On a convergence result for sequences of functions with multiple scales

ANDERS HOLMBOM, JEANETTE SILFVER Department of Engineering, Physics and Mathematics Mid Sweden University S-83125 Östersund SWEDEN http://www.miun.se

Abstract: We introduce a version of two-scale convergence that deals with certain non-periodic cases still preserving some of the key properties of two-scale convergence. Examples different from those in traditional periodic two-scale convergence are demonstrated and the relationship with other generalizations of two-scale convergence is discussed.

Key-Words: Two-scale convergence, scale convergence, non-periodic oscillations.

1 Introduction

The two-scale convergence method ([1], [2], [9], [11], [12]) is the most efficient approach of today for periodic homogenization ([3], [4], [5], [8]) of partial differential equations and hence a powerful tool for the study of periodically arranged heterogeneous media. We show how the main compactness result for periodic two-scale convergence can be extended to certain non-periodic situations preserving the most essential properties of the traditional periodic case.

Notation 1 Let $F(\mathbb{R}^N)$ be some space of real valued function defined on \mathbb{R}^N . Then $F_{\#}(Y)$ contains all functions in $F_{loc}(\mathbb{R}^N)$ that are periodic with respect to $Y = (0,1)^N$. The space of functions in $F_{\#}(Y)$ with integral mean value zero over Y is denoted $F_{\#}(Y)/R$.

2 Two-scale convergence

We define two-scale convergence in line with the definition in [9].

Definition 2 A sequence $\{u^h\}$ in $L^2(\Omega)$ is said to two-scale converge to the limit $u_0 \in L^2(\Omega \times Y)$, where $Y = (0,1)^N$ is the unit cube in \mathbb{R}^N and $\Omega \subset \mathbb{R}^N$ is an open bounded set, if $\lim_{h \to \infty} \int_{\Omega} u^h(x)v(x,hx)dx = \int_{\Omega} \int_Y u_0(x,y)v(x,y)dydx$

with the same u_0 for any $v \in X = L^2(\Omega; C_{\#}(Y))$.

The following proposition associates two-scale limits with the usual weak limits.

Proposition 3 If $\{u^h\}$ two-scale converges to u_0

and
$$v \in L^{2}(\Omega, C_{\#}(Y))$$
, then
 $u^{h} \to \int_{Y} u_{0}(x, y) dy$ weakly in $L^{2}(\Omega)$

and

 $v(x,hx) \rightarrow \int_{Y} v(x,y) dy$ weakly in $L^2(\Omega)$.

The compactness result below is the most essential feature of two-scale convergence.

Theorem 4 Any bounded sequence in $L^2(\Omega)$ possesses a subsequence that two-scale converges. **Proof** See [9].

3 Generalizations of two-scale convergence

If we introduce suitable sequences of maps τ^{h} it is possible to generalize two-scale convergence beyond the periodic setting.

Definition 5 Let $\Omega, A \subset \mathbb{R}^N$ be open, bounded sets, $X \subset L^2(\Omega \times A)$ a linear space and $\tau^h : X \to L^2(\Omega)$ linear maps. We say that $\{u^h\}$ two-scale con-

linear maps. We say that $\{u^n\}$ two-scale converges to u_0 with respect to $\{\tau^h\}$ if $\lim_{h\to\infty}\int_{\Omega} u^h(x)\tau^h v(x)dx = \int_{\Omega}\int_A u_0(x,y)v(x,y)dydx$ for all $v \in X$. To establish a compactness result corresponding to Theorem 4 we introduce two conditions on $\{\tau^h\}$.

Definition 6 We say that a sequence of operators $\tau^h : X \to L^2(\Omega)$ is two-scale compatible with respect to $X \subset L^2(\Omega \times A)$ if there is a constant C > 0 such that

and

$$\left\|\tau^{h}v\right\|_{L^{2}(\Omega)} \leq C\left\|v\right\|_{X}.$$

 $\lim_{h \to \infty} \left\| \tau^h v \right\|_{L^2(\Omega)} \le C \left\| v \right\|_{L^2(\Omega \times A)}$

We obtain the following compactness result.

