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Abstract: A group G is said to be(2, 3, t)-generated if it can be generated by two elemengndy such that
o(x) = 2, o(y) = 3ando(zy) = t. In this paper, we determin@, 3, ¢t)-generations for the Tits simple group

T = 2, (2) wheret is divisor of |T|. Most of the computations were carried out with the aid of computer algebra
systemGAP [17].

Key—WordsTits group? F;(2)’, simple group(2, 3, t)-generation, generator.
1 Introduction was first determined by Tchakerian [19]. Later but

_ - independently, Wilson [20] also determined the max-
AgroupGis called(2, 3, t)-generated ifitcan be gen-  imal subgroups of the simple group T, while studying

erated by an involution and an elemenj of order3 the geometry of the simple groups of Tits and Rud-
such thato(xy) = t. The(2,3)-generation problem valis.
has attracted a vide attention of group theorists. One For basic properties of the Tits group T and infor-

reason is thaf2, 3)-generated groups are homomor-  mation on its subgroups the reader is referred to [20],
phic images of the modular groupSL(2, Z), which [19]. The ATLAS of Finite Groups [9] is an impor-
is the free product of two cyclic groups of order two  tant reference and we adopt its notation for subgroups,

and three. The motivation ¢2, 3)-generation of sim-  conjugacy classes, etc. Computations were carried out
ple groups also came from the calculation of the genus with the aid of GAP [17].
of finite simple groups [22]. The problem of finding
the genus of finite simple group can be reduced to one o
of generations (see [24] for details). 2 Preliminary Results

Mooriin [15] determined th€2, 3, p)-generations . . .
of the Sma”LSt]FiSChef grouﬁi_ Irjlj)[fl], Ganief Throughout this paper our notation is standard
and Moori establishe®, 3, t)-generations of the third and taken mamly'from [11, [2]’. [.3]’ [41. 5], [15]
Janko groupJs. In a series of papers [1], [2], [3]. and [11]. In partlgular, for a finite grpup; with
[4], [5], [12] and [13], the authors studied, 3)- le?wwf_ck onlugacy tct'?sse%‘)f its g'emf”ts
generation and generation by conjugate elements of Zn ng _a A'XGC regreseng 'V?ho ke vge ?ng. N
the sporadic simple grougso;, Coy, Cos, He, HN, i (t>t _I c(C1, Oy, ) .tﬁ n.um ecry'o 'ﬁ'
Suz, Ru, HS, McL, Th and Fis3. The present arti- inct tuples (g1, 92, ..., gx-1) With g; € C; suc

cle is devoted to the study ¢2, 3, t)-generations for tAhat g}gg : 'g’f—lc = g,["f‘ tlt 'S weltl kpfow?h that
the Tits simple group T, wheris any divisor of|T|. Ag(C1, Oy, ..., Cy) is structure constant for the con-
jugacy classe€’1, Cs, . .., Cy, and can easily be com-

For more information regarding the study (@f 3, ¢)-
generations, generation by conjugate elements as well EUtEt’g fr?n|1| th? ch?racteir tAeth%Gfésee [12’ p45_)
as computational techniques used in this article, the y the following formula Ag(C1, C, ... Cr) =

reader is referred to [1], [2], [3], [4], [5], [11], [15], ~[lCal oy xlahuiao e alon)

[16] and [22]. where  x1,x2,...,xm are the irreducible
The Tits group T= 2F,(2)’" is a simple group complex characters of G. Further, let
of order17971200 = 2'1.33.52.13. The group T is A*(G) = AL(C1,C,...,C) denote the num-
a subgroup of the Rudvalis sporadic simple group Ru ber of distinct tuples (g1,92,...,9x—1) With
of index8120. The group T also sits maximally inside ¢; € C; andgigo...g9x-1 = gr Such thatG =<
the smallest Fischer groupis, with index3592512. 91,92, gk—1 >. I AL(C1,Cy,...,Ck) > 0,

The maximal subgroups of the Tits simple group T then we say thatG is (Cy,Cs,...,Ck)-generated.



