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Abstract: As a continuation of Riewe’s pioneering work [Phys. Rev. E 55, 3581(1997)], the 

canonical quantization with fractional drivatives is carried out according to the Dirac 

method. The canonical conjugate-momentum coordinates are defined and turned into 

operators that satisfy the commutation relations, corresponding to the Poisson-bracket 

relations of the classical theory. These are generalized and the equations of motion are 

redefined in terms of the generalized brackets. A generalized Heisenberg equation of motion 

containing fractional derivatives is introduced.  
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1. Introduction 
 Most advanced methods of 

classical mechanics deal only with 

conservative systems, although all natural 

processes in the physical world are 

nonconservative. Classically or quantum-

mechanically treated, macroscopically or 

microscopically viewed, the physical 

world shows different kinds of dissipation 

and irreversibility. Mostly ignored in 

analytical techniques, this dissipation 

appears in friction, Brownian motion, 

inelastic scattering, electrical resistance, 

and many other processes in nature. 

Many attempts have been made 

to incorporate nonconservative forces into 

Lagrangian and Hamiltonian 

formulations; but those attempts could not 

give a completely consistent physical 

interpretation of these forces. The 

Rayleigh dissipation function, invoked 

when the frictional force is proportional 

to the velocity [1], was the first to be used 

to describe frictional forces in the 

Lagrangian. However, in that case, 
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another scalar function was needed, in 

addition to the Lagrangian, to specify the 

equations of motion. At the same time, 

this function does not appear in the 

Hamiltonian. Accordingly, the whole 

process is of no use when it is attempted 

to quantize nonconservative systems. 

 The most substantive work in this 

context was that of Riewe[2,3] who used 

fractional derivatives to study 

nonconservative systems and was able to 

generalize the Lagrangian and other 

classical functions to take into account 

nonconservative effects. 

 As a sequel to Riewe's work, 

Rabei et al. [4] used Laplace transforms 

of fractional integrals and fractional 

derivatives to develop a general formula 

for the potential of any arbitrary force, 

conservative or nonconservative. This led 

directly to the consideration of the 

dissipative effects in Lagrangian and 

Hamiltonian formulations.   

 Nonconservative systems can be 

incorporated easily into the equation of 

motion using the Newtonian procedure; 

but it is difficult to quantize systems with 

this procedure. The only scheme for the 

quantization of dissipative systems seems 

to be the stochastic quantization 

procedure [5]. This procedure leads to the 

nonlinear Schrödinger-Langevin 

equation. The reason for the impossibility 

of the direct quantization of 

nonconservative systems is the absence of 

the proper Lagrangian or Hamiltonian. 

Riewe has used fractional calculus to 

construct the Lagrangian and the 

Hamiltonian for such systems [2, 3]. In 

particular, he has shown that using 

fractional derivatives it is possible to 

construct a complete mechanical 

description of nonconservative systems, 

including Lagrangian and Hamiltonian 

mechanics, canonical transformations, 

Hamilton-Jacobi theory, and quantum 

mechanics. But the wave function for the 

damped harmonic oscillator is written in 

terms of three coordinates x , 
2

1x , and 

2
1−

x ; while we have two canonical 

conjugate momenta. Thus, one of the 

coordinates is not physical. In addition, 

Riewe has mentioned neither Poisson's 

brackets nor the commutators. Riewe also 

did not consider the causality so a mistake 

has appeared when he apply his theorem 

on the example which he has introduced 

as an illustration[8, 9].         

 In this paper we will show how to 

quantize nonconservative, or dissipative, 

systems using fractional calculus. The 

correct canonical conjugate variables will 

be determined. The Poisson brackets and 

the quantum commutators will be 

generalized to include fractional 

derivatives. Besides, the equation of 

motion in terms of Poisson brackets will 

be introduced, and the wave function for 

the damped harmonic oscillator will be 

obtained in terms of two canonical 

coordinates. 

 The paper is arranged as follows. 

In Section 2, we introduce some concepts 
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of fractional calculus. In Section 3, 

Riewe's fractional Hamiltonian mechanics 

is reviewed. In Section 4, the canonical 

conjugate variables are determined. This 

leads to Poisson’s brackets, the 

generalized Hamilton’s equation in terms 

of these brackets, and the commutation 

relations. In addition, we introduce a 

generalized form of Heisenberg's 

equation of motion. An illustrative 

example, given by Riewe[2,3], is 

discussed according to our quantization 

procedure in Section 5. Some concluding 

remarks follow in Section 6.                

