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Abstract: - In this article the new method for the accounting singular point influence to the postprocessing error 
estimation is proposed. Solution improvement in singular zones is achieved modifying physical coordinate matrix 
used in least square problem equations: instead of the standard quadratic polynomial a new polynomial with singular 
elements is taken. Numerical examples demonstrate the advantages of the proposed algorithm. 
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1. Introduction 
The evaluation of the discretization error and the 
design of suitable meshes via adaptive mesh 
refinement are nowadays two of the challenging 
issues in the finite element analysis. One of the main 
concerns in finite element analysis is the adequacy 
of the finite element mesh. Since the quality of the 
finite element approximated solutions directly 
depends on the quality of meshes, an additional 
process to improve the quality of meshes is 
necessary for reliable finite element approximations. 
In order to perform a reliable finite element 
simulation a number of researches have made 
efforts to develop an adaptive finite element 
analysis method which integrates the finite element 
analysis with error estimation and automatic mesh 
modification [1-3]. But sometimes even very 
effective adaptive mesh refinement strategy does not 
give us a suitable result if our problem domain is 
caused by re-entrant corners and abrupt changes in 
material properties. Singularities occur at crack tips 
and at interface problems and are of great interest 
from the point of view of failure analysis [4]. 
Singularities and unbounded domains cause 
difficulties in standard finite element analysis 
because they depend on the structure of eigen values 
and eigen functions in the vicinity of the singular 
points which may not be known a priori [5, 6]. For 
this reason a new method for solution improvement 
near singular points is presented in this paper. After 
incorporating this method into h-adaptive finite 
element analysis, a new strategy can be obtained, 
which takes less iteration number until the final 
optimal mesh is constructed.  Proposed solution 
improvement algorithm is tested with numerical 
examples. 

2. Basic concepts of error estimation 
The point-wise discretization error is simply the 
difference between exact solution and the finite 
element solution: 

h = u - ueu ,     (1) 
where u is the exact solution and uh is the 
corresponding FE-approximation. In (1) the error 
has been referred to the prime variables of the finite 
element approximation (displacements). However, it 
can also be referred to the derivatives (stresses, the 
strains or other quantities of interest). The point-
wise discretization error is difficult to interpret, so 
certain norms to measure error are used to assess 
finite element approximation. One of the most 
popular measurements of the discretization error is 
based on the energy norm, which originally was 
defined for elasticity problems, can be expressed as 
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where L is differential operator of the governing 
equations.  
 The error norms over the whole domain Ω can be 
obtained as a summation from individual element 
Ωk : 

∑= 22 e  ke .     (3) 
 The absolute error defined by an energy norm is 
not convenient for use in practical computations. 
The dimensionless forms are favored and are 
customarily expressed as 
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where u  is the strain energy norm, η and ηk  are 
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the relative global and relative element error, 
respectively. 
 Postprocessed error estimates are based upon 
information obtained during the solution process. 
The most important ingredient of the error 
estimation is the construction of the new solution of 
a higher quality since the exact solution for 
complex-engineering problems is generally un-
known. Typically, this new improved solution is 
obtained by a posteriori procedure, which utilizes 
the original finite element solution itself. The 
essence of the postprocessed error estimator is to 
replace the exact solution with a postprocessed 
solution of higher quality: 

h
uu  -  =  uuee ∗≈ ,    (5) 

where  ue  is the point-wise estimated error. Using 
the improved solution we have an estimation of (2): 
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 In practice, we calculate this norm by summing 
over all elements in the domain Ω: 
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where Ωi is an element domain and nel is the total 
number of elements. 

The most popular error estimation method is 
superconvergent patch recovery for displacements 
(SPRD) technique. The idea of the SPRD is to 
define a new displacement field of p+1 order over 
the patch elements [7]. This new field requires to be 
a least square fit to the original finite element 
solution at some points where the accuracy of finite 
element solution is higher. It has been known that 
the nodal points of the finite element approximation 
are found to be the exceptional points at which the 
prime variables (displacements) have higher order 
accuracy with respect to the global accuracy [8]. 

The new displacement field over the element 
mesh is calculated solving equation system for least 
square problem: 
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There [ ]221 yxyxyxQ =  is a row matrix 
containing monomial term of physical coordinates 
of p+1 order, and b is a set of unknown parameters 
to be determined. ( )xw  is a positive weighting 
function with unity value for the element, defining 
the patch, and which decreases monotonically with 
increasing distance away from master element. 

