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Abstract: - Typically flank milling is used to machine ruled surfaces. In this paper, a method of designing doubly 
curved NURBS surfaces for flank milling using the least squares method is given. In this method, grazing points 
generated by the Bedi et al. [4] tool positioning method are used as sample points. The user defines the degree and 
the number of control points along two parametric directions of the surface. A NURBS surface is then fit to pass 
among the sample points using the least square technique [10, 11]. Accuracy of the surface is evaluated by the 
parametric error measurement method [12] and is controlled by increasing the number of control points. Surfaces 
that can be machined with great accuracy are generated. Examples are given to demonstrate this surface design 
method.  
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1. Introduction 
Five-axis machining has become more attractive in 
today’s manufacturing as it reduces machining time 
and improves surface finish. Flank milling, as one of 
the five-axis machining methods, has attracted 
attention of both industry and academic community. 
Different tool positioning methods for flank milling 
have been developed since the late 90’s. All these 
methods focus on ruled surfaces and attempt to reduce 
the deviation between the machined surface and the 
given ruled surface. Some of these methods result in a 
good match between the given ruled surface and the 
final machined surface. Today, flank milling is used to 
machine impellers, turbine blades and other 
engineering parts. 
 
In spite of being widely recognized that flank milling 
produces curved machined surfaces, no one has 
attempted to design free form surfaces that can be 
flank milled. However, some researchers in academics 
[1,2] and industry [3] have tried to use existing flank 
milling techniques, developed for ruled surfaces, to 
machine free form surfaces. In their methods, they 
first divide the given surface into multiple small 
surfaces and each small surface is treated as a ruled 
surface and the flank milling methods mentioned 
earlier are used to machine each small surface. Since 
the surface is machined in patches, the machined 
surface is discontinuous at the path boundaries. Also 
the geometry of the surface should be such that the 

tool does not gouge the relevant path of the surface. 
As the machined surface is a curved surface, it only 
approximates the desired ruled surface. Most ruled 
surfaces are created to deliver a certain performance 
such as a flow pattern in an impeller application and 
any mismatch has a diverse effect on the efficiency. 
Similar losses can be witnessed in other engineering 
applications. The magnitudes of these losses in 
today’s industry are attributed to manufacturing 
processes. If, on the other hand, a doubly curved 
surface (that can be flank milled) can be designed, 
then impellers and other engineering parts can be 
designed using surfaces that can be machined easily 
and exactly with little or no loss due to the 
manufacturing process. For impeller surfaces or blade 
surfaces, a designer can use the flank milled surface 
instead of the traditional ruled surface to optimize the 
performance of the part and not worry about 
compromises during machining. Thus, to define the 
machined surface generated by flank milling 
techniques, mathematically, is significant for 
manufacturing engineering.  
 
In fact, the exact definition of the machined surface 
generated by flank milling is not known. However, 
studies by different researchers show that the 
machined surface produced by flank milling 
techniques can be closely represented by a grazing 
surface (or swept surface) composed of discrete 
grazing points. Bedi et al.[4] suggested that each 
grazing point on the grazing surface can be calculated 
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with a cross product method. Combining these grazing 
points results in a grazing surface. Mann et al.[5] 
generalized this method and applied it to surfaces of 
revolutions. Lartigue et al.[6] presented a similar 
method to determine an envelop surface generated by 
flank milling. Senatore et al.[7] used an analogous 
way to compute the grazing points and the envelop 
surface. Other researchers, like Li et al.[8], Menzel et 
al.[9], used the grazing points and grazing surface to 
optimize the cutting tool  position. All these research 
results show that the machined surface can closely be 
approximated by the grazing surface.  
 
