
An Efficient Growing Ring SOM and Its Application to TSP

Yanping Bai1, Wendong Zhang1
1 Key Laboratory of Instrument Science and Dynamic Measurement of Ministry of Education,

North University of China,
No 3 XueYuan Road, TaiYuan, ShanXi 030051, China

Hongping Hu2

2 Dept. of Applied Mathematics,
North University of China,

No 3 XueYuan Road ,TaiYuan, ShanXi 030051, China

Abstract: - This paper presents an automatic parameters adjustment learning algorithm for self-organizing maps
having growing ring topology. Like the existing SOM-like algorithm, the heuristic algorithm possesses many of
these advantages of a good heuristic for the TSP solution. These advantages are easy implementation, fast
computation, and production of good solutions. Computer programs developed in MATLAB for the heuristic
algorithm were used to solve twelve test problems of the TSP from the TSPLIB. The experiment is showed that
the results have an average of 2.4925% difference from the optimum route. We can find almost optimal route by
the heuristic algorithm. The algorithm is well suited for larger instances of the TSP since it has a fast
convergence and low complexity.

Key-Words: - Neural networks; Self-organizing maps; Traveling salesman problem; Combinatorial
optimization; Neural computation

1 Introduction
The Traveling Salesman Problem (TSP) is one of the
typical combinatorial optimization problems. It can
be stated as a search for the shorted closed tour that
visits each city once and only once. The
decision-problem form of TSP is a NP-complete [1],
thence the great interest in efficient heuristics to
solve it. There are several real-life applications of the
TSP such as, VLSI routing [2], hole punching [3].
And wallpaper cutting [4]. There, the research on the
TSP is theoretically important.
 Many of the heuristics proposed recently utilize
the paradigm of neural computation or related
notions [5]. However there are two types of neural
network approaches for the TSP: the Hopfild-type
neural networks [6] and the Kohonen-type
self-organizing map (SOM-like) neural networks
[7]-[12]. The underlying idea of the Hopfied-type
networks is to find solutions by automatically
searching for the equilibrium states of one dynamic
system corresponding to the problem under
consideration. The Hopfield-type networks can be
successfully applied to solve small or some medium
scale TSPs[15]. However, few promising solutions
for general medium or large scale TSPs can be
obtained. On the other, the SOM-like neural

networks can handle large scale TSPs with low
computation complexity. We will focus on the
SOM-like neural networks in this paper.
 The SOM algorithm, originally introduced by
Kohonen [7], is an unsupervised learning algorithm,
where the learning algorithm establish a topological
relationship among input data. By simply inspecting
the data values of the input cities for regularities and
patterns, and then adjusting itself to fit the input data
through cooperative adaptation of the synaptic
weights, such a SOM brings about the localized
response to the input data, and thus reflects the
topological ordering of the input cities. This
neighborhood preserved map then results in a tour of
the TSP under consideration. From each city, the
resultant tour tries to visit its nearest city. The
shortest subtour can intuitively lead to a good tour for
the TSP. Such a property learned by the SOM is
referred to as the local optimality hereafter. Due to
their low computation complexity and promising
performance, the SOM-like networks have attracted a
large amount of research to explore and enhance the
capability of handing the TSP [9], [12]-[14]. This
paper presents an efficient growing ring SOM for
TSP.

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp351-355)

 The rest of paper is organized as follows: The
SOM-like algorithm is briefly described in section 2.
The efficient heuristic algorithm having growing ring
topology is conducted in section 3. Computational
experiments are presented in section 4. Conclusions
are presented in Section 5.