If H is any subgroup ofy containing the fixed ele-

ment g, € Cy, then ZH(Cl,Cg,...,Ck_l,Ck)
denotes the number of distinct tuples
(gl,gg,...,gkfl) S (Cl X Cy X ... X C]gfl) such
thatgigs ... gk—1 = gx and(g1,92,...,95-1) < H

whereX g (C1,Cy, ..., Cy) is obtained by summing
the structure constantsy (¢, co, ..., c,) of H over
all H-conjugacy classesy,co,...,c,_1 Satisfying
¢ CHNC;forl <i<k-—1.

For the description of the conjugacy classes, the
character tables, permutation characters and informa-
tion on the maximal subgroups readers are referred to
ATLAS [9]. A general conjugacy class of elements
of ordern in G is denoted byn X. For example2 A
represents the first conjugacy class of involutions in a
groupG.

The following results in certain situations are very
effective at establishing non-generations.

Theorem 1 (Scott's Theorem, [8] and [18]) Let
x1,T9,. . ., Ty e elements generating a groGpwith
r1T9- Xy, = lg, andV be an irreducible module for
G of dimensiomn > 2. LetCy (z;) denote the fixed
point space ofz;) onV/, and letd; is the codimension
of V/Cy(x;). Thendy +do + -+ + dyy > 2n..

Lemma2 ([8]) Let G be a finite centerless
group and supposéX, mY, nZ are G-conjugacy
classes for whichA*(G) = AL(X,mY,nZ) <
|Ca(2)],2 € nZ. ThenA*(G) = 0 and therefore
G is not(IX,mY,nZ)-generated.

3

The Tits group T= 2F4(2)" has8 conjugacy classes
of its maximal subgroups as determined by Wilson
[20] and listed in theATLLAS [9]. The group T has
22 conjugacy classes of its elements includhigvo-
lutions namely2A and2B.

In this section we investigail@, 3, t)-generations
for the Tits group T where is a divisor of|T|. Itis a
well known fact that if a groug- is (2, 3, t)-generated
simple group, thed /2 + 1/3 + 1/t < 1 (see [7] for
details). It follows that for th€2, 3, ¢)-generations of
the Tits simple group T, we only need to consider
{8,10,12,13,16}.

(2,3, t)-Generations of Titsgroup

is not
€

Lemma3 The Tits simple group T
(24,3A,tX)-generated for any tX
{84,8B,8C,8D,10A}.

Proof. For the tripleg2A,3A,8A4) and(24,3A,8B)
non-generation follows immediately since the
structure constantsAr(2A4,3A,8A) 0 and
AT(2A4,3A,8B) = 0.
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The group T acts ori8-dimensional irreducible
complex moduleV. We apply Scott’s theorem (cf.
Theorem 1) to the modulg and compute that

daa dim(V/Cy(24)) = 32,
dsa = dim(C/Cy(34)) = 54
dsc = dim(V/Cy(8C)) = 68,
dsp = dim(V/Cy(8D)) =68
d10,4 dlm(V/Cv(IOA)) =68

Now, if the group TiS(2A4, 34, t X )-generated, where
tX € {8C,8D,10A}, then by Scott’'s theorem we
must have

dog +dsa +dix > 2 x 78 = 156.

However,d, 4 +dsa+d;x = 154, and non-generation
of the group T by these triples follows. O
Lemma4 The Tits simple group T is
(2B,3A,87)—generated, whereZ € {A, B,C, D}
ifandonly ifZ = A or B.

Proof. Our main proof will consider the following
three cases.

Case (2B,3A,8Z7), whereZ € {A,B}: We
computeAr(2B,3A,87) = 128. Amongst the max-
imal subgroup of T, the only maximal subgroups hav-
ing non-empty intersection with any conjugacy class
in the triple (2B,3A,tZ) is isomorphic toH =
22.[28]:S3. HoweverXy(2B,3A4,8Z) = 0, which
means that{ is not (2B,3A,87)-generated. Thus
A%(2B,3A,8%) Ar(2B,3A,8Z) = 128 >
0, and the(2B,3A,8Z%)-generation of T, forZ €
{4, B}, follows.