Even though a grazing surface can be used to 
represent a machined surface, it is still hard for a 
design engineer or a manufacturing engineer to apply 
it in their design or manufacturing because it is 
difficult to obtain any information from a surface 
composed of discrete points and it is also difficult to 
connect this surface with other surfaces around it as its 
definition is not known in conventional NURBS forms. 
To use the grazing surface in engineering application, 
an effective way is to give the grazing surface a clear 
mathematical definition and make it easy be 
understood and apply. As Non-Uniform Rational B-
Splines (NURBS) are commonly used in engineering 
applications, in this paper, the known grazing surface 
is approximated with a NURBS surface making it easy 
to apply in engineering applications. 
 
To make a NURBS surface fit a given set of grazing 
points, a known effective method is the least square 
surface fitting method. By using this method, a 
NURBS surface which can be directly flank milled 
can be defined. Therefore, in this paper, a way to 
design a surface for flank milling with the least square 
method is developed. The paper is organised as 
follows. The flank milling surface design is introduced 
first; then, the mathematical background of the least 
square method is reviewed in the following section. 
The method to use least squares to design a surface for 
flank milling is discussed in section 3. Examples to 
demonstrate this surface fitting method are given in 
section 4 and discussion is presented in section 5. The 
final conclusion is addressed in section 6 to close this 
paper. 
 
 
 
 

2. Mathematical background 
The least square technique is a mathematical method 
to make a curve or a surface fit a given sample of 
points so that the square of the deviation between the 
fitted and sample points is minimized. The fitted curve 
or surface does not necessarily pass through each 
sample point. The knot vectors and the order of the 
surface are usually given by the user.  
 
 
2.1 Fitting a curve to point data 
Assume that a set of discrete points }{ lQ  are given, 

.,,2,1,0 kl Λ=  A thp  degree non-rational B-spline 
curve is used to approximate these points. The 
parameter of each sample point uu  ])1,0[( ∈uu  is 
chosen either using the equal spacing method or the 
chord length method or the centripetal method [10]. 
The knot vector as selected by the user is given by [10] 
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where m  is the number of knots counted from 0  in 
the knot vector and n  (also counted from 0 ) is the 
number of control points defined by the user. 
Therefore, the knot vector of the interpolation curve is 
defined as 
 
                     }.,,,,{ 110 mm uuuuU −= Λ  
 
A NURBS curve [10] is defined as 
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where ip  ),1,0( ni Λ= are the control points that 

need to be determined and piN ,  are the basis function. 
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Equation (2) can be written in matrix form as 
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Solving equation (3), the control points for the 
approximating curve can be determined as follows: 
 
                  QNNNP TT 1)( −= .        (4) 
 
Using the results from equation (4), thp  degree 
NURBS curve that approximates the sample points 
can be produced. 
 
 
2.2 Fitting a surface to point data  
Suppose a set of discrete points }{ ,lkQ are given, 

rk ,,1,0 Λ=  and sl ,,1,0 Λ= . A thqp ),(  degree 
non-rational B-spline surface with )1()1( +×+ nm  
control points can be used to approximate these 
discrete points. Two parameters, u  and v , are used to 
describe the approximating surface. In Fig. 1, u  
varies along the column direction (parameter l ) from 
0  to s . Similarly, v  varies along the row direction 
(parameter k ) from 0  to r . 

 
The parameter corresponding to each sample point 

lkuu ,  ])1,0[( , ∈lkuu  along u  direction is calculated 
using either the equal spacing method or the chord 
length method or the centripetal method [10]. The 
parameter luu for each column is 

               ∑
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where sl ,,1,0 Λ= . 

Fig. 1  Discrete sample points and their position. 
 
Similarly, the parameter for each sample point lkvv ,  

( ]1,0[, ∈lkvv ) along the v  direction is calculated and 

the parameter kvv  for each row is 
                                                                                     

                ∑
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where rk ,,1,0 Λ= .    
 
After the parameter of each sample point is defined, 
the knot vector along two parameter directions (u  and 
v  directions) need be determined. As the parameter 
value of each sample point must be unique, the knot 
vector in the two directions are decided by using the 
sample points along any row or column (simply treats 
sample points of the row or the column as the sample 
points of a curve). The technique to decide the knot 
vector of a curve described in 2.1 can be used to 
define the knot vectors of the surface. For more details 
on selecting the knot vector, see [10,11]. 
 
