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Abstract: - This paper presents an automatic parameters adjustment learning algorithm for self-organizing maps 
having growing ring topology. Like the existing SOM-like algorithm, the heuristic algorithm possesses many of 
these advantages of a good heuristic for the TSP solution. These advantages are easy implementation, fast 
computation, and production of good solutions. Computer programs developed in MATLAB for the heuristic 
algorithm were used to solve twelve test problems of the TSP from the TSPLIB. The experiment is showed that 
the results have an average of 2.4925% difference from the optimum route. We can find almost optimal route by 
the heuristic algorithm. The algorithm is well suited for larger instances of the TSP since it has a fast 
convergence and low complexity. 
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1   Introduction 
The Traveling Salesman Problem (TSP) is one of the 
typical combinatorial optimization problems. It can 
be stated as a search for the shorted closed tour that 
visits each city once and only once. The 
decision-problem form of TSP is a NP-complete [1], 
thence the great interest in efficient heuristics to 
solve it. There are several real-life applications of the 
TSP such as, VLSI routing [2], hole punching [3]. 
And wallpaper cutting [4]. There, the research on the 
TSP is theoretically important.  
     Many of the heuristics proposed recently utilize 
the paradigm of neural computation or related 
notions [5]. However there are two types of neural 
network approaches for the TSP: the Hopfild-type 
neural networks [6] and the Kohonen-type 
self-organizing map (SOM-like) neural networks 
[7]-[12]. The underlying idea of the Hopfied-type 
networks is to find solutions by automatically 
searching for the equilibrium states of one dynamic 
system corresponding to the problem under 
consideration. The Hopfield-type networks can be 
successfully applied to solve small or some medium 
scale TSPs[15]. However, few promising solutions 
for general medium or large scale TSPs can be 
obtained. On the other, the SOM-like neural 

networks can handle large scale TSPs with low 
computation complexity. We will focus on the 
SOM-like neural networks in this paper. 
     The SOM algorithm, originally introduced by 
Kohonen [7], is an unsupervised learning algorithm, 
where the learning algorithm establish a topological 
relationship among input data. By simply inspecting 
the data values of the input cities for regularities and 
patterns, and then adjusting itself to fit the input data 
through cooperative adaptation of the synaptic 
weights, such a SOM brings about the localized 
response to the input data, and thus reflects the 
topological ordering of the input cities. This 
neighborhood preserved map then results in a tour of 
the TSP under consideration. From each city, the 
resultant tour tries to visit its nearest city. The 
shortest subtour can intuitively lead to a good tour for 
the TSP. Such a property learned by the SOM is 
referred to as the local optimality hereafter. Due to 
their low computation complexity and promising 
performance, the SOM-like networks have attracted a 
large amount of research to explore and enhance the 
capability of handing the TSP [9], [12]-[14]. This 
paper presents an efficient growing ring SOM for 
TSP. 
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     The rest of paper is organized as follows: The 
SOM-like algorithm is briefly described in section 2. 
The efficient heuristic algorithm having growing ring 
topology is conducted in section 3. Computational 
experiments are presented in section 4. Conclusions 
are presented in Section 5. 
 
2   The SOM-like 
There are many different types of self-organizing 
maps; however, they all share a common 
characteristic, i.e. the ability to assess the input 
patterns presented to the networks, organize itself to 
learn, on its own, based on similarities among the 
collective set of inputs, and categorize them into 
groups of similar patterns. In general, self-organizing 
learning (unsupervised learning) involving the 
frequent modification of the network’s synaptic 
weights in response to a set of input patterns. The 
weight modifications are carried out in accordance 
with a set of learning rules. After repeated 
applications of the patterns to the network, a 
configuration emerges that is of some significance.  
     Kohonen self-organizing map belong to a special 
class of neural networks denominated Competitive 
Neural Networks, where each neuron competes with 
the others to get activated. The result of this 
competition is the activation of only one output 
neuron at a given moment. The purpose of Kohonen 
self-organizing map is to capture the topology and 
probability distribution of input data [7]. This 
network generally involved an architecture 
consisting of uni or bi-dimensional array of neurons. 
The original uni-dimensional SOM topology is 
similar to a bar. A competitive training algorithm is 
used to train the neural network. In this training 
mode, not only the winning neuron is allowed to 
learn, but some neurons within a predefined radius 
from the winning neuron are also allowed to learn 
with a decreasing learning rate as the cardinality 
distance from the winning neuron increases. During 
the training procedure, synaptic weights of neurons 
are gradually changed in order to preserve the 
topological information of the input data when it is 
introduced to the neural networks. 
     To apply this approach to the TSP, a two-layer 
network, which consists of a two-dimensional input 
unit and m output units, is used. The evolution of the 
network may be geometrically imagined as stretching 
of a ring toward the coordinates of the cities. The 
input data is the coordinates of cities and the weights 
of nodes are the coordinates of the points on the ring. 
The cities are presented to the network in a random 
order and a competition based on Rucilidean distance 
will be held among nodes. The winner node is the 

