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Abstract: This paper describes the design of a numerical simulation tool for the solution of the incom-
pressible viscous flow past a rigid cylinder beneath a free surface. The integral form of governing equations
for the two-dimensional viscous incompressible flows is solved subject to no-slip conditions at the solid
body surface and nonlinear conditions at the free surface. Well-posed boundary conditions are enforced
at the inflow and outflow boundaries since they ensure correct physical development of the flow near
the computational domain boundaries. The fractional area-volume obstacle representation method and
volume of fluid method are used to track the solid body and free surface interfaces, respectively. The
numerical algorithm is verified by applying it to the special cases of stationary and oscillating cylinders.
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1 Introduction

The numerical simulation of free surface flows
with moving bodies is a complex problem. Two
types of moving boundaries are present, namely
free surface and the boundary of the moving rigid
body. The major technical issue encountered in
the solution of free surface problems is the appear-
ance of numerical instabilities, that arise due to
the description of the mesh movement to track the
moving boundaries, nonlinearity of the governing
equations and boundary condition implementa-
tion at the free surface and rigid body surface.
Since the integral form of governing equations for
the incompressible viscous flow was derived and
discretized in a prior paper [6], the present study
essentially focuses on developing a numerical algo-
rithm for the solution of the incompressible vis-
cous flow past a cylinder beneath a free surface
under appropriate boundary conditions. The vol-
ume of fluid (VOF) method [7] is used to track
moving free surface interface. A piecewise-linear
interface reconstruction (PLIC) algorithm [3] is
used at each time step for determining the posi-
tion of both the free surface and fluid-body inter-
faces. The reconstructed free surface is then ad-

vected using computed local velocity field based
on a geometrical area-preserving VOF advection
algorithm.

In the present work, we shall use the same
governing equations (FAVORTM equations) as
those derived in Part 1 [6] in the case of two di-
mensional free surface flows of a viscous incom-
pressible Newtonian fluid with moving rigid bod-
ies:

d

dt

∫
V

dV +
∫
A

(n · u) dV = 0, (1)

d

dt

∫
V

u dV +
∫
A

(n·u)·u dV =
∫

A∪I

σ·n dS+
∫
V

g dV

(2)
where u = (u, v) is a velocity vector, n = (n1, n2)
is an outward normal, g = (0, g) is a gravity
vector, σ is a Newtonian stress tensor, A and V
are the corresponding fractional area and volume
open to flow, I is the length of fluid-body inter-
face.

Boundary conditions are the nonlinear kine-
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matic and dynamical conditions:

µ

(
∂uτ

∂xn

+
∂un

∂xτ

)
= 0, (3)

p = 2µ
∂un

∂xn

(4)

at the free surface and the no-slip condition:

u = ub (5)

on the rigid body surface. Here (3) and (4) are
given in the normal-tangential frame of reference,
µ is the fluid viscosity, ub is the body velocity.
Flow velocity is set to the velocity of inflow at the
inlet boundary. A well posed hydrostatic bound-
ary condition:

µ
∂u

∂n
− pn = ph (6)

is used at the outlet boundary. Here, ph is the
hydrostatic pressure and n is the outward normal
to the boundary of the computational domain.

2 Implementation of boundary
conditions

Following the work of Gerrits and Veldman [4],
every pressure cell in staggered grid is given a cor-
responding label based on the value of fractional
volume open to flow ( 0 6 V 6 1) in this cell. In
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Fig. 1: Pressure cell labeling.

Fig. 1 we distinguish cells with V > 1
2 as

Air(E) : Cells which contain no fluid
AirFluid(S) : Cells which border at least

one E cell
Fluid(F ) : All remaining cells

and cells with V < 1
2 are labeled as

FluidSolid(B) : Cells which border at least
one of the E, S or F cells

Solid(X) : All remaining cells

Domain boundary cells are labeled as Domain-
Boundary(D). It should be noted that all cell
labels, except D cells, are time-dependent. As
demonstrated in [4], this classification is advan-
tageous for stability of numerical method since it
eliminates occurrence of very small cells and thus
no severe time-step restrictions are expected.

In terrestrial flows, viscous effects on the free
surface are negligible compared to other terms
and thus can be neglected. Consequently, pres-

pi−1,j pi,j

pf
SF

Fig. 2: Pressure near free surface.

sure is determined in every S cell via linear in-
terpolation between the pressure pf = 0 and the
known value of pressure in the neighbour F cell.
In Fig. 2 pressure in S cell becomes:

pi,j = LINT (0, pi−1,j), (7)

where LINT is a linear interpolation/ extrapola-
tion function written in C++ programming lan-
guage.