Case (2B,3A,8C): The only maximal sub-
groups of the group T that may contdiB, 34, 8C)-
generated subgroups, up to isomorphism, ez
L3(3):2 (two non-conjugate copies) andl,
22.[28]:S3.  Further, a fixed element € 8C
is contained in two conjugate subgroup of each
copy of H; and in a unigue conjugate subgroup
of Hy. A simple computation using-AP reveals
that A7(2B,3A4,8C) = 112, ¥, (2B,34,8C) =
S14(3)(2B,34,8C) = 20 andXp,(2B,34,8C) =
32. By considering the maximal subgroupsiéf, =
L3(3) and Hz, we see that no maximal subgroup of
Hy, and H, is (2B,3A,8C)-generated and hence no
proper subgroup off;; and Hs is (2B,3A4,8C)-
generated. Thus,

A%(2B,34,8C) AT(2B,34,8C)
—4%% (2B, 34,85)
—%%, (2B, 34,8C)

112 — 4(20) — 32 = 0.



Therefore, the Tits simple group T is not
(2B,3A4,8C)-generated.
Case (2B,3A,8D): In this case,

At(2B,3A,8D) = 112. We prove that Tits
simple group T is not(2B,3A,8D)-generated by
constructing the(2B,3A,8D)-generated subgroup
of the group He explicitly. We use the "standard
generators” of the group T given by Wilson in
[21]. The group T has a6-dimensional irreducible
representation oveg[F(2). Using this representation
we generate the Tits group & (a,b), wherea
andb are26 x 26 matrices overGF(2) with orders
2 and 3 respectively such thatb has order13.
Using GAP, we see thatt € 24, b € 3A. We
producec = (ababab?)%, p = abababab®abab?ab?,

d = (acp)®, z = p'%dp~'6 such thate,d, z € 2B,

p € 10A andxb € 8D. LetH = (z,b) thenH < T
with H = L3(3):2. Since no maximal subgroup
of H is (2B,3A,8D)-generated, that is no proper
subgroup ofH is (2B,3A,8D)-generated and we
have¥3,(2B,3A4,8D) = Yy (2B,3A,8D). Since
Yy (2B,3A,8D) = 28 andz € 8D is contained in
exactly two conjugate subgroups of each copyHof
we obtain thatA}(258,3A4,8D) = 0. Hence the Tits
simple group T is not2B,3A,8D)-generated. This
completes the lemma. O

Lemma5 The Tits
(2B,3A,10A)—generated.

group T is

Proof. Up to isomorphism, the only maximal sub-
groups having non-empty intersection with any con-
jugacy class in the triplé2B,3A,10A) are isomor-
phic to H =~ 22[2%]:95, K = Ag-2%(two non-
conjugate copies). SincAr(2B,3A4,10A4) = 100
and ¥y (2B,34,104) = 0 = Yk (2B,3A,10A).
we conclude that no maximal subgroup of T is
(2B,3A,10A)-generated. Thus

A%(2B,3A4,104) = A7(2B,34,104) = 100
and the(2B, 3A, 10A)-generation of Tits group T fol-

lows. O
Lemma6 The Tits group T is not
(2X,3A,12Z)—generated wher, Z € { A, B}.
Proof. First we consider the cas& = A.

The maximal subgroups of the group T that may
contain (24, 3A,127)-generated subgroups are iso-
morphic to H = 22.[28]:S3 and K = 5%:4A4,
(two non-conjugate copies). We compute that
A7(24,3A,127) = 32, g(24,3A,127) = 12
and X (24,3A,127Z) = 15. A fixed element of
order 12 in T is contained in a unique conjugate
subgroup ofH and two conjugate subgroups éf.
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Since no maximal subgroup of eadii and K is
(2A,3A,127)-generated, we obtain
A%(24,3A,127) = A7(24,34,122)
—¥%(24A,3B,127)
—4%%(24,3A,127)
= 32-12-2(15) <0

and the non-generation of the group Tits by the triple
(2A,3A,1227) follows.