Theorem 7 Let $\{u^h\}$ be a bounded sequence in $L^2(\Omega)$ and assume that $\{\tau^h\}$ is two-scale compatible with respect to a separable Banach space X that is a dense subset of $L^2(\Omega \times A)$. Then there exists a subsequence such that for some $u_0 \in L^2(\Omega \times A)$ $\lim_{h \to \infty} \int_{\Omega} u^h(x) \tau^h v(x) dx = \int_{\Omega} \int_A u_0(x, y) v(x, y) dy dx$

for all $v \in X$. **Proof** See [6] and [7].

No connection with traditional week limits is contained in our definitions and results this far. Below we introduce such conditions inspired by the properties of periodic two-scale convergence found in Proposition 3.

Definition 8 Let $\{u^h\}$ be any bounded sequence in $L^2(\Omega)$ that two-scale converges to u_0 with respect to a sequence $\{\tau^h\}$ that is two-scale compatible with respect to $X \subset L^2(\Omega \times A)$. We say that $\{\tau^h\}$ is strongly two-scale compatible if

 $u^{h} \rightarrow \int_{A} u_{0}(x, y) dy$ weakly in $L^{2}(\Omega)$

and

 $\tau^h v \to \int_A v(x, y) dy$ weakly in $L^2(\Omega)$ for any $v \in X$. The generalization below is found in [10] and means that $\{hx\}$ is replaced by a fairly arbitrary sequence $\{\alpha^{h}(x)\}$ of functions defined on Ω . **Definition 9** Let Ω be an open bounded subset of R^{N} and A a metrizable compact space, μ a Young measure and $L^{2}_{\mu}(\Omega \times A)$ the space of all μ -measurable functions with μ -integrable square. Further assume that we have a sequence of measurable functions

$$\alpha^h : \Omega \to A.$$

We say that a sequence $\{u^h\} \alpha^h$ -converges to $u_0 \in L^2_\mu(\Omega \times A)$ if $\lim_{h \to \infty} \int_\Omega u^h(x)v(x, \alpha^h(x))dx =$ $\int_\Omega \int_A u_0(x, y)v(x, y)d\mu(x, y)$

for all
$$v \in L^2(\Omega; C(A))$$
.

The kind of operators τ^{h} corresponding to the case introduced above are not in general two-scale compatible and hence the measure μ is not necesarily the Lebesgue measure.

Theorem 10 Let $\{u^h\}$ be a bounded sequence in $L^2(\Omega)$. Then there exists a subsequence and an α^h -limit $u_0 \in L^2_\mu(\Omega \times A)$ such that this subsequence α^h -converges to u_0 for some Young measure μ . **Proof** See [10].

The main contribution of this paper is to identify conditions sufficient to achieve a kind of scale convergence based on choices of $\{\alpha^h\}$ and X making the corresponding sequence $\{\tau^h\}$ strongly two-scale compatible.

Definition 11 A sequence $\{u^h\}$ in $L^2(\Omega)$ is said to (α^h, λ) -scale converge to $u_0 \in L^2(\Omega \times Y)$, where $Y = (0,1)^N$ is the unit cube in \mathbb{R}^N and $\Omega \subset \mathbb{R}^N_+$ is an open bounded set, if $\lim_{h\to\infty} \int_{\Omega} u^h(x)v(x, \alpha^h(x))dx = \int_{\Omega} \int_Y u_0(x, y)v(x, y)dydx$ with the same u_0 for any $v \in X = L^2(\Omega; C_{\#}(Y))$. To obtain strong two-scale compatibility we introduce sequences of functions $\{\alpha^h\}$ and a space X with suitable characteristics. Let

$$\alpha^h : \mathbb{R}^N_+ \to \mathbb{R}^N_+$$

be a continuous bijection and $\{Y^j\}_{j=1}^{\infty}$ a covering of \mathbb{R}^N_+ by unit cubes and $\{Y_k^j\}_{k=1}^{n^N}$ a covering of Y^j with cubes of sidelength n^{-1} , and define

$$\Omega_j^h = (\alpha^h)^{-1}(Y^j) \cap \Omega.$$

Hence, for some q(h)

