppose That $X=B$. There are six maximal subgroups of the group T having non-empty intersection with each conjugacy class in the triple $(2 B, 3 A, 12 Z)$, are isomorphic to $H_{1}=L_{3}(3): 2$ (two non-conjugate copies), $H_{2} \cong L_{2}(25), H_{3} \cong$ $2^{2} .\left[2^{8}\right]: S_{3}$ and $H_{4}=5^{2}: 4 A_{4}$ (two non-conjugate copies). Further, a fixed element of order 12 in Tits group is contained in a unique conjugate subgroups of each of H_{1}, H_{2}, H_{3} and H_{4}. We calculate $\Delta_{\mathrm{T}}(2 B, 3 A, 12 Z)=84, \Sigma_{H_{1}}(2 B, 3 A, 12 Z)=27$, $\Sigma_{H_{2}}(2 B, 3 A, 12 Z)=24, \Sigma_{H_{3}}(2 B, 3 A, 12 Z)=12$ and $\Sigma_{H_{4}}(2 B, 3 A, 12 Z)=0$. Since no maximal subgroup of each of the groups H_{1}, H_{2}, H_{3} and H_{4} is $(2 B, 3 A, 12 Z)$-generated. We conclude that

$$
\begin{aligned}
\Delta_{\mathrm{T}}^{*}(2 B, 3 A, 12 Z)= & \Delta_{\mathrm{T}}(2 B, 3 A, 12 Z) \\
& -2 \Sigma_{H_{1}}^{*}(2 B, 3 A, 12 Z) \\
& -\Sigma_{H_{2}}^{*}(2 B, 3 A, 12 Z) \\
& -\Sigma_{H_{3}}^{*}(2 B, 3 A, 12 Z) \\
= & 84-2(27)-24-12<0 .
\end{aligned}
$$

Therefore Tits group T is not $(2 B, 3 A, 12 Z)$ generated. This completes the proof.

Lemma 7 The Tits group T is (2X,3A,13Z)generated where $X, Z \in\{A, B\}$ if and only if $X=A$

Proof. First we consider the case $X=A$. The structure constant $\Delta_{\mathrm{T}}(2 A, 3 A, 13 Z)=13$. The fusion maps of the maximal subgroup of Tits group T into the group T shows that there is no maximal subgroup of T has non-empty intersection with the classes in the triple $(2 A, 3 A, 13 Z)$. That is no maximal subgroup of T is $(2 A, 3 A, 13 Z)$-generated. Hence,

$$
\Delta_{\mathrm{T}}^{*}(2 A, 3 A, 13 Z)=\Delta_{\mathrm{T}}(2 A, 3 A, 13 Z)=13>0
$$

which implies that the Tits group T is $(2 A, 3 A, 13 Z)$ generated for $Z \in\{A, B\}$.

Next suppose that $X=B . \quad$ Up to isomorphism, the only maximal subgroups of T having non-empty intersection with each conjugacy class in the triple $(2 B, 3 A, 13 Z)$ are isomorphic to $L_{3}(3)$:2 (two non-conjugate copies) and $L_{2}(25)$.

Further a fixed element of order 13 in the Tits group T is contained in a unique conjugate of each of $L_{3}(3): 2$ and in three conjugate of $L_{2}(25)$ subgroups. We compute that $\Delta_{T}(2 B, 3 A, 13 Z)=104$, $\Sigma_{L_{3}(3): 2}(2 B, 3 A, 13 Z)=\Sigma_{L_{3}(3)}(2 B, 3 A, 13 A)=$ 13 and $\Sigma_{L_{2}(25)}(2 B, 3 A, 13 Z)=26$. Now by considering the maximal subgroups of $L_{3}(3)$ and $L_{2}(25)$, we see that no maximal subgroup of the groups $L_{3}(3)$ and $L_{2}(25)$ is $(2 B, 2 A, 13 Z)$-generated. It follows that no proper subgroup of $L_{3}(3)$ or $L_{2}(25)$ is $(2 B, 3 A, 13 Z)$-generated. Thus we have

$$
\begin{aligned}
\Delta_{\mathrm{T}}^{*}(2 B, 3 A, 13 Z)= & \Delta_{\mathrm{T}}(2 B, 3 A, 13 Z) \\
& -2 \Sigma_{L_{3}(3)}^{*}(2 B, 3 A, 13 Z) \\
& -3 \Sigma_{L_{2}(25)}^{*}(2 B, 3 A, 13 Z) \\
= & 104-2(13)-3(26)-12=0,
\end{aligned}
$$

proving non-generation of the Tits group T by the triple $(2 B, 3 A, 13 Z)$, where $Z \in\{A, B\}$.

Lemma 8 The Tits group T is ($2 X, 3 A, 16 Z$)generated, where $X \in\{A, B\}$ and $Z \in$ $\{A, B, C, D\}$.

Proof. We treat two cases separately.
Case $(2 A, 3 A, 16 Z)$: The structure constant $\Delta_{\mathrm{T}}(2 A, 3 A, 16 Z)=16$. We observe that the group isomorphic to $2^{2} \cdot\left[2^{8}\right]: S_{3}$ is the only maximal subgroup of T that may contain $(2 A, 3 A, 16 Z)$ generated subgroups. However we calculate $\Sigma_{H}(2 A, 3 A, 16 Z)=0$ for $H \cong 2^{2} .\left[2^{8}\right]: S_{3}$ and hence $\Delta_{T}^{*}(2 A, 3 A, 16 Z)=\Delta_{T}(2 A, 3 A, 16 Z)=16>0$, proving that $(2 A, 3 A, 16 Z)$ is a generating triple of the Tits group.