   

3. Postprocessing error estimation 
with singularity effect 
 
 
3.1 Problem statement 

 

 
 

Fig.1 Problem domain 
 
Let us suppose we have prismatic planar domain Ω 
with the interior angle π>ω . C the singular point 
of Ω. Radius R is the value defining singular zone 
boundary for Ω (Fig.1).  

In general solution u has singular behavior near 
singular points and can be decomposed into singular 
and regular parts according formula [9]: 

( ) ( ) RRs usinrxruuu +⋅⋅⋅=+= λϕγξ λ , (9) 

ωπλ = .                            (10) 

There r,φ are polar coordinates, ( )rξ  is a smooth 
function ( ( ) 1=rξ  for Rr < , ( ) 0=rξ  for Rr > , R 
is a constant), ( )xγ  is a coefficient.  

 
 

3.2 Displacement solution calculation near 
singularities  
In order to use (9) formula in adaptive finite element 
analysis we must find regular and singular parts of 
the solution u. 

As a regular part we can take finite element 
solution FEMR uu = . For finding singular part, we 
will modify SPRD method as follows. 

  Let us suppose domain Ω is covered by N 
triangle elements: 

}N,,iT{T i Λ1== .              (11) 
 Current mesh element is said to be singular if at 
least one its nodes is placed at the distance less or 
equal to radius R. Set of all singular triangles 
defines singular zone of Ω and forms the patch for 
the least square problem: 

( ){ }3,2,10 =≤=Ω jRTNodeT ijiSING .            (12) 
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Fig.2 Element patch construction for least square 
problem: (1) – traditional element patch; (2) – 
singular element patch.  
  
 The main idea of least square method 
modification is to replace row matrix containing 
monomial term of physical coordinates with new 
one containing singular monomials for all nodes of 
this singular patch. To realize this instead of 
standard quadratic polynomial we will take only one 
singular monomial:   
( ) ( ) ( )[ ]λφξφ λ sinrr,rQxQ SING ⋅⋅=→ .            (13) 

 According such modification equation system for 
least square problem will be solved with two 
different element patch types (Fig.2) and row 
matrixes depending on whether node ( )ij TNode  
belongs to singularity zone or no: 
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 But in this place we have one problem left: 
singular point C in polar coordinates is defined as 

0=r  and [ ]πφ 20,∈  and singular polynomial can 
not be defined correctly in point C!  
 In order to solve this conflict, additional points 
placed at a very near position from C must be 
constructed. For all mesh elements containing 
singular point C  we calculate additional points Ci 
placed at a very near position from original point C 
(Fig.3): 

( ) ii DtCtC ⋅+⋅−= 1 ,               (15) 
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N
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 In these equations Ai and Bi are the nodes of  
singular element, Di – point on bisector from point 
C, N – number of mesh elements, h – the size of 

 
Fig.3 Definition of additional points near singularity 
 
smallest mesh element, iCD  – the distance from 
point C to point Di, ( ]10,const∈  – the smoothing 
value. The definition of parameter t allows us to 
control positions of new Ci: the ratio Nh  
guarantees that new point Ci  will be bounded by 
sides of singular element, and division by iCD   
guarantees that Ci  will be placed near original point.  
 For all nodes from the singular patch ΩSING we 
form physical coordinate vector:  

( ) ( )kkkkSINGkkSING sinr,cosrxy,xx φφ ⋅⋅=         (18) 
and define singular polynomial: 

( ) ( )[ ]λϕξφ λ sinrr,rQs = .              (19) 
 After transformation displacement vector to 
polar coordinates we obtain following equation 
system: 
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 After solving least square method equations with 
singular patch and singular polynomial we get 
coefficient vector bSING and for each additional 
singular point Ci we calculate singular displacement 
solution: 
 ( ) ( ) ( )=+= jSjFEMj CuCuCu   

( ) ( ) ( )jSINGjSINGjFEM CbCQCu ⋅+= .            (21) 
 General solution for singular point C is obtained 
using extrapolation from additional singular 
displacement solutions in points Ci. 
 
 
3.3 Error estimation near singularities  
After the improved solution in point C is calculated, 
it can be taken instead of the exact solution in the 
posteriori error estimation: 

2

1
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h
SINGSINGu,SINGu,  -  =  uuee ∗≈ ,              (22) 

there SINGu,e  is the point-wise estimated error for 
singular zone of the problem domain.  
 An estimation of the whole domain errors can be 
calculated summing error values from the singular 
zone and the rest part of the problem domain: 

22

SINGSING -
2 ee= e

ΩΩΩ
+ ,             (23) 

there 2

SING
e Ω

 –  estimated error for singular zone 

only and 2

SING-e
ΩΩ

– estimated error for the rest part 

of the problem domain. 
 
