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Abstract: The present paper presents an approach of identifying the structure of a dynamic system using Mixed
Integer Nonlinear Programming (MINLP) techniques. It is shown that the problem can be tackled by minimizing,
for example, Akaike’s Information Criterion (AIC).
The presented techniques are applied in determining the structure and the parameters of some illustrative Auto-
Regressive Moving Average (ARMA) time series. The example problems are solved using the Extended Cutting
Plane (ECP) method.
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1 Introduction
Given a set of observationsyi, made at time pointsti,
i = 1, . . . , N , the classical least squares problem of
estimating the parametersθi, i = 1, . . . , p, of a func-
tion f , describing the underlying dynamic system, can
be formulated as follows:

min
θ1,...,θp

{
N∑

i=1

(f(ti, θ)− yi)2
}

(1)

A tool that can be applied for this purpose is the
Akaike’s Information Criterion (AIC) [1]:

−2 ln L + 2p (2)

where L denotes the maximum likelihood function
andp is the number of parameters. The logarithm of
L, for N normally distributed, independent, random
variablesεk, with a varianceσ2, is given in [3]:

ln L = −N

2
ln(2π) +

N

2
ln(| 1

σ2
|)− 1

2σ2

N∑

k=1

ε2
k (3)

Substituting (3) in (2) yields

N(ln(2π)+ln(σ2))+
1
σ2

N∑

k=1

(f(tk, θ)−yk)2+2p (4)

If the varianceσ2 is known or predefined [4], the cri-
terion to be minimized can be formulated as follows:

min
θ1,...,θp

{
1
σ2

N∑

k=1

(f(tk, θ)− yk)2 + 2p

}
(5)

Note, that the objective in (5) consists of the sum of
squared residuals and a penalty term given by the num-
ber of parametersp. The penalty term can easily be
modified in such a way that lower or higher priority
is put on the number of parameters, the sample size
and/or sample costs etc. In (5) it is assumed thatp,
which also gives the structure off , is known. In many
cases it is difficult to choosep in advance. One pos-
sibility is to solve (5) for different values ofp and
observe which value gives the best solution [7]. In
the following, an alternative approach that enables the
solving of both the structure determination and param-
eter estimation simultaneously, is presented.

2 MINLP Formulation

Introducing a binary variable,δi, for the existence of
each parameterθi, and corresponding lower and upper
bounds,θi,min and θi,max, the optimization problem
(5) can be formulated as follows:

min
{

1
σ2

N∑
i=1

(f(ti, θ)− yi)2 + 2
n∑

i=1
δi

}

θi − θi,max · δi ≤ 0

−θi + θi,min · δi ≤ 0

δi ∈ {0, 1}, i = 1, . . . , n.

(6)
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Problem (6) is generally called a Mixed Integer Non-
Linear Programming (MINLP) problem. Assume that
f is convex and thatσ2 is defined [4], then the ob-
jective function in (6) is also convex, which is pre-
ferable, because many numerical MINLP-methods
provide theoretical guarantees of global optimality for
convex problems.
The minimization of Akaike’s criterion (6) might,
however, in some applications result in redundant pa-
rameters. In order to keep the number of parameters
of moderate size it is possible to use, for example, the
Bayesian Information Criterion (BIC) [1]:

1
σ2

N∑

i=1

(f(ti, θ)− yi)2 + (1 + lnN)p (7)

In (7) the number of observations, that is, the sample
size,N , is damping the number of parameters. The
corresponding MINLP formulation can be written as
follows:

min

{
1
σ2

N∑
i=1

(f(ti, θ)− yi)2 + (1 + lnN)
n∑

i=1
δi

}

θi − θi,max · δi ≤ 0

−θi + θi,min · δi ≤ 0

δi ∈ {0, 1}, i = 1, . . . , n.

(8)

Another approach which also takes the sample size
into consideration is given by the Final Prediction Er-
ror (FPE):

N + p

N − p
·

N∑

i=1

(f(ti, θ)− yi)2 (9)

Thoughf is convex, the function in (9) is nonconvex
with respect top, which might induce difficulties in the
solving. Alternatively, a global optimization method
can be applied if (9) is to be minimized.

3 Estimation of some time series
An Autoregressive Moving Average (ARMA) series
of the order(p, q) can be written as follows:

Xt = θ0 +
p∑

i=1

θiXt−i + εt +
q∑

i=1

βiεt−i (10)

wheret = 1, 2, . . . , N , X0 = 0, ε0 = 0. The variables
εt are normally distributed random ones with the mean

0 and the variance1. Hence, there arep + 1 + q + 1
parameters to be estimated (θ0, . . . , θp, β1, . . . , βq and
σ2). The residuals of (10) can be calculated recur-
sively as follows:

ε1 = X1 − θ0

ε2 = X2 − θ0 − θ1X1 − β1ε1
ε3 = X3 − θ0 − θ1X2 − θ2X1 − β1ε2 − β2ε1

...
εp+1 = Xp+1 − θ0 − θ1Xp − . . .− θpX1

−β1εp − β2εp−1 − . . .
...