 $\Omega = \bigcup_{j=1}^{q(h)} \Omega_j^h,$

and in a similar way we introduce

$$\Omega_{j,k}^{h} = (\alpha^{h})^{-1}(Y_{k}^{j}) \cap \Omega$$

where Y_k^j are *Y*-periodic repetitions of Y_k . Finally, we assume that $\Omega_j^h \subset N_{r(h)}(x^{h,j})$, where $N_{r(h)}(x^{h,j})$ is a ball centered at $x^{h,j} \in \Omega_j^h$ with radius $r(h) \to 0$ for $h \to \infty$.

Definition 12 We say that $\{\alpha^h\}$ is asymptotically uniformly distributed if

 $\lambda((\alpha^{h})^{-1}(Y_{k}^{j})) / \lambda((\alpha^{h})^{-1}(Y^{j})) - \lambda(Y_{k}) \to 0$ for any open set $Y_{k} \subset Y$ when $h \to \infty$.

Remark 13 The definition can be extended to averaging over clusters of cells Y^{j} . For the sake of briefness and lucidity of this paper we use the more transparent definition above.

This definition enables us to prove the following crucial lemma. χ_{Y_k} is the characteristic function for $\bigcup_{i=1}^{\infty} Y_k^j$.

Lemma 14 Assume that $\{\alpha^h\}$ is asymptotically uniformly distributed. Then

$$\chi_{Y_k}(\alpha^h(x)) \to \lambda(Y_k)$$
 weakly in $L^2(\Omega)$

Proof We have assumed that

$$\left|\lambda((\alpha^{h})^{-1}(Y_{k}^{j}))/\lambda((\alpha^{h})^{-1}(Y^{j})) - \lambda(Y_{k})\right| < \varepsilon_{h}$$

and hence

$$\left|\lambda((\alpha^{h})^{-1}(Y_{k}^{j})) - \lambda(Y_{k})\lambda((\alpha^{h})^{-1}(Y^{j}))\right| < \varepsilon_{h}\lambda((\alpha^{h})^{-1}(Y^{j})).$$

We obtain

$$\int_{\Omega} \chi_{Y_k} (\alpha^h(x)) v(x) dx =$$

$$\sum_{j=1}^{q(h)} \int_{\Omega_j^h} \chi_{Y_k} (\alpha^h(x)) v(x) dx =$$

$$\sum_{j=1}^{q(h)} \int_{\Omega_{j,k}^h} v(x) dx = \sum_{j=1}^{q(h)} \lambda(\Omega_{j,k}^h) v(x^{h,j}),$$
where $x^{h,j} \in \Omega_{j,k}^h$. Obviously

$$\underbrace{\textcircled{}}_{j=1}^{q \mathbf{a} \mathbf{v}} \mathscr{H}_{j,k}^{h} \biguplus \mathfrak{G}^{h,j} \biguplus \mathscr{H}_{k}^{h} \biguplus \mathfrak{G}^{h,j} \biguplus \mathscr{H}_{j}^{h} \biguplus \mathfrak{G}^{h,j} \biguplus \\ \left| \sum_{i=1}^{q(h)} \varepsilon_{h} \lambda(\Omega_{j}^{h}) v(x^{h,j}) \right| \to 0$$

and thus

for all $v \in D(\Omega)$ and hence for all $v \in L^2(\Omega)$. We have proven that

$$\chi_{Y_k}(\alpha^h(x)) \to \lambda(Y_k)$$
 weakly in $L^2(\Omega)$

holds true.∎

We are now ready to prove that we have found sufficient conditions on $\{\alpha^h\}$ to make scale convergence strongly two-scale compatible for an appropriate choice of the admissible space *X*.