Using equation (1), the knot vector of the 
approximating surface along the u  direction is 
decided and is given by 
 

}.,,,,{ 110 +++= pnpn uuuuU Λ  
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Similarly, the knot vector of the approximating 
surface along the v  direction can also be obtained and 
is given by 
 
                   }.,,,,{ 110 +++= qmqm vvvvV Λ  

 
With the least square approach [11], a non-rational B-
spline equation can be obtained by manipulating the 
following, 
                                               

                T
uv PNNQ = ,                  (7)    

 
where vN  and uN  are matrixes of the B-spline basis 
function. P  is the matrix of control points and Q  is 
the matrix of given sample points. 
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Solving equation (7), the control points of the 
approximating NURBS surface can be obtained using 
                                             

))(()( 11 −−= u
T

uu
T

vv
T

v NNNQNNNP ,     (8) 
 

Using the results from equation (8), thqp ),(  degree 
NURBS approximating surface can be generated to 
approximate the sample points. Changing the 
parameterization, degree, the number of control points 
and the knot vector will result in a changed surface. 
These can be used to find a surface suited for the 
application. 
   
 
2.3 Surface error measurement 
After the approximating NURBS surface is built, the 
error between the given discrete sample points and the 
approximating surface needs be measured to evaluate 
the quality of the approximating surface.  
 
Different surface error measurement methods have 
been developed since the late 90’s. These methods 
were compared and analyzed in a previous paper [12] 
and will be directly used in this research. As the given 
surface is built from discrete sample points and the 
parametric value of each sample points ( luu , kvv ) is 
known, the parametric surface error measurement 
method is selected for use in this research. Although, 
this method over estimates the surface error, if the two 
surfaces are very close, the measurement result will 
still closely reflect the surface error distribution. On 
the other hand, the parametric error measurement 
method provides a simple surface error computation 
process compared to other surface error measurement 
methods.   
 
Using the parametric surface error measurement 
method, the approximating surface error can be 
estimated. If the error exceeds user defined tolerance, 
more control points need be used to generate the 
approximating surface. The computation steps are the 
same as before. The degrees of the surface can be kept 
the same or changed depending on the simulation 
result. This computation process is repeated until the 
surface error is controlled and brought in the range the 
user desires. 
 
 
3. Surface design with the least square 

method 
The machined surface generated by the flank milling 
technique can be described using the method given in 
the section 2. To generate this machined surface, a 
grazing surface comprising of grazing points is 
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required. The method to generate the grazing points is 
given below.   
 
 
3.1 Tool positioning method and the grazing 

points 
Different tool positioning methods generate different 
machined surfaces. Consequently, different grazing 
surfaces can be obtained with different tool 
positioning methods. In this research, Bedi et al.’s tool 
positioning method is used to produce the machined 
surface. 
 
In Bedi et al.’s tool positioning method [4], the cutter 
is imagined to roll along two guiding curves. The two 
guiding curves are any two curves on the given design 
surface.  

Fig. 2 Cylindrical cutter and guiding curves.    
 
As Fig. 2 shows, )(uT  and )(uB  are the two guiding 
curves, a cylindrical cutter with radius R  is rolling 
along them. The cutter contacts the guiding curves at 
two points, )(uT  and )(uB , and the two touching 
points have the same parametric value u . Frenet 
frames are set up at each contact points. tT  and tB  
are the tangent vectors, mT  and mB  are the main 

normal vectors, bT  and bB  are the binomial vectors. 
Mathematical equations can be developed based on 
the geometrical relationship between the cutter and the 
guiding curves and are summarized as 
 
  )()sin()()cos()( uTRuTRuTP bmT θθ +=− ,   (9) 
 
 )()sin()()cos()( uBRuBRuBP bmB ββ +=− ,   (10)   
 
   0))()sin()())(cos(( =+− uTuTPP bmBT θθ ,    (11) 

  0))()sin()())(cos(( =+− uBuBPP bmBT ββ .   (12) 
 
The solution of these equations results in the cutter 
position at parameter u . 
 