εN = XN − θ0 −
p∑

i=1
θiXN−i −

q∑
i=1

βiεN−i

(11)

Given N data points,X1, X2, . . . , XN , and assu-
ming thatp > q the sum of squares,

∑N
i=p+1 ε2i can be

used in problem formulations (6) and (8). Note, that
if q = 0, (10) is a so-called Autoregressive time series
of the orderp, denoted by AR(p). For AR(p) series
the residuals in (11) are linear functions, with respect
to the parameters, and, hence the sum of squared resi-
duals is a convex function. Hence, there are theore-
tical guarantees of finding the global optimal solution
for AR(p) series. On the other hand, ifq > 0, it can
be noted from (10) that the residuals can be calculated
recursively as follows:

ε1 = X1 − θ0

ε2 = X2 − θ0 − θ1X1 − β1(X1 − θ0)
= X2 − θ0 − (θ1 + β1)X1 + θ0β1

ε3 = X3 − θ0 − θ1X2 − θ2X1 − β1ε2 − β2ε1
= X3 − θ0 − θ1X2 − θ2X1

−β1(X2 − θ0 − (θ1 + β1)X1 + θ0β1)
−β2(X1 − θ0)

= X3 − θ0 − θ1X2 − θ2X1

−β1X2 + θ0β1 + θ1β1 + β2
1 − θ0β

2
1

−β2X2 + θ0β2

ε4 = . . .

(12)

The signomial terms, that are underlined in (12), are
in general non-convex which means that the resulting
optimization problem will be of a non-convex form.
There are, however, strategies for convexifying signo-
mials [9] that can be applied.
The variance of the residual was estimated iteratively
(based on previous estimations [6]) using the follo-
wing formula presented in [7]:

σ̂2
k =

1
N − 2p− q − 1

N∑

i=p+1

ε2i (13)
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The procedure can be started withσ2
k = 1. Com-

putational studies [4] indicate that the above algo-
rithm works and relatively few iterations are needed
to achieve convergence. Hence, the optimization prob-
lem (6) can be summarized as follows:

min
{

1
σ2

k

N∑
i=1

ε2i + 2
n∑

i=1
δi

}

s.t. θk − θk,max · δk ≤ 0

−θk + θk,min · δk ≤ 0

βl − βl,max · δl ≤ 0

−βl + βl,min · δl ≤ 0

δi ∈ {0, 1}, i = 1, . . . , n.

(14)

where the residuals,εi, are given in (12). The prob-
lem (8) can be formulated similarly using the original
objective function in (8) and the constraints in (14).

4 Numerical examples
The MINLP formulations in (6) and (8) were applied
on the following set of series:

Xt = εt +
1
3
Xt−1 (15)

Xt = εt + 0.25Xt−1 − 0.75Xt−2 (16)

Xt = εt + 0.7Xt−1 − 0.2Xt−2 + 0.5Xt−3 (17)

Xt = εt + 0.9εt−1 (18)

Xt = εt − 0.7εt−1 + 0.5εt−2 (19)

Xt = εt + 0.75εt−1 + 0.75Xt−1 (20)

Xt = εt − 0.8εt−1 + 0.5Xt−2 (21)

The corresponding MINLP problems were solved with
the Extended Cutting Plane method (ECP), [8], which
is an extension of Kelley’s method [5]. The ECP
method is a general purpose MINLP method with ap-
plicability to a large variety of problems [2], [6]. The
results of determining the order and of estimating the
parameters of data generated from series (15)-(21), us-
ing the AIC-criterion (6) and the BIC-criterion (8), are
presented in Table 1. The profiles of the data and the
corresponding estimations of series (16) are illustrated
in Figure 1. The results of (15)-(17) using the AIC-
criterion are quite good since these problems are con-
vex, and thus the solutions are global optimal solu-
tions. It can be noted, that the series (18)-(21) implied
non-convexities, which means that improved solutions
could be obtained using convexification strategies [9].

Table 1: Results of series (15)-(21).

series estimated model

(15)
εt + 0.339Xt−1

εt + 0.339Xt−1

(16)
εt + 0.1233Xt−1 − 0.7562Xt−2

εt − 0.7571Xt−2

(17)
εt + 0.776Xt−1 − 0.242Xt−2 + 0.434Xt−3

εt + 0.660Xt−1 + 0.309Xt−3

(18)
εt + 0.904εt−1

εt + 0.916εt−1

(19)
εt − 0.794εt−1 + 0.450εt−2

εt − 0.822εt−1 + 0.468εt−2

(20)
εt + 0.623εt−1 + 0.745Xt−1

εt + 0.620εt−1 + 0.746Xt−1

(21)
εt − 0.872εt−1 − 0.371Xt−2

εt − 0.854εt−1 − 0.347Xt−2

60 80 100
−3

0

3

t

X
t

Data
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Fig. 1. Generated and estimated data of series (16).

5 Conclusion
In the present paper, techniques for determining the
structure and estimating parameters of a system were
presented. It was shown that such problems can be
modeled and solved as MINLP problems by mini-
mizing the Akaike’s information criterion.
Examples of joint model structure determination and
parameter estimation of some time series were finally
illustrated. The examples were numerically solved
using the ECP-method that has been proven efficient
on many complex engineering problems. The results
were encouraging, the presented methods can in an
analogous way also be applied on multivariate sys-
tems.
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