2 The SOM-like
There are many different types of self-organizing
maps; however, they all share a common
characteristic, i.e. the ability to assess the input
patterns presented to the networks, organize itself to
learn, on its own, based on similarities among the
collective set of inputs, and categorize them into
groups of similar patterns. In general, self-organizing
learning (unsupervised learning) involving the
frequent modification of the network’s synaptic
weights in response to a set of input patterns. The
weight modifications are carried out in accordance
with a set of learning rules. After repeated
applications of the patterns to the network, a
configuration emerges that is of some significance.
 Kohonen self-organizing map belong to a special
class of neural networks denominated Competitive
Neural Networks, where each neuron competes with
the others to get activated. The result of this
competition is the activation of only one output
neuron at a given moment. The purpose of Kohonen
self-organizing map is to capture the topology and
probability distribution of input data [7]. This
network generally involved an architecture
consisting of uni or bi-dimensional array of neurons.
The original uni-dimensional SOM topology is
similar to a bar. A competitive training algorithm is
used to train the neural network. In this training
mode, not only the winning neuron is allowed to
learn, but some neurons within a predefined radius
from the winning neuron are also allowed to learn
with a decreasing learning rate as the cardinality
distance from the winning neuron increases. During
the training procedure, synaptic weights of neurons
are gradually changed in order to preserve the
topological information of the input data when it is
introduced to the neural networks.
 To apply this approach to the TSP, a two-layer
network, which consists of a two-dimensional input
unit and m output units, is used. The evolution of the
network may be geometrically imagined as stretching
of a ring toward the coordinates of the cities. The
input data is the coordinates of cities and the weights
of nodes are the coordinates of the points on the ring.
The cities are presented to the network in a random
order and a competition based on Rucilidean distance
will be held among nodes. The winner node is the

node (J) with the minimum distance to the presenting
city. J=Argminj{||xi-yj||2}, where xi is the coordinates
of city i, yj is the coordinates of nodes j and ||.||2 is the
Euclidean distance.
 Furthermore, in each iteration, the winner node
and its neighbors move toward the presenting city i
using the neighborhood function,

)/(22

),(σσ dedf −= (1)
According to the following updated function

))(,(old
ji

old
j

new
j yxdfyy −+= σα (2)

 Where α and σ are learning rate and
neighborhood function variance, respectively. And
d=min{||j-J||, m-||j-J||} is the cardinal distance
measured along the ring between nodes j and J,
where ||.|| represents absolute value and m is the
number of the neurons. The neighborhood function
determines the influence of a city on the neighbor
nodes of the winner. We noted that the update of
neighbor nodes in response to an input creates a
force that preserves nodes close to each other and
creates a mechanism for shortening the constructed
tour.

 We propose the learning rate and neighborhood
function variance as follows:

4

1
tt =α (3)

)01.01(1 ttt ×−×= −σσ (4)
Equation (3) determines the evolution of the

learning rate. There is no need to define an initial
value to this parameter since it depends only on the
number of iterations. Equation (4) determines the
evolution of the neighborhood function variance.
This parameter requires an appropriate
initialization, where σ0=10 has been adopted.

3 The efficient growing ring SOM
The Efficient Growing ring SOM (EGSOM) differs
from former work in this direction as no ring
structure with a fixed number of a node. The structure
of the EGSOM is grown based on the winning
number of each node and states of its neighbors.
Basic structure of the EGSOM is same as shown in
Fig.2. The input layer is a 2-dimensional input space
with n cities and output layer is a discrete space of
nodes. Let Nj be the neighbors set of the node j where
j is modulus m. The node j is characterized by an
n-dimensional synaptic vector yj and a signal counter
Cj for inspection of the learning history. The EGSOM
algorithm is given by the following:
 Step 1 Initialization:
 Let n is the number of cites and t be a discrete
learning time starting from 0. The algorithm inputs

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp351-355)

are the Cartesian coordinate of the set of cites. We
give initial conditions m(0), Cj(0) and yj(0), where j �
{1,…,m(0)}.
 Step 2 Randomizing input signal:
 Starting calculation with randomly the order of
the cities after a complete cycle of iterations and label
cities 1 ,…, n. Let i be the index of the city in
presentation. Set i=1 and reset the inhabitation status
of all nodes to false.

Inhibit [j]=false for j=1,…, m(t).
Step 3 Parameters adaptation:
The learning rate αt and the neighborhood

function variance σt are calculated using equations
(3) and (4), respectively.

Step 4 Determination of winner node:
Through a competitive procedure, select the

closed node to city i based on Euclidean distance.
This competition is held among only nodes, which
have not been selected as a winner in this iteration.
Therefore, the winner node J may be selected
according to the following statement:

J=Argminj||xi-yj|| for {j| inhibit [j]=false}
Step 5 Update of synaptic vectors and counters:
According to Equ.(1) and (2), synaptic vectors

of the winner and its neighbors are updated and
other synaptic vectors are preserved at time t.