The grazing curve corresponding to this tool position 
can also be developed using the method developed in 
[4]. Assume that velocities at two contact points 
( )(uT  and )(uB ) are TV  and BV . These velocities 
can be linearly interpolated along the tool axis 
direction and the velocity at any point between the 
contact points is given by 
 
          vVvVV TB +−= )1( ,        10 ≤≤ v .        (13) 
 

TP  and BP  are two points on the tool axis. These two 
points correspond to contact points )(uT  and )(uB . 
Any point between TP  and BP  can also be linearly 
interpolated and is given by 
 
          vPvPP TB +−= )1( ,         10 ≤≤ v .       (14) 
 
The grazing point between contact points )(uT  and 

)(uB  is calculated as [4]                                                   
 

                  R
TV
TV

PG
axis

axis

|*|
*

+= ,                     (15) 

 
where  axisT  is the vector of the cutter axis. 
 
Different tool positions will generate different grazing 
points on the grazing surface. Enough tool positions 
need be used so that grazing points can be scattered 
along the whole machined surface. These grazing 
points can be used as sample points to find a NURBS 
surface that fits them closely. 
 
 
3.2 Surface design with the least square 
The method to fit a least squares NURBS surface to a 
given set of sample points was developed in section 2. 
In this method, the degrees and the number of control 
points of the approximating surface along two 
parameter directions ( u  and v ) need be decided first. 
The degree and the number of control points along the 
guiding curves direction ( u  direction) are important 
factors that control the characteristic of the final 
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machined surface, thus the degree of the 
approximating surface along u  direction is selected to 
be the same as the degree of the guiding curves. 
Alternatively, the degree can be selected to be degree 
2 or 3, as lower degrees surface do not exhibit 
unwanted oscillations and can make it much easier to 
design good fitting surfaces [10,11]. The number of 
control points along the guiding curve direction can 
initially be the same as the number of control points of 
the guiding curves. Of course, more control points can 
be added in this direction if desired. 
 
The degree and the number of control points along the 
parameter v  direction (the tool axis direction) are 
initially set to 2 or 3 for the same reasons explained 
above. The numbers of control points along the v  
direction are initially set to 3 or 4.   
 
After the degree and the number of control points 
have been selected, the position of each control point 
is calculated using the method described in the section 
2. Consequently, the approximating NURBS surface 
can be generated. The error between the 
approximating surface and the given grazing points 
can be measured using the parametric error 
measurement method [12]. If the maximum error 
exceeds the user defined tolerance, more control 
points can be added along the two parameter 
directions. Degrees of the surface can also be changed 
depending on error analysis and simulation results. 
With an increased the number of control points, the 
error between the approximating NURBS surface and 
the grazing surface can be effectively controlled. 
 
In the section 2, the parametric value of each sample 
point ( uu , vv ) is given by equations (5) and (6). An 
alternative method to get this parametric value is to 
use the parametric value of each grazing point directly. 
When the grazing surface is calculated with equations 
(13), (14) and (15), each grazing point corresponds to 
a certain parametric value ( u , v ).  This parametric 
value more closely reflects the grazing point’s 
location than the average value from equations (5) and 
(6). Thus, for simplicity, the parametric value of each 
grazing points is taken to be the value from equations 
(5) and (6). For this reason, uuu = , vvv = at each 
grazing point.  
 