node (J) with the minimum distance to the presenting 
city. J=Argminj{||xi-yj||2}, where xi is the coordinates 
of city i, yj is the coordinates of nodes j and ||.||2 is the 
Euclidean distance. 
     Furthermore, in each iteration, the winner node 
and its neighbors move toward the presenting city i 
using the neighborhood function, 
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     Where α and σ are learning rate and 
neighborhood function variance, respectively. And 
d=min{||j-J||, m-||j-J||} is the cardinal distance 
measured along the ring between nodes j and J, 
where ||.|| represents absolute value and m is the 
number of the neurons. The neighborhood function 
determines the influence of a city on the neighbor 
nodes of the winner. We noted that the update of 
neighbor nodes in response to an input creates a 
force that preserves nodes close to each other and 
creates a mechanism for shortening the constructed 
tour. 

     We propose the learning rate and neighborhood 
function variance as follows: 

4
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Equation (3) determines the evolution of the 

learning rate. There is no need to define an initial 
value to this parameter since it depends only on the 
number of iterations. Equation (4) determines the 
evolution of the neighborhood function variance. 
This parameter requires an appropriate 
initialization, where σ0=10 has been adopted. 

 
 

3   The efficient growing ring SOM  
The Efficient Growing ring SOM (EGSOM) differs 
from former work in this direction as no ring 
structure with a fixed number of a node. The structure 
of the EGSOM is grown based on the winning 
number of each node and states of its neighbors.  
Basic structure of the EGSOM is same as shown in 
Fig.2. The input layer is a 2-dimensional input space 
with n cities and output layer is a discrete space of 
nodes. Let Nj be the neighbors set of the node j where 
j is modulus m. The node j is characterized by an 
n-dimensional synaptic vector yj and a signal counter 
Cj for inspection of the learning history. The EGSOM 
algorithm is given by the following: 
     Step 1 Initialization: 
     Let n is the number of cites and t be a discrete 
learning time starting from 0. The algorithm inputs 
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are the Cartesian coordinate of the set of cites. We 
give initial conditions m(0), Cj(0) and yj(0), where j �
{1,…,m(0)}. 
     Step 2 Randomizing input signal: 
     Starting calculation with randomly the order of 
the cities after a complete cycle of iterations and label 
cities 1 ,…, n. Let i be the index of the city in 
presentation. Set i=1 and reset the inhabitation status 
of all nodes to false. 

Inhibit [j]=false    for j=1,…, m(t). 
Step 3 Parameters adaptation: 
The learning rate αt and the neighborhood 

function variance σt are calculated using equations 
(3) and (4), respectively. 

Step 4 Determination of winner node: 
Through a competitive procedure, select the 

closed node to city i based on Euclidean distance. 
This competition is held among only nodes, which 
have not been selected as a winner in this iteration. 
Therefore, the winner node J may be selected 
according to the following statement: 

J=Argminj||xi-yj||   for {j| inhibit [j]=false} 
Step 5 Update of synaptic vectors and counters: 
According to Equ.(1) and (2), synaptic vectors 

of the winner and its neighbors are updated and 
other synaptic vectors are preserved at time t. 
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Where j is modulus m(t). The neighbor length of 
the node J is limited to 40% of m(t). The signal 
counter of the winner is updated and other signal 
counters preserve their values at time t. 