 
4. Numerical example 
For demonstration of the proposed solution 
improvement algorithm L-Shape domain (Fig.4) is 
considered. Plane stress conditions are assumed 
with Poison’s ratio ν=0.3 and Young’s modulus 
E=105 Pa. Permissible error tolerance is η=5%. 
 The goal is to obtain final optimal mesh with as 
small element number as possible according given 
permissible error. In order to achieve this goal we 
should improve solution in the first adaptive mesh 
refinement strategy steps when total element 
number is quite small, because after few iterations 
element number is increased rapidly and obtained 
solution does not differ from the exact solution very 
much. For this reason we will generate a set of 
meshes with gradually increasing element number 
and will analyze improved postprocessed solution 
efficiency in comparison with not improved 
postprocessed solution.   
 In order to test proposed strategy we construct a 
set of uniform unstructured meshes where element 
number is increased according given formula: 
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            (24) 

There 2060 =N  is the element number of the first 
mesh, i=1,…,12 is the mesh index. 
 Periodically increasing element number (from 
206 elements to 16222 elements) twelve different 
finite element meshes are generated. Singular zone 
is defined by radius 10.R =  and singular element 
patch is combined from all elements having at least 
one node placed at the distance less or equal to 
radius 10.R = . First three meshes (with 206, 418 
and 600 elements respectively) from this set and 
their singular zones are showed in Fig.5, Fig.6 and 

Fig.7. Obtained singular zone region is marked in 
grey color and zoomed in for better viewing. For  

 
Fig. 4 L-shape domain definition 
 
each mesh the finite element analysis is performed 
and finite element solution is calculated. After that 
postprocessing error estimation is performed in two 
cases: the first experiment is to calculate 
postprocessing solution without special 
improvement in singular zone and the second 
experiment is performed improving postprocessing 
solution in singular zone according proposed 
strategy.  
 Graphical presentation of the obtained 
displacement results in Ux and Uy directions is 
presented in Fig.8. Exact displacement solution for 
such L-shape problem is not known and for 
comparing results additional mesh with 25000 
elements is generated and obtained displacement 
solution is taken instead of the exact. 
 Comparing obtained results we can see that 
already for mesh with 1004 elements improved 
singular postprocessing displacement solution in X 
direction (Fig.8) is almost equal to the exact 
solution and is not changing very much when 
element number in the mesh is increased: 

4
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 Situation with improved singular postprocessing 
displacement solution in Y direction (Fig.8) is very 
similar – obtained improved solution is much more 
near the exact solution than postprocessing solution 
without improvement in singularity zone: 
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 According these graphical displacement curves, 
we can see that improved singular postprocessing 
solution is calculated more exactly than finite 
element solution and converges to the exact solution 
sooner than finite element solution 
 

  
Fig.5 Singular patch for 206 element mesh 
 

 
Fig.6 Singular patch for 418 element mesh 
 

 
Fig.7 Singular patch for 600 element mesh 
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Fig.8 Displacement curves in Ux and Uy direction 
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 To demonstrate more clearly the advantage of 
the proposed solution improvement strategy near 
singularities an additional comparison of the 
estimated relative errors presented in Fig.9.  The 
curves in this picture are calculated using error data 
only from singular domain (grey color) because 
summing error values from the whole domain the 
impact of improved solution vanishes and is not so 
obvious. Comparing obtained relative percentage 
error values we can see that the difference between 
user defined value and value calculated according 
proposed solution improvement near singular point 
is bigger than difference, obtained between user 
defined value and value, calculated according 
traditional error estimation algorithm. It means that  
displacement solution was really improved in 
singular point zone and obtained error value is 
calculated more precisely than error value without 
singularity improvement.  
 It is proved by authors [10] that incorporating 
this solution improvement strategy into standard h-
adaptive finite element strategy final optimal mesh 
is obtained with least iteration number and least 
total element number in comparison with traditional 
adaptive mesh refinement algorithm.   
 
  
5. Conclusions 
 In this paper a new method for postprocessed 
solution improvement near singularities is presented 
and tested. In order to involve the influence of 
singular domain zones displacement solution was 
calculated with modified least square method. 
Summarizing can be stated that taking singular 
polynomial instead of the standard quadratic in the 
postprocessed solution calculation we can define 
solution more precisely in domains with different 
topological incompatibilities. It can also be expected 
that after incorporating proposed changes to the 
standard adaptive mesh refinement procedure we 
will get final optimal mesh with the least iteration 
number and with minimal element number in it. 
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