 

2. Riewe’s Fractional 

Hamiltonian Mechanics  
Riewe [2, 3] started with the 

Lagrangian ( )( )tqL isr ,,  which is a 

function of time t  and the set of all ( )isrq , , 

where Rr  , ,1 ⋅⋅⋅=  indicates the particular 

coordinate (forexampl 

)  ,  , 321 zxyxxx === and )(is indicates 

the order of the i th derivative, 

Ni , ,1 ⋅⋅⋅= . He then used the 

conventional calculus of variations in 

classical mechanics to obtain the 

following generalized Euler-Lagrange 

equation: 

               

( )
( )

0
)(

1
)(,

)(

)(

0
=

∂
∂

−
−∑

= isr
is

is
N

i

is

q
L

atd
d

,                                                        

(11) 

where, for each order of derivative in the 

Lagrangian, the generalized 

coordinates
( )isr

q
,

 are defined as 

    
( ) ( )

( )

( )
( )is

r
is

bisrisr btd

xdqq
−

==
,,,

.               (12) 

Here ( )is  can be any non-negative real 

number. We define )0(s  to be 0; so that 

( )   0,sr
q denotes the coordinate rx [2, 3]. 

In Eq.s (11) and (12) Riewe used left 

hand differentiations on right handed 

coordinates, we think that this what 

causes the mistake appeared in his 

illustration[2,3,8]. To go over this conflict 

we will use the left handed coordinates, 

i.e.,  

                                              

( ) ( )

( )

( )
( )is

r
is

aisrisr atd

xdqq
−

==
,,,

              

over the whole present work, in Riewe's 

an in ours. This will introduce the causal 

appearance of our work. If in any case the 

Lagrangian is an anticausal or a mixed 

one, then Riewe's original equations and 

definitions may be used with a correction 

of use the left operation with the left 

coordinates, and so the right operation 

with the right coordinates.  

 In order to derive the generalized 

Hamilton’s equations, Riewe [2, 3]  

defined the generalized momenta as 

follows:  
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⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂
∂

×

−
−=

=

++

+−++

+−++−−

=

+−++∑

)1(,

)1()1(

)1()1(1

0

)1()1(

),(,)(,

)(
)1(

iksr

isiks

isiksiN

k

isiks

aisrisr

q
L

atd
d

pp

 (13)   

Thus, the Hamiltonian reads 

    , 
1

)1(,)(, LpqH
N

i
isrisr −= ∑

=
−         (14)                                                    

and the Hamilton’s equations of motion 

are defined as [2, 3] 

)(,)()1(

)()1(
)()1(

)(, )(
)1( isrisis

isis
isis

isr

p
atd

d
q

H
−+

−+
−+

−
−=

∂
∂

                                                             (15) 

)1(,
)(,

+=
∂
∂

isr
isr

q
p

H
;                              (16)                                        

and 

     
t
L

t
H

∂
∂

−=
∂
∂

.                                  (17)                                                   

 

4. Quantization with 

Fractional Calculus  
4.1 Canonical Conjugate Variables 

and Poisson Brackets   
 The process of quantizing the 

Hamiltonian starts with changing the 

coordinates )(, isrq  and momenta )(, isrp  

into operators satisfying commutation 

relations which correspond to the 

Poisson-bracket relations of the classical 

theory [11].  But the first step in our work 

is to determine which of the )(, isrp  and 

)(, isrq are the canonical conjugate 

variables. 

 This canonical-conjugate relation 

could be obtained directly from 

Hamilton’s equation defined by Riewe [2, 

3], Eq. (16), as follows: 

                          

)s(ir)s(iis

)s(iis

is)s(i

is)s(i

isr
isr

q
atd

d
d(t-a)

d

q
p

H

1,1)(

1)(

)(1

)(1

)1(,
)(,

)(
           

                                                                   

++−

+−

−+

−+

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

=
∂
∂

 

                                     

10      ,          )(,)(1

)(1

N-iq
d(t-a)

d
isris)s(i

is)s(i

≤≤= −+

−+

.                                                (18) 

We conclude that )(, isrp  is the canonical 

conjugate of )(, isrq . 

 We can then introduce the 

Hamiltonian in the form 

                               

10  

, 
)(

1

0
)(,)(,)()1(

)()1(

N-i

Lpq
atd

dH
N

i
isrisrisis

isis

≤≤

−
−

= ∑
−

=
−+

−+

                                 

Lpq
N

i
isrisr −= ∑

−

=
+

1

0
)(,)1(,     .       (19)                                 

This is equivalent to Riewe’s 

Hamiltonian. It is applicable to higher-

order Lagrangians with integral 

derivatives obtained by Pimental and 

Teixeira [12]. 