Proposition 15 Let $v \in L^2(\Omega; C_{\#}(Y))$ and assume that $\{\alpha^h\}$ is a sequence of functions that are asymptotically uniformly distributed. Then

$$v(x, \alpha^{h}(x)) \rightarrow \int_{Y} v(x, y) dy$$
 weakly in $L^{2}(\Omega)$

and

$$u^{h} \rightarrow \int_{Y} u_{0}(x, y) dy$$
 weakly in $L^{2}(\Omega)$.

Further,

$$\left\|v(x,\alpha^{h}(x))\right\|_{L^{2}(\Omega)} \to \left\|v\right\|_{L^{2}(\Omega \times Y)}$$

and

$$\Box, \mathfrak{O}, \mathfrak{O} \mathfrak{Q} \mathfrak{Q} \mathfrak{Q}_{L^2 \mathfrak{W} \mathfrak{O}} \diamond \Box, \Box_{L^2 \mathfrak{W}, C_{\mathfrak{M}} \mathfrak{W}}$$

This means that $\{\tau^h\}$ is strongly two-scale compatible.

Proof Let M_{x_k} be the characteristic function for $\bigcup_{j=1}^{\infty} Y_k^j$ and define

$$v_n(x,y) = \sum_{k=1}^{n^N} v(x,y_k) \chi_{Y_k}(y)$$

If $\{\alpha^h\}$ is asymptotically uniformly distributed it holds for any fixed $y_k \in Y_k$ that

$$\int_{\Omega} v(x, y_k) \chi_{Y_k}(\alpha^h(x)) dx \to \int_{\Omega} v(x, y_k) \lambda(Y_k) dx$$

Summing over k we obtain

$$\int_{\Omega} v_n(x, \alpha^h(x)) dx \to \int_{\Omega} \int_Y v_n(x, y) dy dx.$$

The rest of the proof follows exactly along the lines of the second half of the proof of Lemma 2 in [1] if we replace $\{hx\}$ with $\{\alpha^h(x)\}$.

In the same way as in usual two-scale convergence the second scale vanishes in the limit if the sequence $\{u^h\}$ is strongly convergent.

Corollary 16 Let $\{u^h\}$ be a strongly convergent sequence in $L^2(\Omega)$ with limit u and assume that $\{\alpha^h\}$ is asymptotically uniformly distributed. Then, up to a subsequence and for all $v \in L^2(\Omega; C_{\#}(Y)),$

$$\lim_{h \to \infty} \int_{\Omega} u^{h}(x) v(x, \alpha^{h}(x)) dx =$$
$$\int_{\Omega} \int_{Y} u(x) v(x, y) dy dx$$

Proof We combine the assumption of strong convergence of $\{u^h\}$ with Proposition 15.

Finally, we give a few simple examples of cases contained in our concept of strongly two-scale compatible λ -scale convergence.

Example 17 We start with the case corresponding to usual periodic two-scale convergence. Let

$$\alpha^h(x) = hx, \ x \in \Omega = (1,5).$$

Then

$$Y^j = (j, j+1), j \ge h$$

and

$$Y_k^j = (a_k^j, b_k^j), a_k^j, b_k^j \in (j, j+1)$$

with

$$b_k^j - a_k^j = \lambda(Y_k).$$

(All the assumptions above will be used also in the next two examples.)

We obtain

$$(\alpha^{h})^{-1}(Y^{j}) = (h^{-1}j, h^{-1}(j+1))$$

and

$$(\alpha^{h})^{-1}(Y_{k}^{j}) = (h^{-1}a_{k}^{j}, h^{-1}b_{k}^{j})$$

$$\frac{\lambda((\alpha^n)^{-1}(Y_k^j))}{\lambda((\alpha^h)^{-1}(Y^j))} \to \lambda(Y_k).$$