In sequence, the knot vectors of the approximating 
NURBS surface can use unit knot vectors in both of 

u  and v  directions in place of the knot vectors 
obtained from equation (1). The main concern in 
equation (1) is to ensure that each knot span at least 
contains one uu  or vv  so that the knot vector truly 
reflect sample points’ distribution on the given surface. 
For the parametric value of each grazing point (u  and 
v ), equal space between two consecutive tool 
positions is normally used. Thus, a unit vector can 
guarantee that the number of grazing points at each 
knot span is equal and it also promises the knot vector 
itself reflects the grazing points’ distribution exactly. 
Therefore, the unit knot vectors can be used instead of 
knot vectors from equation (1).  
 
After these changes, the whole computation process is 
greatly simplified. The resulting surface may be 
different and the difference between the two surface 
parameter setting methods will be analyzed in the next 
section. 
 
 
4. Examples 
Examples that apply the proposed method are given in 
this section. Two guiding curves are given and the 
control points of these curves are listed in Table 1. A 
cylindrical cutter is used to machine the surface and 
the radius of the cylindrical cutter is mmR 5= . The 
knot vectors of the two curves are both ]1,1,1,0,0,0[ . 
The degree of the guiding curves is 2. 
 
 T0 T1 T2 B0 B1 B2 

x  75 30 0 60 30 15 

y  15 30 60 0 30 75 

z  -5 -5 -5 -45 -45 -45 

w (weight) 1 1 1 1 1 1 

Table. 1   Control points for guiding curves [mm] 
 
A NURBS surface that can be exactly flank milled is 
designed. Bedi et al.’s tool positioning method is used 
in this design and the grazing points on the grazing 
surface are calculated by equation (15). Using these 
grazing points and the surface fitting method 
described above, the desired surface can be obtained.  
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First, the method described in the section 2 is used to 
design this surface. The degree of the surface in both 
the u  and v  directions is selected to be 2 and a three 
by three polygon of control points is initially selected 
to generate this NURBS surface. The parametric value 
of each sample point (grazing points) is given by 
equations (5) and (6) and the knot vectors along the u  
and v  directions are calculated using equation (1). 
Using equation (8), control points of the 
approximating NURBS surface can be decided. After 
selecting these, the NURBS surface is constructed. 
The error between the approximating surface and the 
grazing points is calculated using the parametrical 
error measurement method and the result is plotted in 
Fig.3 below. The deviation between the approximating 
surface and the grazing points on the machined 
surface is in the range [0, 0.076]. The maximum 
surface error is close to 0.076. 
 

 
Fig. 3 Error distribution of the approximating NURBS 
surface. 
 
The alternative way described in the section 3 is next 
used to design the same surface. The degree of the 
surface in both u  and v  directions is kept as 2 and the 
number of control points of the approximating surface 
are selected to be three by three. The parametric value 
of each sample points as used in the grazing point 
calculations  of equations 13, 14 and 15 are used along 
with unit knot vectors in both u  and v  directions. 
The approximating NURBS surface is designed. The 
surface error is measured and plotted in Fig. 4 below. 
 
The deviation between the approximating surface and 
the grazing points is in the range [0, 0.0172]. The 
maximum surface error is less then 0.0172. Compared 

to Fig. 3, the maximum surface error reduces from 
0.076 to 0.0172. The approximating NURBS surface 
with unit knot vectors and inheriting parametric value 
(for each sample points) generate small surface error.  
Thus, unit knot vectors and parametric values 
inherited from the grazing point calculations are used 
for each sample point for the remaining examples. 

 
 
Fig. 4 Error distribution of the 3 by 3 NURBS surface for 
unit surface knot vector. 
 
If the maximum surface error, 0.0172, still exceeds 
user defined tolerance, more control points can be 
added to reduce this maximum surface error. To 
demonstrate the process of surface error control, the 
number of control points is increased from three by 
three to three (the v  direction) by four (the u  
direction) and then to four (the v  direction) by five 
(the u  direction). The degree of the approximating 
surface is kept as 2 along both parameter ( u  and v  ) 
directions. The approximating NURBS surfaces can 
be built using the least square method given before. 
The parametric error measurement method is used to 
calculate these surface errors and final results are 
plotted in Fig. 5 and Fig. 6.   
 