⎪⎩

⎪
⎨
⎧ ∈−+

=+
otherwisety

Niiftytxdfty
ty

j

Jjittj
j)(

))()()(,()(
)1(

σα (

5)
Where j is modulus m(t). The neighbor length of
the node J is limited to 40% of m(t). The signal
counter of the winner is updated and other signal
counters preserve their values at time t.

⎪⎩

⎪
⎨
⎧ =+

=+
otherwisetC

JiiftC
tC

j

j
j)(

1)(
)1((6)

 Step 6 Insertion of a node:
 Our algorithm inserts one novel cell at every Tint
learning times hereby the map can grow. At t=kTint,
k is a positive integer, we determine one node p
whose signal counter has the maximum value.

jallforkTCkTC jp)()(intint ≥ (7)

If there exist plural maximum counter value we
randomly select one of the nodes. This is an
inspection of the learning history. We take a
neighbor f=p-1, where f is modulus m(t). A novel
node r is inserted between p and f. The synaptic
vector of r is initialized as follow:

)(5.0 fpr yyy += (8)

Counter values of p and r are re-assigned as
follows:

)(5.0)1(),(5.0)1(tCtCtCtC prpp =+=+ (9)

The insertion interval Tint is a control parameter of
this algorithm. After the insertion, the number of
nodes increases: let m(t+1)=m(t)+1.
 Step 7 Termination:
 Let t=t+1. If m(t)<1.5n then go to step 2, otherwise
the learning is terminated.

4 Application to TSP

We apply the EGSOM algorithm to some TSP
instances at
http://www.iwr.uni-heidelberg.de/groups/comopt/sof
tware/TSPLIB95/. At t=0, we give initial conditions:

m(0)=50, Cj(0)=0, Tint=50.
Location of each city corresponds to an input and is
applied randomly to the EGSOM. As learning time
goes the EGSOM grows and forms a tour route. Then
we search the closest nodes from each city. Every
city can obtain the distinct closed nodes hereby the
tour route can be determined because the EGSOM
has ring topology. After using the EGSOM algorithm
to solve 12 test problems of the TSP from the
TSPLIB, an experiment is showed in table 1 that the
best results have an average of 2.9910% difference
from the optimum route by 20 simulation runs. We
can find almost optimal route by the EGSOM.
Because the number of nodes m(t) need only grow to
1.5n, the algorithm processing time is fast.

Table 1. The best results and percent differences
from the optimum route by using the EGSOM
algorithm solve 12 test problems of the TSP from the
TSPLIB by 20 simulation runs

Instances No. of
cities

The
optimum

route.

The best
route from

the
EGSOM

Percent
differenc
e from
optimal

tour

Average
processin

g time
(secs.)

eil51 51 426 431.9569 1.3983 6.2672
st70 70 675 683.1030 1.2004 9.8048
rd100 100 7910 8024.3 1.4453 15.846
lin105 105 14379 14408 0.1986 16.361
pr107 107 44303 44750 1.0092 20.913
Bier127 127 118282 119610 1.1201 26.7600
pr136 136 96772 98963 2.2640 30.936
Pr152 152 73682 74228 0.7412 39.914
kroA200 200 29368 29947 1.9715 60.494
pcb442 442 50778 55263 8.8333 285.40
Att532 532 87550 91063 4.0125 604.07
U1060 1060 224094 236900 5.7154 1689.3
Average percent difference 2.4925 233.8388

Figure 1 to 4 show the partial results obtained by

the application of the EGSOM algorithm.