Example 18 In our second example α^h is still continuous with $\alpha^h(1) = h$ but grows with different constant speeds while its values passes through different periods Y^j . We have

$$\frac{d}{dx}\alpha^h(x) = h_j, x \in (\alpha^h)^{-1}(Y^j),$$

where
$$h_j(h) \rightarrow \infty$$
. Then

$$(\alpha^{h})^{-1}(Y^{j}) = ((\alpha^{h})^{-1}(j), (\alpha^{h})^{-1}(j) + h_{j}^{-1})$$

and

$$(\alpha^{h})^{-1}(Y_{k}^{j}) = \left((\alpha^{h})^{-1}(a_{k}^{j}), (\alpha^{h})^{-1}(a_{k}^{j}) + h_{j}^{-1}(b_{k}^{j} - a_{k}^{j}) \right)$$

Hence

$$\frac{\lambda((\alpha^h)^{-1}(Y_k^j))}{\lambda((\alpha^h)^{-1}(Y^j))} \to \lambda(Y_k)$$

and it is thus clear that $\{\alpha^h\}$ is asymptotically uniformly distributed.

Example 19 Finally, we let α^h be non-linear. For $\alpha^h(x) = hx^2$

we obtain

$$(\alpha^{h})^{-1}(Y^{j}) = (\sqrt{h^{-1}j}, \sqrt{h^{-1}(j+1)})$$

and

$$(\alpha^{h})^{-1}(Y_{k}^{j}) = (\sqrt{h^{-1}a_{k}^{j}}, \sqrt{h^{-1}b_{k}^{j}}).$$

For large values of h also j will be large. Hence

$$\frac{\lambda((\alpha^h)^{-1}(Y_k^j))}{\lambda((\alpha^h)^{-1}(Y^j))} = \frac{\sqrt{b_k^j} - \sqrt{a_k^j}}{\sqrt{j+1} - \sqrt{j}} \to \lambda(Y_k)$$

and thus $\{\alpha^h\}$ is asymptotically uniformly distributed.

4 Conclusions

The results in this report demonstrates that, under certain restrictions on the sequences $\{\alpha^h\}$ of functions, it is possible to make meaningful generalizations of two-scale convergence along the lines of scale convergence without involving any other measure than the Lebesgue measure.

References:

- G. Allaire, Homogenization and two-scale convergence, *SIAM J. Math. Anal.*, Vol. 23, No. 6, 1992, pp 1482-1518.
- [2] G. Allaire, M. Briane, Multi-scale convergence and reiterated homogenization, *Proc. Roy. Soc. Edinburgh Sect. A*, Vol. 126, No. 2, 1996.
- [3] N. Bakhvalov, G. Panasenko, *Homogenization: Averaging processes in periodic media*, Kluwer Academic Publishers, London, 1989.
- [4] A. Bensoussan, J. L. Lions, G. Papanicolau, Asymptotic analysis for periodic structures. Studies in mathematics and its applications, North-Holland, 1978.
- [5] D. Cioranescu, P. Donato, An introduction to homogenization, Oxford University Press Inc., New York, 1999.
- [6] A. Holmbom, J. Silfver, N. Svanstedt, N. Wellander, On the relationship between some weak compactnesses with different numbers of scales, *Chalmers Finite Element Center*, Preprint 2003-25, Göteborg, 2003.
- [7] A. Holmbom, J. Silfver, N. Svanstedt, N. Wellander, On two-scale convergence and related sequential compactness topics, To appear.
- [8] V. Jikov, S. Kozlov, O. Oleinik, *Homogeniz*taion of differential operators and variational problems, Springer-Verlag, Berlin, 1994. Longman Sci. Tech., Harlow, 1994.
- [9] D. Lukkassen, G. Nguetseng and P. Wall, Two-scale convergence, *Int. J. Pure and Appl. Math.*, Vol. 2, No. 1 2002, pp. 35-86.
- [10] M. L. Mascarenhas, A-M Toader, Scale convergence in homogenization, *Numer. Funct. Anal. Optim.*, 22 2001, No. 1-2, pp. 127--158.
- [11] G. Nguetseng; A general convergence result for a functional related to the theory of homogenization, *SIAM J. Math. Anal.*, Vol. 20, No. 3, 1989, pp. 608-623.

[12] G. Nguetseng; Homogenization structures and applications I, *Journal for Analysis and its Applications*, Vol. 22 No. 1, 2003, pp. 73-107.