Now, let us define the most 

general classical Poisson bracket for any 

two functions, F and G, in phase space:  

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp256-262)



 5

                         

{ }

 

,

)(,)(,

)(,)(,

1

0

ksrksr

ksrksrr

N

k

q
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p
F

p
G

q
FGF

∂
∂

∂
∂

−
∂
∂

∂
∂

= ∑∑
−

=
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(20)  

The fundamental Poisson brackets read 

{ }

1,0      , 

,

)(,

)(,

)(,

)(,

)(,

)(,

)(,

)(,
1

0
)(,)(,

N-ji
q
p

p
q

p
p

q
q

pq

ksm

jsl

ksm

isr

ksm

jsl

ksm

isr

m

N

k
jslisr

≤≤
∂

∂

∂

∂

−
∂

∂

∂

∂
= ∑∑

−

=

      

rlijδδ=                      .                (21)                                                                                

Substituting integral derivatives, one can 

recover the well-known definition of 

Poisson brackets.   

 According to our definition of the 

Hamiltonian, Hamilton’s equations of 

motion can be written in terms of Poisson 

brackets as  

                    

{ }Hqqq
atd

d
isrisrisrisis

isis

,
)( )(,)1(,)(,)()1(

)()1(

==
− +−+

−+

                                                         (22) 

                                 

( )

{ }Hp

p
atd

d

isr

isrisis

isis
isis

,
)(

1

)(,

)(,)()1(

)()1(
)()1(

−

=
−

− −+

−+
−+

                                                         

(23) 

These two definitions are valid for higher-

order Lagrangians with integral 

derivatives and lead to the same 

definitions given by Pimental and 

Teixeira [12]. This means that our 

generalized definitions are applicable for 

fractional and integral systems as well.   

4.2 Quantum Mechanical Operator 

Brackets 

  

We can now connect the 

canonical conjugate variables quantum 

mechanically by defining the momentum 

operator as  

                                      

.1,...,1,0     ,
)(

)( −=∂
∂

= Niqi
p

is
is

η
 (24)                                  

The correspondence between the 

quantum-mechanical operator bracket and 

the classical Poisson bracket is 

                                  

Ψ−=Ψ ][],[ )(,)(,)(,)(,)(,)(, isrisrisrisrisrisr qppqpq
                       (25) 

                              

                 )(
)()(

)( Ψ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

−
∂
∂

= is
isis

is q
qq

q
i
η

                                        

Ψ= ηi                      ;  (26)                                                  

and the Schrödinger equation reads  

                                

Ψ
∂
∂

=Ψ
t

iH η .   (27)                                                                 

Thus, the commutators of the 

quantum-mechanical operators are 

proportional to the corresponding 

classical Poisson brackets: 

 

                               

{ })(,)(,)(,)(, ,],[ isrisrisrisr pqipq η↔ .  (28)                                    
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4.3 Generalization of Heisenberg's 

Equation of Motion 

 

For any operator Q , Heisenberg's 

equation of motion states that [13, 14] 

            [ ]HQ
i

Q
dt
d ˆ,ˆ1ˆ

η
= . (29)                                                      

This equation can be generalized for 

coordinate operators as  

                                

[ ],ˆ,ˆ1ˆ
)( )(,)(,)()1(

)()1(

Hq
i

q
atd

d
isrisrisis

isis

η
=

− −+

−+

                           

(30) 

and for momentum operators as 

                       

[ ]Hp
i

p
atd

d
isrisrisis

isis
isis ˆ,ˆ1ˆ

)(
)1( )(,)(,)()1(

)()1(
)()1(

η
−=

−
− −+

−+
−+

.                (31) 

Equations (30) and (31) are valid 

for integer-order derivatives as well as 

non-integer order. 

 

6. Conclusion 
 

 We have demonstrated that the 

canonical quantization procedure can be 

applied to nonconservative systems using 

fractional derivatives.  

 This procedure should be very 

helpful in quantizing nonconservative 

systems related to many important 

physical problems: either where the 

ordinary quantum-mechanical treatment 

leads to an incomplete description, such 

as the energy loss by charged particles 

when passing through matter; or where it 

leads to complicated nonlinear equations 

such as Brownian motion.   
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