Next, suppose Tha = B. There are six
maximal subgroups of the group T having non-empty
intersection with each conjugacy class in the triple
(2B,3A,12Z), are isomorphic toH; = L3(3):2
(two non-conjugate copiesyls = Ly(25), Hz =
22.[2%]:93 and H; = 5%4A4 (two non-conjugate
copies). Further, a fixed element of ordé&2 in
Tits group is contained in a unigue conjugate sub-
groups of each ofi|, H,, H3 and H,. We calculate
AT(2B,3A,127) = 84, ¥, (2B,3A,127) = 27,
Y, (2B,3A,12Z) = 24, ¥y, (2B,3A,127) = 12
andXy, (2B,3A,12Z) = 0. Since no maximal sub-
group of each of the groupd,, Hy, H3 and Hy is
(2B,3A,12Z)-generated. We conclude that
A%(2B,3A,12Z) = A71(2B,34,12%)

—25%; (2B, 3A,127)
~¥},(2B,34,122)
—¥%3,(2B,34,122)

= 84-2(27)—24—-12<0.

Therefore Tits group T is not(2B,3A4,1272)-
generated. This completes the proof. O

Lemma?7 The Tits group T is(2X,3A4,13%7)-
generated wher&(, Z € {A, B} ifand only ifX = A

Proof. First we consider the cas€ = A. The struc-
ture constantAr(2A4,3A4,137Z) = 13. The fusion
maps of the maximal subgroup of Tits group T into
the group T shows that there is no maximal subgroup
of T has non-empty intersection with the classes in the
triple (24, 3A,137). That is no maximal subgroup of
Tis (24,3A,13Z)-generated. Hence,

A3(24,3A,13Z) = A7(24,3A4,13Z) = 13 > 0

which implies that the Tits group'is (24,34, 137)-
generated fo¥ € {4, B}.

Next suppose thatX = B. Up to iso-
morphism, the only maximal subgroups of T hav-
ing non-empty intersection with each conjugacy
class in the triple(2B,3A,13Z) are isomorphic
to L3(3):2 (two non-conjugate copies) anih,(25).
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Further a fixed element of ordet3 in the Tits
group T is contained in a unique conjugate of each
of L3(3):2 and in three conjugate of2(25) sub-
groups. We compute that(2B,34,137) = 104,
Yr14(3)2(2B,3A,13Z) = 1,3 (2B,34,134) =

13 and X, (25)(2B,3A,13Z) = 26. Now by con-
sidering the maximal subgroups b§(3) and L, (25),

we see that no maximal subgroup of the groups
L3(3) andL2(25) is (2B, 24, 13Z)-generated. It fol-
lows that no proper subgroup @f3(3) or L2(25) is
(2B,3A4,13Z)-generated. Thus we have

A%(2B,3A,137) = A1(2B,3A,132)

~2%} 5 (2B,34,137)
—3%} (25 (2B,34,132)
= 104 —2(13) — 3(26) — 12 = 0,

proving non-generation of the Tits group T by the
triple (2B,3A4,13%), whereZ € {A, B}. O

Lemma8 The Tits group T is(2X,34,162)-
generated, whereX ¢ {A4,B} and Z ¢
{A,B,C,D}.

Proof. We treat two cases separately.

Case (2A,3A,16Z) The structure constant
AT(2A,3A,16Z) = 16. We observe that the
group isomorphic t@2.[2%]:53 is the only maximal
subgroup of T that may contaii24,3A4,162)-
generated subgroups. However we calculate
Y (24,34,162) = 0 for H = 22.[28]:S3 and hence
AN(24,3A4,162) = Ar(24,3A,16Z) = 16 > 0,
proving that(2A4,3A,16%) is a generating triple of
the Tits group.

Case (2B,3A,16Z)Up to isomorphism,H =
22.[28]: 93 is the only one maximal subgroup of T that
may admit(2B,3A,167)-generated subgroups. A
fixed element of ordet6 in the Tits group T is con-
tained in a unique conjugate subgroupskbf Since
Ar(2B,3A,16Z) = 112, (2B,3A,16Z) = 32,
we conclude that

A%(2B,3A,16Z) > 112 — 32 =80 > 0
and the(2B, 34, 16Z)-generation of T follows. 0O

4 Conclusion

LettX be a conjugacy class of the Tits simple group
T. Then Tits simple group T is

() (2A4,3A,tX)-generated if and only itX €
{13Y,16Z} whereY € {A,B} and Z ¢
{A,B,C,D},

(i) (2B,3A,tX)-generated if and only itX €
{8Y,104,167}.
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