Case (2B,3A,16Z): Up to isomorphism, $H \cong$ $2^{2} \cdot\left[2^{8}\right]: S_{3}$ is the only one maximal subgroup of T that may admit $(2 B, 3 A, 16 Z)$-generated subgroups. A fixed element of order 16 in the Tits group T is contained in a unique conjugate subgroups of H. Since $\Delta_{T}(2 B, 3 A, 16 Z)=112, \Sigma_{H}(2 B, 3 A, 16 Z)=32$, we conclude that

$$
\Delta_{\mathrm{T}}^{*}(2 B, 3 A, 16 Z) \geq 112-32=80>0
$$

and the $(2 B, 3 A, 16 Z)$-generation of T follows.

4 Conclusion

Let $t X$ be a conjugacy class of the Tits simple group T . Then Tits simple group T is
(i) $(2 A, 3 A, t X)$-generated if and only if $t X \in$ $\{13 Y, 16 Z\}$ where $Y \in\{A, B\}$ and $Z \in$ $\{A, B, C, D\}$,
(ii) $(2 B, 3 A, t X)$-generated if and only if $t X \in$ $\{8 Y, 10 A, 16 Z\}$.

Acknowledgements: This research was supported by the King Khalid University, Saudi Arabia under research grant No. 244-44.

References.

[1] F. Ali, $(2,3, p)$-Generations for the Fischer Group $F i_{23}$, submitted.
[2] F. Ali and M. A. F. Ibrahim, On the ranks of Conway groups Co_{2} and Co_{3}, J. Algebra Appl., 4, 2005, pp. 557-565.
[3] F. Ali and M. A. F. Ibrahim, On the ranks of Conway group C_{o}, Proc. Japan Acad., 81A, 2005, pp. 95-98.
[4] F. Ali and M. A. F. Ibrahim, On the ranks of $H S$ and $M c L$, Utilitas Mathematica, to appear in Volume 70, July 2006.
[5] F. Ali and M. A. F. Ibrahim, ($2,3, t$)-Generations for the Held's sporadic group He, submitted.
[6] M. D. E. Conder, Hurwitz groups: A brief survey, Bull. Amer. Math. Soc., 23, 1990, pp. 359370.
[7] M. D. E. Conder, Some results on quotients of triangle groups, Bull. Australian Math. Soc., 30, 1984, pp. 73-90.
[8] M. D. E. Conder, R. A. Wilson and A. J. Woldar, The symmetric genus of sporadic groups, Proc. Amer. Math. Soc., 116, 1992, pp. 653-663.
[9] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, $\mathbb{A T L} \mathbb{A}$ s of Finite Groups, Oxford Univ. Press (Clarendon), Oxford, 1985.
[10] L. Di Martino and C. Tamburini, 2-Generation of finite simple groups and some related topics, Generators ans Relations in Groups and Geometry, A. Barlotti et al., Kluwer Acad. Publ., New York (1991), pp. 195-233.
[11] S. Ganief and J. Moori, $(2,3, t)$-Generations for the Janko group J_{3}, Comm. Algebra, 23, 1995, pp. 4427-4437.
[12] M. A. F. Ibrahim, On the ranks of certain sporadic simple groups by Suzuki, Thompson and Rudvalis, Algebras, Groups and Geometries, to appear.
[13] M. A. F. Ibrahim, On the ranks of Harada-Norton sporadic group HN, Int. Math. J., to appear.
[14] I. M. Isaacs, Character Theory of Finite Groups, Dover, New-York, 1976.
[15] J. Moori, $(2,3, p)$-Generations for the Fischer group F_{22}, Comm. Algebra, 22, 1994, pp. 45974610.
[16] J. Moori, On the ranks of the Fischer group F_{22}, Math. Japonica, 43, 1996, pp. 365-367.
[17] The GAP Group, $\mathbb{G A P}$-Groups, Algorithms and Programming, Version 4.3 , Aachen, St Andrews, 2002, (http://www.gap-system.org).
[18] L. L. Scott, Matrices and Cohomology, Ann. of Math. , 105, 1977, pp. 473-492.
[19] K. B. Tchakerian, The maximal subgroups of the Tits simple group, C. R. Acad. Bulgare Sci., 34, 1981, pp. 16-37.
[20] R. A. Wilson, The geometry and maximal subgroups of the simple groups of A. Rudvalis and J. Tits, Proc. London Math. Soc., 48, 1984, pp. 553-563.
[21] R. A. Wilson et al., A world-wideweb Atlas of Group Representations, (http://web.mat.bham.ac.uk/atlas).
[22] A. J. Woldar, On Hurwitz generation and genus actions of sporadic groups, Illinois Math. J., 33, 1989, pp. 416-437.
[23] A. J. Woldar, Sporadic simple groups which are Hurwitz, J. Algebra, 144, 1991, pp. 443-450.
[24] A. J. Woldar, Representing M_{11}, M_{12}, M_{22} and M_{23} on surfaces of least genus, Comm. Algebra, 18, 1990, pp. 15-86.