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp351-355)

0 500 1000 1500 2000 2500 3000 3500
0

200

400

600

800

1000

1200

1400

Fig. 1 EGSOM for lin105

2000 4000 6000 8000 10000 12000 14000 16000
0

2000

4000

6000

8000

10000

12000

Fig. 2 EGSOM for pr152

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

1000

2000

3000

4000

5000

6000

7000

Fig. 3 EGSOM for att532

Fig. 4 EGSOM for u1060

5 Conclusions
We have presented an automatic parameters
adjustment algorithm EGSOM for growing ring
SOM. Computer programs developed in MATLAB
for the heuristic algorithm EGSOM were used to
solve twelve test problems using a standing desktop
computer. Like the existing heuristic, the modified
heuristic possesses many of these advantages of a
good heuristic for the TSP solution. These
advantages are easy implementation, fast
computation, and production of good solutions. After
using the EGSOM algorithm to solve twelve test
problems of the TSP from the TSPLIB, an
experiment is showed in table 1 that the best results
have an average of 2.4925% difference from the
optimum route by 20 simulation runs. We can find
almost optimal route by the EGSOM. Because the
number of nodes m(t) need only grow to 1.5n, the
algorithm processing time is fast. Therefore, the
EGSOM is well suited for larger instances of the TSP
since it has a fast convergence and low complexity.

6 Acknowledgment
The authors are thankful that the research is
supported by Shanxi Province’s (20051006) and
national (10471040) nature Science Foundations in
China.

References:
[1] Papadimitriou, C. H., The Euclidean traveling

salesman problem is NP-complete. Theoretical
Computer Science, Vol 4, 1978, pp. 237-244.

[2] K. A. Smith, Neural networks for combinatorial
optimization: A review of more than a decade of
research, INFORMS J. Comput., Vol. 11, No. 1,
1999, pp. 15-34.

[3] G. Reinelt, TSPLAB—A traveling salesman
problem library, ORSA J. Computing, Vol.3, No.
4, 1991, pp. 376-384.

[4] G. Laporte, The vehicle routing problem: An
overview of exact and approximate algorithms,
Eur. J. Oper. Res., Vol. 59, 1992, pp. 345-358.

[5] C. Peterson, Parallel distributed approaches to
combinatorial optimization: benchmark studies
on traveling salesman problem , Neural
computation, Vol. 2, 1990, pp. 261-269.

[6] Hopfield, J. J. and Tank, D. W., Neural
computation of decisions in optimization
problems, Biological Cybernetics, Vol. 52, 1985,
pp. 141-152.

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp351-355)

[7] Kohonen, T., Self-organized formation of
topologically correct feature maps, Biol. Cybern.,
Vol. 43, No. 2, 1982, pp. 59-69.

[8] N. Aras. B.J. Oommen. I.K. Altinel., Kohonen
Network incorporating explicit statistics and its
application to the traveling salesman problem,
Neural Networks, Vol. 12, 1999, pp. 1273-1284 .

[9] Somhom, S., Modares, A, & Enkawa, T.,
competition-based neural network for the
multiple traveling salesman problem with
minmax objective. Computers and Operations
Research, Vol. 26, 1999, pp. 395-407.

[10] Favata, S. & Walker, R., A study of the
application of Kohonen–type neural networks to
the traveling salesman problem. Biological
Cybernetics, Vol. 64, 1991, pp. 463-468.

[11] Hueter, G.J., Solution of the traveling salesman
problem with an adaptive ring. Proceeding of the
IEEE International Conference on Neural
Networks, 1988 , No. I, pp. 85-92.

[12] Fort, J. C., Solving combinatorial problem via
self-organizing process: an application of the
Kohonen algorithm to the traveling sales-man
problem. Biological Cybernetics, Vol. 59, 1988,
pp. 33-40 .

[13] Ange’niol, B., Vaubois, C. and Le Texier, J.Y.,
self-organizing feature maps and the traveling
salesman problem. Neural Networks, Vol. 1, 1988,
pp. 289-293.

[14] H. D. Jin K. S. Leung, M. L. Wong, Z. B. Xu,
An efficient self-organizing map designed by
genetic algorithms for the traveling salesman
problem, IEEE Trans. On systems, man, and
cyber. P. B, Cyber., Vol. 33, 1997, pp. 877-888.

[15] S. Abe, Convergence acceleration of the Hopfild
neural network by optimization integration step
sizes, IEEE Trans. Syst., Man, Cybern. B, Vol.
26, pp. 1996, pp. 194-201.

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp351-355)