⎪⎩

⎪
⎨
⎧ =+

=+
otherwisetC

JiiftC
tC

j

j
j )(

1)(
)1(                                     (6) 

     Step 6 Insertion of a node: 
     Our algorithm inserts one novel cell at every Tint 
learning times hereby the map can grow. At t=kTint, 
k is a positive integer, we determine one node p 
whose signal counter has the maximum value. 

jallforkTCkTC jp )()( intint ≥                                      (7) 

If there exist plural maximum counter value we 
randomly select one of the nodes. This is an 
inspection of the learning history. We take a 
neighbor f=p-1, where f is modulus m(t). A novel 
node r is inserted between p and f. The synaptic 
vector of r is initialized as follow: 

)(5.0 fpr yyy +=                                                           (8) 

Counter values of p and r are re-assigned as 
follows: 

)(5.0)1(),(5.0)1( tCtCtCtC prpp =+=+                     (9) 

The insertion interval Tint is a control parameter of 
this algorithm. After the insertion, the number of 
nodes increases: let m(t+1)=m(t)+1. 
     Step 7 Termination: 
     Let t=t+1. If m(t)<1.5n then go to step 2, otherwise 
the learning is terminated. 
 
 
4   Application to TSP 

We apply the EGSOM algorithm to some TSP 
instances at 
http://www.iwr.uni-heidelberg.de/groups/comopt/sof
tware/TSPLIB95/. At t=0, we give initial conditions: 

m(0)=50, Cj(0)=0, Tint=50. 
Location of each city corresponds to an input and is 
applied randomly to the EGSOM. As learning time 
goes the EGSOM grows and forms a tour route. Then 
we search the closest nodes from each city. Every 
city can obtain the distinct closed nodes hereby the 
tour route can be determined because the EGSOM 
has ring topology. After using the EGSOM algorithm 
to solve 12 test problems of the TSP from the 
TSPLIB, an experiment is showed in table 1 that the 
best results have an average of 2.9910% difference 
from the optimum route by 20 simulation runs. We 
can find almost optimal route by the EGSOM. 
Because the number of nodes m(t) need only grow to 
1.5n, the algorithm processing time is fast. 
 
Table 1. The best results and percent differences 
from the optimum route by using the EGSOM 
algorithm solve 12 test problems of the TSP from the 
TSPLIB by 20 simulation runs 

Instances No. of 
cities 

The 
optimum 

route. 

The best 
route from 

the 
EGSOM 

Percent 
differenc
e from 
optimal 

tour 

Average 
processin

g time 
(secs.) 

eil51 51 426 431.9569 1.3983 6.2672 
st70 70 675 683.1030 1.2004 9.8048 
rd100 100 7910 8024.3 1.4453 15.846 
lin105 105 14379 14408 0.1986 16.361 
pr107 107 44303 44750 1.0092 20.913 
Bier127 127 118282 119610 1.1201 26.7600 
pr136 136 96772 98963 2.2640 30.936 
Pr152 152 73682 74228 0.7412 39.914 
kroA200 200 29368 29947 1.9715 60.494 
pcb442 442 50778 55263 8.8333 285.40 
Att532 532 87550 91063 4.0125 604.07 
U1060 1060 224094 236900 5.7154 1689.3 
Average percent difference 2.4925       233.8388 

      
Figure 1 to 4 show the partial results obtained by 

the application of the EGSOM algorithm. 
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Fig. 1 EGSOM for lin105 
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Fig. 2  EGSOM for pr152 
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Fig. 3 EGSOM for att532 
 

 
Fig. 4  EGSOM for u1060 

 
 
 

5   Conclusions 
We have presented an automatic parameters 
adjustment algorithm EGSOM for growing ring 
SOM. Computer programs developed in MATLAB 
for the heuristic algorithm EGSOM were used to 
solve twelve test problems using a standing desktop 
computer. Like the existing heuristic, the modified 
heuristic possesses many of these advantages of a 
good heuristic for the TSP solution. These 
advantages are easy implementation, fast 
computation, and production of good solutions. After 
using the EGSOM algorithm to solve twelve test 
problems of the TSP from the TSPLIB, an 
experiment is showed in table 1 that the best results 
have an average of 2.4925% difference from the 
optimum route by 20 simulation runs. We can find 
almost optimal route by the EGSOM. Because the 
number of nodes m(t) need only grow to 1.5n, the 
algorithm processing time is fast. Therefore, the 
EGSOM is well suited for larger instances of the TSP 
since it has a fast convergence and low complexity. 
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