The deviation for the three by four NURBS surface is 
in the range [0, 0.014]. The deviation for the four by 
five NURBS surface is in the range [0, 0.00255]. 
Compared to the three by three NURBS surface (Fig. 
4), the maximum surface error reduces from 0.0172 to 
0.014 and to 0.00255 as the number of control points 
are increased from three by three to three by four and 
four by five. With an increased number of control 
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points, the approximating surface error can be 
effectively controlled. 
 

 
Fig. 5 Error distribution for 3 by 4 NURBS surface. 
 

Fig. 6 Error distribution for 4 by 5 NURBS surface. 
 
This method was also successful tried on a few other 
examples with good results. 
 
 
5. Discussion 
Using the grazing points on the grazing surface, the 
machined surface can be approximated by a NURBS 
surface through the least square approach. The 
accuracy of this surface is influenced by the 
distribution of the grazing points, the degree and the 
number of control points of the surface. 
 
The distribution of the grazing points plays an 
important role in the least square surface fitting 

method. High density of grazing point patches on the 
grazing surface will make the approximating surface 
match these patches well and impose the accuracy of 
the surface match. For flank milling surface design, 
the design surface needs to closely match the 
machined surface, thus, the grazing points should be 
evenly scattered along the grazing surface. With more 
grazing points, the computation time increases. A 
table of sample points vs. time for the example given 
in the section 4 is shown in Table 2. The computer 
used in this example was a Pentium 4 CPU 3.06GHz 
with 1.00 GB of RAM. The software used for 
calculation was Maple, a symbolic algebra package. 
Of course, other software like C++ can also be used. 
However, the trend of the variation will be the same. 
 
The degrees and the number of control points of the 
approximating surface also significantly affect the 
surface design. Properly selecting the degrees and the 
number of control points are important in the least 
square approach. Normally, a good guess at these 
numbers is required initially, then, control points can 
be added or deleted as desired in different parameter 
directions or alternatively the degrees of the 
approximating surface can be changed to make the 
surface fit the grazing points closely. More control 
points and low degree values will result in good 
surface fits. 
 
Clearly, a high accuracy surface can be produced if 
sufficient and evenly distributed grazing points are 
given, proper degree of the surface is selected, and 
adequate control polygons are used. To achieve this 
target requires a large mesh of sample points and a 
long computation time is needed. Furthermore, the 
process is not automatic and requires a lot of user 
input. If all user selections are blended into an 
algorithm, the mesh of sample points will be very 
large and computation time will be extensive. For 
engineering application, the designer requires a simple 
method with few parameters to select. One must 
remember that the designer is an expert in fluid flow 
or other engineering field and may know little about 
surface design. Selection of number of control points, 
knot vectors etc. may dissuade them from using the 
least square method. If, on the other hand, a brute 
force algorithm is generalized, it will also increase the 
computation time. Thus, another easy to handle flank 
milling surface design method that simplifies the 
computation process is being studied.  
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S.Ps 
              
C.Ps 

30*30 50*50 70*70 100*100 

3*3 28.9s 88.5s 202.2s 562.1s 
3*4 32.1s 93.1s 214.1s 585.5s 
4*5 45.2s 154.5s 374.2s 1054.9s 

            Table 2.  the number of sample points vs. the computation time.  S.Ps: Sample Points. C.Ps: Control Points.   
                                                                                                                                                                             
 
6. Conclusion 
This paper presents a method for designing free form 
surfaces that can be flank milled. The least square 
method is used to develop this type of surface. Bedi et 
al’s tool position method is used to calculate the 
grazing points on the grazing surface and these 
grazing points are treated as discrete sample points. 
The error between the design surface and the grazing 
surface is evaluated with the parameter error 
measurement method and is controlled by the number 
of control points and degrees of the design surface. 
High accuracy surface can be obtained with this 
method. The method, however, is complicated by the 
amount of user inputs it requires and by the increases 
in computation time with increase in sample points. 
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