In the approximation of momentum equations
EE velocities are needed. Since over the time
step EE velocity may become SE velocity, it is
reasonable to assume that its value is nonzero.
This velocity can be calculated from equation (3)
which is discretized by finite differences ([3], [4]).
SE velocities are computed by constant extrapo-
lation from fluid cell [2].

To account for a rigid body in numerical
model, equation (5) is used. Three points are
considered: B, N and I. B denotes a base ve-
locity knot which is labeled as BF , BS or BB.
N is the neihbour fluid knot located in the direc-
tion normal to the estimated fluid-body interface.
I is the interface location reconstructed in the
vicinity of knots B and N . There are three prin-
cipal locations of neighbour, interface and base
knots with respect to each other (see Fig. 3). If
|KB −KI | < |KN −KI | the LINT function is ex-
ecuted, otherwise the value of velocity in the base
knot is set to the velocity of the body in that knot.
Fig. 3b illustrates the case when no LINT func-
tion is applied. In Fig. 3a and 3c we use LINT
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Fig. 3: Locations of base, interface and neighbour
knots in y direction.

function to extrapolate and interpolate the value
of velocity in B knot from the velocities in N and
I knots, correspondingly. The same procedure is
applied for velocities in x direction.

At the inlet boundary we prescribe the in-
flow velocity. At the outlet boundaries, equation
(6) is solved. Unlike some commonly used outlet
boundary conditions, equation (6) couples pres-
sure and velocity. This well-posed form of bound-
ary conditions ensures that flow properties do not
change when flow leaves the computational do-
main (see [5]).

3 Fluid interface reconstruction
and advection

Since moving fluid interface position changes con-
tinuously its location must be defined at every
time step. In our numerical algorithm, the fluid
interface is tracked by means of VOF method. We
approximate all fluid interfaces using PLIC algo-
rithm. In this method for every pressure cell with
the volume of fluid (0 6V 6 1) we define an orien-
tation and then a distance of a straight-line seg-
ment:

nx + d = 0, (8)

which cuts amount of fluid equal to V in cell ([3],
[9]). Here, unit normal is n pointed out of fluid
and d is a line distance from the origin. An ap-
proximation of the fluid interface normal:

n =
∇ V

|∇ V |
(9)

is obtained by standard finite difference dis-
cretization in every pressure cell with respect to
its neighbours in 3×3 block of cells. We note that

fluid-body interface normal is determined based
on the geometry of the body. The calculation of
the line distance is the most difficult task because
the value of distance is constrained by volume
conservation. The distance d in equation (8) is
found from equation:

V (d) − V = e, (10)

where V (d) is the volume bounded by cell area
and line (8) and e is a value of tolerance. Follow-
ing Rider and Kothe [9], we use a Brent’s root-
finding algorithm to find zeros of the function
(10). A root of function (10) is a value of dis-
tance which equals volumes V (d) and V to within
the desired tolerance and corresponding line re-
constructs fluid interface segment in cell.

While a rigid boundary is very easy to locate
in time, free surface interface requires a suitable
advection algorithm to model its motion. In the
present work, geometrical area-preserving VOF
advection algorithm is used to advect the free sur-
face in time. In this method for every pressure cell
we introduce two independent one dimensional
linear mappings in x and y directions which de-
fine pre-images of vertical and horizontal edges of
this pressure cell, correspondingly. Over the time
∆t the velocities located at the edges of consid-
ered pressure cell may add some fluid into either
cell itself or into its neighbour cell. The sum of
all contributed volumes into cell itself corresponds
to a new volume of fluid for the new time step.
We note that the work of Aulisa [1] demonstrated
that this advection algorithm conserves the area
(or mass) exactly for incompressible fluids.

4 Validation

The numerical algorithm is verified by applying
it to the special case of uniform flow past a sta-
tionary horizontal circular cylinder beneath a free
surface. The flow is calculated at Reynolds num-
ber R = 180 when the depth of cylinder submer-
gence, h/d, is 0.55 (d is the cylinder diameter).
A non-uniform, 160 × 70, staggered grid is used.
Figure 4 shows a comparison between the equi-
vorticity plots obtained in the present study and
those obtained by Reichl [8] using the commercial
fluid CFD software package FLUENT 5.

Bearing in mind that Reichl [8] did not use
the same boundary conditions as those used in
the present work, it may be noted that, even so,
there is a good qualitative agreement between the
results.
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Fig. 4: Patterns of equi-vorticity lines for h/d =
0.55 and R = 180. Comparison between numeri-
cal results of Reichl [8] (top) and the present com-
puted results (bottom).

5 Conclusion

In this paper, the description of a numerical al-
gorithm is given for solving the incompressible
viscous flow past an oscillating cylinder beneath
a free surface. Particular attention is focused
upon numerical implementation of boundary con-
ditions. The numerical algorithm is verified by
applying it to the special cases of stationary and
oscillating (not shown here) cylinders.
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